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Abstract
The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding
the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into
aquatic ecosystems from natural and anthropogenic sources. Metals are highly persistent and toxic substances in trace amounts
and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements
zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute
and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through
photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activ-
ities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic
pigments were gradually reduced (~32–100% reduction) in a dose-dependent manner. Protein content was initially increased
during acute (~8–12%) and chronic (~57–80%) exposure and decreased (~44–56%) at higher concentration of the two metals
(80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and
subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58–129%) followed by a
gradual reduction (~3.7–79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to
1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of
individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc
and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal
contaminants into the aquatic ecosystems.
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Introduction

Pollution of water bodies through metal discharges from in-
dustries greatly affects the ecosystem. Because metals are
highly persistent pollutants in the aquatic ecosystem, they
can cause alteration of growth, development, morphology,
physiological, and biochemical metabolism in aquatic organ-
ism (Assche and Clijsters 1990; Bidar et al. 2007; Ajitha et al.
2019). Metals enter the aquatic system and primarily act on
small organisms, algae, which are ubiquitously distributed
throughout the aquatic environment; and such metal contam-
inants are widely distributed out to and among various organ-
isms due to unavoidable presence in the aquatic food chain
system (Liu et al. 2008). Among various animal taxa,
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extensive studies on the adverse effects of metal contamina-
tion in animals including aquatic vertebrates and invertebrates
are available; however, relatively little attention has been giv-
en on the importance of primary producers, microalgae.

Microalgae are known to be sensitive to the alterations in
the environment and often used as biological indicators for
assessing the toxic effects of metals (Chouteau et al. 2004;
Durrieu et al. 2011; Kumar et al. 2015), as they are extensively
prevalent in lakes and seas (Chen et al. 2012) (Table 1).
Among microalgae, Chlorella vulgaris is a well-known pho-
tosynthetic freshwater microalga and generally used for tox-
icity tests due to its high sensitivity to xenobiotics (Ajitha et al.
2019). In fact, metals having characteristics of non-biodegrad-
ability, biomagnification, and high toxicity are of great threat
to the aquatic ecosystem, resulting in a significant reduction in
algal diversity and productivity, which all contribute to chang-
es in algal composition (Harding and Whitton 1976; Foster
1982; Shehata and Whitton 1982; Takamura et al. 1989;
Gupta and Chandra 1994; Bajguz 2000; Mallick 2004).
Furthermore, consequences of metal stress in algae include
detrimental effects on growth, cell division, photosynthesis,
and destruction of primary metabolites (Pokora and Tukaj
2010; Tukaj and Tukaj 2010; Wang et al. 2011).

Among various metal pollutants present in aquatic ecosys-
tem, Zn is considered to be an essential microelement;

however, at higher concentration, Zn is strongly phytotoxic
and leads to the obstruction of algal growth, while the non-
essential element Hg becomes highly toxic in metallic, ionic,
and organic forms which is deleterious to aquatic fauna and
flora (Ouyang et al. 2012; Dinesh Kumar et al. 2014). Also,
Hg pollution is of great concern due to its high toxicity and
resistance to biodegradability, and potential for bioaccumula-
tion through trophic chains. Growth inhibition ofChlorella by
Hg has been widely acknowledged (Hutchinson and Stokes
1975; Gipps and Biro 1978). Moreover, studies have evaluat-
ed Hg toxicity in aquatic organisms, highly focusing on the
bioaccumulation and trophic transfer as well as lethal and sub-
lethal toxicity to fish (Boening 2000). In addition, few studies
have explored Hg toxicity to aquatic plants and larval stages
of insects (Azevedo-Pereira and Soares 2010; Dirilgen 2011).
Several findings revealed that Hg causes a significant reduc-
tion of plant growth and biomass (Godbold 1991; Israr et al.
2006; Cargnelutti et al. 2006; Zhou et al. 2007) and generates
oxidative stress by the generation of reactive oxygen species
(ROS) (Cargnelutti et al. 2006; Zhou et al. 2007).

To date, many toxicity tests have been performed based on
individual toxicity; however, due to the potential combined
effects, toxicity exerted by the combinations of various metals
is likely more serious and threatening (Zeb et al. 2017). Also,
literature on the assessment of the combined toxicity of metals

Table 1 Review on the metal exposure performed to the microalgae and the endpoints and responses assessed

Metals Species Endpoints/responses References

Zn, Hg, CH3Hg
+ Chlorella vulgaris Specific growth rate, pH, phosphate, calcium, magnesium,

total chlorophyll, and carotenoid content
Rai et al. 1981a

ZnCl2, HgCl2 Survival, growth measurement, pigments, protein content,
CO2 fixation, O2evolution, ATP content, nutrient
uptake, nitrate reductase activity

Rai et al. 1991

Cu Lipid peroxidation, proline content, carotenoid content,
protein content, GSH, GR, APX, CAT,SOD

Mallick 2004

Cu Dose-dependent increase in ROS (50 and 250 nM) Knauert and Knauer 2008

Cu, Cd Significant increase in CAT activity and peroxidase under
single exposure of Cu and mixture of Cd (1.5 μM of Cu)

Qian et al. 2011

Cu, Cr, Cd, Zn, Pb Significant inhibition of growth at earlier exposure time.
Inhibition of chlorophyll fluorescence by Cu, while Zn

promoted fluorescence

Ouyang et al. 2012

Cr Concentration-dependent increase in antioxidant
enzymes (CAT, APX, SOD), carotenoid, and MDA level

Rai et al. 2013

Hg Chlorella pyrenoidosa Inhibition of cell division Kamp-Nielsen 1971

Cu2+ , Chlortetracycline Chlorella pyrenoidosa
Microsystis aeruginosa

Increase in SOD activity under initial exposure. Soluble
protein contents was decreased under initial exposure
and the effect was more severe under re-exposure.

Lu et al. 2015

Cu Anabaena doliolum Inhibition of chlorophyll-a accumulation, despite
significant activation of SOD

Mallick and Rai 1999

Zn, Pb, Cu Spirulina platensis Increase in MDA and SOD in response to different
concentration gradients of Zn, Pb, and Cu

Choudhary et al. 2007

CuCl2, PCB Prorocentrum minimum Significant up-regulation of CYPat lower concentration
of Cu, along with induction of ROS

Ponmani et al. 2015

Cd, 4-n-nonylphenol Chlorella sorokiniana Growth inhibition with significant increase in SOD
activity at earlier exposure time

Wang et al. 2018
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(Mochida et al. 2006; Su et al. 2012; Qu et al. 2013) particu-
larly on single and/or synergistic effects of metals in the
microalga C. vulgaris have been reported (Rai et al. 1981a;
Franklin et al. 2002; Qian et al. 2009, Qian et al.2011). For
example, the combined nitrogen limitation and cadmium
stresses have led to significant inhibition of growth and cell
density of C. vulgaris (Chia et al. 2015). However, a detailed
recent study illustrates the additive and synergistic effects on
C. vulgaris in response to six metals such as Ni, Fe, Zn, lead
(Pb), cadmium (Cd), and chromium (Cr) (Mo et al. 2019).
Exposure of the microalga C. pyrenoidosa to copper and cad-
mium, individually and in combination, resulted in growth
inhibition (Nugroho et al. 2017). Also, single, combined,
and second exposure effect of Cu2+ and chlortetracycline
(CTC) on the microalgae C. pyrenoidosa and Microcystis
aeruginosa demonstrated variation in toxicity due to differ-
ences in recovery potential among the two species (Lu et al.
2015). Moreover, the action of binary mixtures of
cetyltrimethyl ammonium chloride (CTAC) and aromatic hy-
drocarbon showed synergetic and antagonistic effects on
C. vulgaris (Ge et al. 2010). Similarly, single and combined
effects of cadmium and 4-n-nonylphenol (4-n-NP) on growth
inhibition and oxidative stress in the microalgaC. sorokiniana
were have been reported (Wang et al. 2018) (Table 2).

Based on the previous study on metal composition in treat-
ed electroplating industrial effluent (Ajitha et al. 2019), we
selected Zn (upper limit 167.25 mg/L) and Hg (upper limit
104.2 mg/L) as the testing metal elements for this study.
Single and combined effects of Zn and Hg were analyzed
based on both acute and chronic exposure periods, 48 h and
7 days, respectively. This study aims to better understand how
Zn, Hg, and Zn+Hg combination affects the biological process
in C. vulgaris. To corroborate, we investigated the effects of
Zn and Hg and their combination on the accumulation of
oxidative radicals, the impairments on physiological parame-
ters (pigments and protein), and the counter-response of anti-
oxidant defense mechanisms (CAT and SOD) in the oxidative
stress-induced microalga C. vulgaris. Besides, the morpho-
variability and aberrations in C. vulgais during chronic expo-
sure to metals at different concentrations were observed.
Overall, even though without any affirmed mechanism of ac-
tion of synergism or the combinatorial effects of Zn and Hg on
C. vulgaris, this study provides insight into the response of
C. vulgaris in response to Zn, Hg, and Zn+Hg and helps to
predict the biological effects, which paves way for the direc-
tions for identifying the molecular effects of metal synergism
in C. vulgaris.

Materials and methods

The microalga C. vulgaris was obtained from Central Marine
Fisheries Research Institute, Kochi, Kerala in India and

maintained axenically at the National Centre for Aquatic
Animal Health (NCAAH), Cochin University of Science and
Technology (CUSAT), Kerala, India, until it was used for this
study (Ajitha et al. 2019). C. vulgaris was maintained in aer-
ated Bold’s basal medium (BBM) (Bischoff and Bold 1963)
under 16:8 h light and dark cycle at 25±2°C, 45 mmol m−2 s−1

photon flux intensity. All investigations were carried out fol-
lowing the guidelines provided by the Institutional Biosafety
Committee (IBSC) at NCAAH, CUSAT, Kerala in India.

To obtain the elemental Zn and Hg, ZnCl2 and HgCl2 with
99.9% purity were selected. Stock solutions of ZnCl2 (2.4mM
contain 167.25mg/L Zn) and HgCl2 (0.076 mM contain 104.2
mg/LHg) were prepared withMilli-Q water and considered as
100%. The upper limits of Zn (167.25 mg/L) and Hg (104.2
mg/L) were selected based on the previous findings (Ajitha
et al. 2019) and considered as 100%. Various concentrations
of Zn and Hg used for the study are given in Tables 4 and 5.
To assess single and combined effects of Zn and Hg during
acute and chronic toxicity tests,C. vulgaris cells were exposed
to metal solutions prepared in BBM media in different con-
centrations (2.5 to 80%). Control was maintained by using the
same BBM medium without metals. Experimental cell cul-
tures were initiated at 0.6 × 106 cells/mL. Cell number was
determined using a hemocytometer (Improved Neubauer,
Rohem, India), as described in Ajitha et al. (2019).
Chemicals and reagents were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

Field emission scanning electron microscopic (FESEM)
analysis was performed using C. vulgaris samples with dis-
tinct concentrations of Zn and Hg (2.5, 20, and 80%).
Microalgal cultures were harvested and washed in 1x
phosphate-buffered saline (PBS) for 2–3 times followed by
centrifugation at 12,400×g. To obtain the cell pellets, 1 mL
2.5% glutaraldehyde was added and kept for overnight at 4°C.
After 12 h, cells were harvested and washed in 1x PBS for 2–3
times. One milliliter of 2% osmium tetroxide was added and
incubated for 4 h at 4°C. Cells were harvested and washed
with 1x PBS followed by the dehydration with acetone and air
dry (Grantt 2008). Nova NanoSEM 450UoK scanning elec-
tron microscope (Nova NanoSEM, Los Angeles, USA) was
used to observe the microalgal cells.

C. vulgaris samples treated with various metal concentra-
tions (2.5 to 80% for both Zn and Hg) were prepared for the
assessment of photosynthetic pigments. Two-milliliter
microalgal sample was centrifuged at 2200×g for 5 min and
the pellets were suspended in 2 mL methanol, incubated for
30 min at 45°C. The supernatant was discarded and absor-
bance was taken at 665.2, 652.4, and 470 nm (Lichtenthaler
1987).

For the evaluation of protein content, six dilutions of metal
samples along with the control were tested in C. vulgaris cul-
tures. Followed by the standard protocol (Barbarino and
Lourenço 2005), protein was extracted. To quantify the total
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protein contents, Bradford assay (Bradford 1976) was carried
out with the precipitated proteins via bovine serum albumin
(BSA) as the standard.

Estimation of ROS was done using dihydroxyrhodamine123
(DHR123) dye. Various metal concentrations (2.5, 20, and 80%)
were prepared along with the control at 48 h and 7 days. The cell
pellets were stained with DHR123 at a final concentration of
5μg/L for 1h. Cells were centrifuged and washed twice in fresh
BBM medium. The cultures were resuspended in fresh BBM
medium and observed under a confocal microscope (Nikon
A1R, Tokyo, Japan) to check the ROS generation in single cells
(Sathasivam et al. 2016).

Antioxidant enzyme assays were performed by following
our previous paper (Ajitha et al. 2019). Briefly, C. vulgaris
cultures in response to various concentrations of metals (i.e.,
zinc and mercury) ranging from 2.5 to 80% were kept for 48h
and 7 days. C. vulgaris cells (100 mg) were homogenized in
0.5 M PBS (pH7.5), 1 mM ethylene-diamine-tetraacetic-acid
(EDTA), and a pinch of polyvinyl polypyrrolidone. The ho-
mogenate was centrifuged at 12,400×g at 4 °C for 30 min.
Enzyme extraction was carried out at 0–4°C and the superna-
tants were stored as aliquot for enzyme estimation. Catalase
activity was examined following the standard protocol
(Chance and Maehly 1955). Reaction mixture was prepared
with 2.5 mL 10 mM PBS, 0.5 mL H2O2, and 0.2 mL enzyme
extract. Reduction in absorbance at 230 nm was analyzed in a
spectrophotometer (Hitachi U-3900, Tokyo, Japan) and the
specific activity was expressed in terms of changes in absor-
bance/min/extinction coefficient/mg protein. Superoxide dis-
mutase activity was determined by standard protocol (Das

et al. 2000). Reaction mixture of 1.5 mL aliquot comprised
of 0.3 mL each of 50 mM PBS (pH7.4), 20 mM methionine,
1% (v/v) Triton X-100, 10mMhydroxylamine hydrochloride,
and 50 μM EDTA. To this aliquot, 200 μL, the supernatant
was added followed by the pre-incubation at 37°C for 5 min.
Eighty microliters of 50 μM riboflavin was added to the tubes
and the mixture was placed below a light source for 10 min.
One milliliter of Griess reagent was added to each tube and the
absorbance of the color formed was measured at 543nm
against buffer taken as blank. Each test was performed in
triplicates.

One-way analysis of variance (ANOVA) was done to con-
firm the validity of the data using SPSS® software (version21;
SPSS Inc., Chicago, IL, USA) followed by Tukey’s post hoc
test (Tukey’s, P<0.05 and P<0.01), which shows statistically
significant differences in all treatments.

Results and discussion

In the present study, single and combined effects of Zn and Hg
were assessed throughmorphological changes, photosynthetic
pigment content, total protein content, ROS generation, and
antioxidant enzyme (CAT and SOD) activities in C. vulgaris.
SEM provided direct observation of microalgal cells in which
high magnification and resolving power facilitates the im-
proved examination of morphology and surface attachment.
Under the chronic exposure of different concentrations of Zn,
C. vulgaris cells featured various physical transformations in
cell size and structure compared to the control. C. vulgaris

Table 2 Synergistic effect of heavy metals and their endpoint assays on various algae

Synergistic exposure Species Endpoint assays References

Zn, Hg, CH3Hg
+ Chlorella vulgaris Total chlorophyll, carotenoid content,

growth rate, pH, phosphate,calcium,
magnesium

Rai et al. 1981b

Cu, Cd, and Zn Chlorella vulgaris Cell division rate Franklin et al. 2002

Cu, Cd Chlorella vulgaris Reduction in cell growth, chlorophyll
content, and increase in ROS content

Qian et al. 2009

Cetyltrimethylammonium chloride
(CTAC), benzene, toluene, phenol,
nitrobenzene, phenanthrene, fluoranthene

Chlorella vulgaris Biomass, zeta potential Ge et al. 2010

Cu, Cd Chlorella vulgaris SOD, peroxidase, Malondialdehyde Qian et al. 2011

Brassinosteroids, auxins Chlorella vulgaris Cell number, chlorophyll content,
protein, monosaccharides

Bajguz and
Piotrowska-Niczyporuk 2013

Cd, N Chlorella vulgaris Growth rate, biomass, and
biochemical composition

Chia et al. 2015

Cu2+, chlortetracycline (CTC) Chlorella pyrenoidosa,
Microcystis aeruginosa

Chlorophyll fluorescence, MDA,
SOD, protein

Lu et al. 2015

Cu, Cd Chlorella pyrenoidosa Growth inhibition Nugroho et al. 2017

Cd, 4-n-nonylphenol (4-n-NP) Chlorella sorokiniana SOD, CAT, GSH, and growth
inhibition

Wang et al. 2018

Ni, Fe, Zn, Pb, Cd, Cr Chlorella pyrenoidosa Toxicity inhibition Mo et al. 2019
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cells of the control showed typical size for the species (Fig. 1A
and Suppl. Fig. 1A).Morphological variations and aberrations
in C. vulgaris cells were visible from 2.5% concentration on-
wards compared to the control. Cell wall showed signs of
shrinkage and structural damages illustrated in Fig. 1 Suppl.
Fig. 1, and the deformations were severe under the higher
concentration (80%). Under Hg exposure, microalgal cells in
response to 2.5, 20, and 80% concentrations of Hg also

showed structural alterations compared to the control (Fig.
1B), nearly similar to Zn exposed cells. However, in the com-
bined toxicity test, the adverse effects were marginally higher
compared to the single metal toxicity, especially at the highest
concentration (Fig. 1C). Indeed, ruptured and shrank cells in
the test groups demonstrated the severity of metal-induced
toxicity on C. vulgaris and further suggests that the combined
effects of the two metals are likely to exert higher toxicity

a b c

Fig. 1 Scanning electron micrograph ofChlorella vulgaris treated with Zn, Hg, and Zn+Hg shows morpho-variation and aberrations. Cell wall damages
are observed at 2.5, 20, and 80% heavy metals present in concentrations tested (Scale bar = 3 μm)
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within the cells, ultimately leading to cell structural deformi-
ties at a higher extent.

In fact, Hg and Zn compounds induced morphological
transformations and oxidative stress in microalgal cells in-
cluding Chlorella sp. (Nuzzi 1972; Gold et al. 2003; Li et al.
2006; Morin and Coste 2006; Tripathi and Gaur 2006).
Similarly, in the diatoms Thalassiosira pseudonana (Sunda
1975) and Skeletonema costatum (Morel et al. 1978), morpho-
logical aberrations were reported in response to Cu2+.
Furthermore, a photosynthetic protist Euglena gracilis ex-
posed to chromium showed rigorous morphological and bio-
chemical alterations (Rocchetta et al. 2006), while morpho-
logical changes due to metal intoxication were widely report-
ed in Chlorophyceae (Rosko and Rachlin 1977),
Chrysophyceae (Davies 1974), Bacillariophyceae (Morel
et al. 1978; Nuzzi 1972; Sunda 1975), and ciliates (Tingle
et al. 1973). In contrast, few studies in the past have shown
ameliorating effects of iron (Fe) against the toxicities of other
heavy metals in various algae, including Micrasterias
(Volland et al. 2011; Volland et al. 2012; Andosch et al.
2012) which showed significant improvements of cell mor-
phogenesis, photosynthesis, cell division rates, and the struc-
tures of chloroplasts (Volland et al. 2014). Also, it has been
shown that Fe and Zn assist in ameliorating the toxicity of
heavy metal such as chromium (Cr) (Mallick et al. 2010;
Branzini et al. 2012) possibly induced by the presence of
competition for carrier up-take into the cell (di Toppi and
Gabbrielli 1999; Shanker et al. 2005). However, due to possi-
ble species-specific differences in metal toxicities among al-
gae, further molecular analyses on the metal-uptake potential
are required to fully understand the differences in metal tox-
icities. Aside from species-specific differences in metal-
uptake and subsequent induction of toxicity, other factor such
as biosorption potential of C. vulgaris may account for the
physiological malformation due to Zn and Hg-induced toxic-
ity. Indeed, biosorption in aquatic plants cells is crucial against
toxicity as they are involved in removal of toxic elements
(Mehta et al. 2002; Michalak and Chojnacka 2010) and
threshold concentration for different metals has been reported
(Wan Maznah et al. 2012), suggesting species-and metal-spe-
cific differences in biosorption potential, contributing to
concentration-dependent increase in cell deformities in
C. vulgaris under the two metal exposures. Taken together,
it is evident that the observed morphological variations in
C. vulgaris samples were likely due to metal toxicity
(Table 3).

The main photosynthetic pigments are comprised of
chlorophyll-α, -β, and carotenoids (Chl-α, Chl-β, and Car)
(Yang et al. 2020). Chlorophyll is essential in photosynthesis
which enables microalgae and cyanobacteria to generate en-
ergy from light absorption, Chl-α, specifically (Takamura
et al. 1990; Van Baalen and O’Donnell 1978). The results
presented in Fig. 2A and Tables 4 and 5 clearly demonstrate

a dose-dependent toxic effect of Hg and Zn on pigment con-
tents ofC. vulgaris and combined effect of Zn and Hg induced
more stress on pigments compared to the single-dose experi-
ment and correspondingly the pigments were decreased. This
pattern was observed in both acute (48 h) and chronic (7 days)
experiments. However, a random reduction of pigment was
observed in chronic toxicity test (Fig. 2A).C. vulgaris cultures
exposed to different concentrations of Zn during 48 h and 7
days showed a reduction in Chl-α, Chl-β, and Car contents
respectively (Fig. 2A, Suppl. Fig. 2). Above 2.5% concentra-
tion, diminution of pigments was noticed compared to the
control in both acute and chronic studies. Interestingly, both
single and combined toxicity of metals induced higher con-
tents of Chl-β compared to that of Chl-α in all concentration
treatment. Single effects of Zn on C. vulgaris cultures from
lower to higher concentration showed a concentration-
dependent significant reduction (P<0.05) in pigment content
and the percentage reductions were 47.64 to 90.93% and
67.09 to 94.17% at lower (2.5) and higher (80) concentrations
during acute and chronic exposure (Tables 6 and 7).

Previously, photosynthetic pigments were found to be di-
minished under excess concentrations of Zn in microalgal
cultures (De Filippis and Pallaghy 1976; Rai et al. 1981b).
Similarly, Chl-α concentration was reduced in the green
microalga Pseudokirchneriella subcapitata in response to Zn
exposure (Soto et al. 2011). Also, high concentrations of Zn
reduced total chlorophyll content, ATPase activity and
carotenoid/chlorophyll ratio, and cell division and mobility
in the green microalgae Scenedesmus obliquus and
S. quadricauda (Omar 2002).

Hg-exposed cells showed decreased photosynthetic pig-
ments in both acute and chronic tests (from 2.5 to 80%), com-
pared to the control. Under both acute and chronic exposure,
the reduction of pigment contents was in a concentration-
dependent manner, compared to the control (i.e., gradual re-
duction of pigment contents). In a single metal exposed ex-
periment, marginal reduction in pigment contents was noticed
in Hg-treated cells than Zn which varied at approximately 3–
4% variation on toxic endpoints (Tables 6 and 7).

Hg toxicity has been reported to cause perturbation in
various biological functions. For example, growth reduc-
tion by Hg in Chlorella was extensively acknowledged
(Gipps and Biro 1978; Hutchinson and Stokes 1975),
and the photosynthetic capacity of Chlorella was affect-
ed at a concentration of 2.5 × 10−5 M HgCl2
(Greenfield 1942).0.1 mg/L Hg, which is highly toxic
than Cu or Pb, completely inhibited cell division in
Chlorella (Hannan and Patouillet 1972). In previous
findings, Hg showed a detrimental effect on various
microalgae, showing the decreased photosynthetic pig-
ments as the characteristic of Hg-exposed microalgae
(Rai et al. 1981b). Based on previous findings and the
results obtained in this study (Tables 4, 5, 6, and 7), it
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is suggestive that Hg has higher potential to cause sig-
nificant toxicity in C. vulgaris compared to Zn.

Under chronic exposure, combined toxicity tests with Zn
and Hg illustrated the inhibitory effects that were similar to
those of the single-exposure experiments with Zn and Hg (Fig.
2A; right panel). In diverse concentrations of combinations of
Zn and Hg, gradual decrement of pigment content was shown
in C. vulgaris cells during 48 h and 7 days, indicating that this
is likely due to dose-dependent inhibitory effect of Zn and Hg.
Combination of Zn and Hg provides a significantly higher
impact (P<0.05) on microalgal cells than that of single-
exposed effect. Due to the metal-induced effects of Zn and
Hg in the combined test, the pigment contents were reduced to
>90%, compared to control and the marginal difference be-
tween the single and combined one was ~4–23% (P<0.05),
suggestive of combined metal effect toxicities (Tables 4, 5, 6,
and 7).

The main indication of metal toxicity has been prevalently
found with the reduction of chlorophyll contents, which is
likely associated with oxidative stress. Indeed previous find-
ings from Euglena (De Filippis et al. 1981), metal-exposed
higher plants (Clijsters et al. 1999), and the lichen Xanthoria
parietina in response to environmentally relevant concentra-
tions of hexavalent chromium (di Toppi et al. 2004), all
showed similar outcomes on the species due to metal-
induced oxidative stress. Similar to the present study, except
the metal concentration used, a concentration-dependent re-
duction of photosynthetic pigments in response to Zn and Hg
was reported earlier in C. vulgaris (Rai et al. 1991). In the
pearl millet Pennisetum typhoideum, chlorophyll synthesis
was suppressed in response to Hg and Pb (Prasad and
Prasad 1987). Diminution in chlorophyll pigments was

reported in the microalgae C. kessleri and Coelastrum
sphaericum and the delphacid planthopper Stenocranus
acutus in response to high concentrations of copper
(Schiariti et al. 2004). The green microalga Chlamydomonas
reinhardtii showed chlorophyll pigment reduction in response
to Cd and Cu (Prasad et al. 1998). The microalga
C. protothecoides in response to various concentrations (30–
300 μΜ) of the herbicide SANDOZ 9785(4-chloro-
5-[dimethylamino]-2-phenyl-3[2H]pyridazinone) caused a re-
duction in the Chl-α/Chl-β ratio (Samuel and Bose 1987).
Also, Cd and Pb reduced the Chl-α/Chl-β ratio in wheat seed-
lings (Öncel et al. 2000). Pigment reduction was reported in
C. vulgaris in response to Cr (Rai et al. 2013). Overall, com-
bined toxicities of metals indeed induced significant loss of
chlorophyll contents, possibly by uncontrolled accumulation
of metal ions within the cell (Shakya et al. 2007). In addition
to the accumulation of heavy metals within a cell, reduction of
chlorophyll contents could possibly be due to the inhibition of
chlorophyll biosynthesis from heavy metal interference in
magnesium in the porphyrin ring of the chlorophyll molecule
(Kupper et al. 1998; Kupper et al. 2002). Moreover, loss of
chlorophyll pigments is one of the bio-indication for heavy-
metal induced injury in plant cells (Muradoglu et al. 2015),
suggesting that single and combined toxicity of metals (Zn
and Hg) could cause detrimental effect in C. vulgaris. In ad-
dition, acute exposure (i.e., 96 h) of Zn and Cu decreased
pigment content (Kebeish et al. 2014; Kumar et al. 2016;
Zeraatkar et al. 2016) and photosynthetic rates in C. vulgaris
(Saavedra et al. 2018).

C. vulgaris cultures in response to different concentrations
of Zn demonstrated a concentration-dependent reduction in
protein content. At 2.5% concentration, protein content was

Table 3 Review on morpho-variations and aberrations in the metal exposed microalgae

Species Metal Effects References

Thalassiosira pseudonana Cu2+ Morphological aberration Sunda 1975

Chlorella vulgaris Cd, Cu, Hg, Zn, Pb Alterations in cell division Rosko and Rachlin 1977

Skeletonema costatum Cu2+ Morphological aberration Morel et al. 1978

Asterionella japonica Cu, Zn Reduction in cell division rate, increase in
cell size (swollen appearance)

Fisher et al. 1981

Fragilaria capucina var. gracilis Cd, Zn Perturbations, frustule formation Gold et al. 2003

Euglena gracilis Cr High number of vacuoles and thylakoid alteration Rocchetta et al. 2006

Micrasterias denticulata Al, Zn, Cu, Cd Distinct cell shape aberration, vacuole
formation, malformations in cell shape

Volland et al. 2011

Chara vulgaris, Pithophora oedogonia AgNO3 Alterations in cell wall, cell surface disruption,
shrinkage and extensive surface irregularity
reflective of wall rupture, and degradation

Dash et al. 2012

Micrasterias denticulata Cr III, Cr VI Increased vacuolization, condensed cytoplasm,
and dark precipitations in the cell wall

Volland et al. 2012

Micrasterias denticulata Cd Unidirectional disintegration of dictyosomes,
autophagy

Andosch et al. 2012

Chlorella vulgaris, Chlamydomonas sp. Cu, Zn Irregular and folded appearance of cells, cell
shrinkage, and rupturing

Wan Maznah et al. 2012

32481Environ Sci Pollut Res (2021) 28:32475–32492



high, supporting with similar findings (Mishra et al.
2006), where the rising of protein content at lower con-
centration is likely due to the increase of stress proteins
including antioxidant enzymes to maximize the defense

against toxicity or could be the indication of the maxi-
mum defense threshold. Total amino acid content was
increased at less concentration of Zn but was decreased
at higher Zn concentration (Omar 2002). The reduction

a

b

Fig. 2 Effect of Zn, Hg, and Zn+Hg from 48-h and 7-day experiments on
photosynthetic pigment production (A) and protein content (B) in
Chlorella vulgaris cells. All the values are mean of triplicates ± SD.

Different letters represent significant differences (P < 0.05) in response
to different concentrations after Tukey’s post hoc analysis
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of protein content was due to increased proteolytic
activity.

Significant dose-dependent reduction (P<0.05) in the pro-
tein content was observed in both acute and chronic studies.
Interestingly, in all concentration, the protein content in the
combined metal exposed cells was higher than the single-dose
Zn-exposed cells, suggesting an elevated level of stress pro-
tein accumulation in the algal cells. This pattern was observed
in both acute and chronic toxicity studies (Fig. 2B and
Tables 4, 5, 6, and 7).

C. vulgaris cells in response to Hg for 48 h and 7 days
showed a similar trend as shown in Zn-exposed microalgal
cells. Significant enhancement (P<0.05) of protein content at
a lower concentration of Hg indicates the generation of stress
proteins through which they eradicate their stress but requires
further studies to confirm it.

In combined toxicity tests, C. vulgaris cultures in
response to different concentrations of Zn and Hg
showed similar changes, but at a higher level, to those
of single-exposed cultures with Zn and Hg single treat-
ment. Due to the combined effect of Zn and Hg, the
metal-induced effects on C. vulgaris cells were higher
than the individual exposed effect.

A percentage reduction of protein content in Zn during
acute exposure at 20% concentration compared to control
was found to be 20.2 ± 2.6, and in Hg, it was around 17 ±
1.1 while in the combined test (Zn+Hg), the value was signif-
icantly reduced to 15 ± 1.1 (Table 6) which is highly signifi-
cant P<0.01 and P<0.05, respectively, compared to that of the
individual tests. In chronic exposure, a significantly higher
percentage reduction in protein content was observed for both
individual and combined tests in a concentration-dependent
manner (Table 7).

Induction of protein content at 2.5% concentration was
further supported by earlier findings such as an increase of
protein content at lower doses (Osman et al. 2004) and it
would be one of the mechanisms either eliminating toxic ef-
fects or increasing the cellular respiration leading to utilization
of carbohydrate in favor of protein accumulation. In
microalgae, the toxicity of metals leads the binding to sulfhy-
dryl groups in proteins or the disruption of an essential ele-
ment and/or interruption of protein structure (Tripathi and
Gaur 2006). Elevation in oxidative stress-induced protein deg-
radation demonstrates a correlation between protein reduction
and proteolytic activity in response to oxidative stress
(Romero-Puertas et al. 2002). Indeed, in agreement to other

Table 4 Effect of Zn, Hg, and Zn+Hg on Chlorella vulgaris after 48h post-exposure

Metals Concentration Toxicity endpoints

(%) (mg/L) Chl-a (μg/
mL)

Chl-b (μg/
mL)

Carotenoid (μg/
mL)

Protein (μg/
mL)

ROS (AU) CAT (U/mg
protein)

SOD (U/mg
protein)

Zn 0 0 17.2±0.09 18.1±0.07 0.305±0.17 36.3±0.58 531.15±3.5 0.0314±0.00 2.45±0.01

2.5 4.2 9.02 ±0.19 12.3±0.18 0 39±0.37 3203±4.7 0.084±0.00 5.6±0.02

5 8.4 6.53±0.19 9.23±0.17 0 33±0.51 0.09±0.00 4.2±0.01

10 16.7 4.88±0.12 6.52±0.23 0 29±0.22 0.103±0.01 3.4±0.01

20 33.6 3.22±0.18 4.52±0.18 0 28±0.43 4693±3.9 0.15±0.00 2.04±0.01

40 66.9 2.24±0.25 2.78±0.26 0 23±0.47 0.22±0.00 1.28±0.02

80 133.8 1.56±0.005 2.13±0.01 0 18±0.37 6003±2.6 0.32±0.01 0.57±0.007

Hg 0 0 17.29±0.51 18.12±0.47 0.46±0.04 36.5±0.51 532.49±4.9 0.031±0.001 2.62±0.01

2.5 2.6 7.4±0.08 9.9±0.32 0 40±0.37 3745±4.2 0.093±0.003 6.21±0.01

5 5.2 5.32±0.1 8.27±0.35 0 34±0.52 0.104±0.002 5.3±0.01

10 10.4 3.7±0.06 5.12±0.20 0 31±0.22 0.11±0.007 4.5±0.01

20 20.8 2.27±0.05 3.27±0.18 0 30±0.44 5004±4.15 0.16±0.004 3.05±0.02

40 41.7 1.56±0.02 2.13±0.04 0 26±0.47 0.24±0.007 2±0.01

80 83.4 0.887±0.04 1.47±0.01 0 19±0.36 6445±4.2 0.36±0.008 0.8±0.001

Zn+
Hg

0 0 17.15±0.42 18.48±0.38 0.49±0.21 36.8±0.58 545.48
±3.02

0.0313±0.00 2.83±0.01

2.5 6.8 3.76±0.01 9.52±0.06 0 41±0.37 4419±1.01 0.1203±0.003 7.08±0.01

5 13.6 2.35±0.002 5.85±0.003 0 35±0.52 0.124±0.002 6.02±0.01

10 27.1 1.48±0.009 3.92±0.005 0 32±0.22 0.13±0.008 5.2±0.01

20 54.4 0.75±0.002 1.93±0.005 0 31±0.39 5649±1.4 0.19±0.005 4±0.005

40 108.6 0.688±0.01 1.76±0.03 0 28±0.45 0.26±0.009 3±0.01

80 217.2 0.542±0.02 1.36±0.006 0 20±0.36 7112±1.5 0.39±0.009 1±0.00
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previously reported studies, the results obtained in C. vulgaris
in response to Zn and Hg, under both single and combined as
well as acute and chronic exposure, have demonstrated signif-
icant increase at the lowest concentration tested, most likely
attributing to a wide array of metabolic processes including
expression of stress-related proteins for defense against envi-
ronmental stressors (Xu et al.2008). Taken together, increase
in the protein content under a low concentration of both single

and combined effect of metals (i.e., Zn and Hg), possibly
suggests that C. vulgaris can cope with the metal-induced
stress only up to certain concentrations; however, the thresh-
old concentration would most likely be in a species-specific
manner.

To analyze whether metals induce oxidative stress, single
and combined toxicity tests inC. vulgaris cultures in response
to 2.5, 20, and 80% concentrations of Zn and Hg at 48 h and 7

Table 5 Effect of Zn, Hg, and Zn+Hg on Chlorella vulgaris after 7th day post-exposure

Metals Concentration Toxicity endpoints

(%) (mg/L) Chl-a (μg/mL) Chl-b (μg/mL) Carotenoid (μg/mL) Protein (μg/mL) ROS (AU) CAT
(U/mg protein)

SOD
(U/ mg protein)

Zn 0 0 15.1±0.00 5.6±0.01 2.83±0.105 38.02±0.59 532.14±2.99 0.02±0.001 2.46±0.008

2.5 4.2 5.008±0.14 5.24±0.24 0 59±0.49 4004±4.4 0.04±0.007 3.8±0.02

5 8.4 4.25±0.19 5.12±0.33 0 49±0.52 0.06±0.001 1.6±0.01

10 16.7 2.98±0.18 4.25±0.18 0 29±0.31 0.08±0.003 1.3±0.02

20 33.6 2.07±0.16 3.37±0.04 0 23±0.43 5124±3.2 0.2±0.004 0.8±0.01

40 66.9 1.25±0.13 1.7±0.24 0 19±0.45 0.32±0.006 0.53±0.003

80 133.8 0.88±0.005 1.37±0.03 0 15±0.37 7135±1.5 0.34±0.006 0.31±0.004

Hg 0 0 15.2±0.01 5.68±0.02 3.98±0.01 39.1±0.49 533.18±5.9 0.021±0.002 2.54±0.008

2.5 2.6 3.75±0.09 5.52±0.1 0 61±0.43 4294±4.5 0.047±0.003 4.1±0.02

5 5.2 2.95±0.13 4.06±0.26 0 51±0.49 0.07±0.002 2.8±0.02

10 10.4 1.93±0.1 3.23±0.19 0 30±0.23 0.092±0.005 1.8±0.031

20 20.8 1.01±0.17 1.49±0.15 0 24±0.42 5424±3.9 0.22±0.006 1.3±0.02

40 41.7 0.87±0.05 1.09±0.18 0 20±0.45 0.34±0.008 0.75±0.002

80 83.4 0.44±0.01 0.603±0.03 0 16±0.38 7533±3.2 0.36±0.008 0.54±0.002

Zn+
Hg

0 0 13.2±0.24 7.98±0.22 3.99±0.01 40.06±0.62 541.5±4.7 0.022±0.00 2.58±0.00

2.5 6.8 0.67±0.007 1.98±0.005 0 72±0.38 4898±2.6 0.056±0.001 5±0.01

5 13.6 0.66±0.004 1.65±0.005 0 58±0.51 0.092±0.004 3.2±0.008

10 27.1 0.45±0.001 1.36±0.001 0 38±0.37 0.1±0.008 2.2±0.01

20 54.4 0.23±0.001 0.65±0.003 0 26±0.31 5964±4.04 0.25±0.009 1.7±0.02

40 108.6 0.04±0.004 0.23±0.001 0 21±0.24 0.37±0.009 1.07±0.01

80 217.2 0.021±0.00 0.059±0.00 0 17±0.2 8125±4.5 0.38±0.009 0.67±0.002

Table 6 Percentage increase (+)/decrease(−) from control of Zn, Hg, and Zn+Hg on Chlorella vulgaris after 48h post-exposure

Metals Concentration Percentage increase /decrease compared to control

(%) (mg/L) Chl-a (μg/mL) Chl-b (μg/mL) Protein (μg/mL) ROS (AU) CAT (U/mg protein) SOD (U/mg protein)

Zn 2.5 4.2 −47.64 ± 1.1 −32.22 ± 1.1 +8.36 ± 3.4 +503.2 ± 4.8 +108.65 ± 0.43 +129.2 ± 0.7

20 33.6 −81.27 ± 1.1 −75.09 ± 1.1 −20.29 ± 2.6 +783.71 ± 6.2 +386.5 ± 1.2 −16.71 ± 0.4

80 133.8 −90.93 ± 0.09 −88.25 ± 0.003 −48.75 ± 0.24 +1030.2 ± 7.5 +940.95 ± 2.9 −76.58 ± 0.7

Hg 2.5 2.6 −57.20 ± 1.5 −45.12 ± 2.9 +10.48 ± 0.5 +603.45 ± 6.4 +207.5 ± 1.4 +136.8 ± 0.6

20 20.8 −86.84 ± 0.3 −81.9 ± 1.07 −17.95 ± 1.1 +839.87 ± 7.1 +414.9 ± 1.2 −6.5 ± 0.14

80 83.4 −94.87 ± 0.3 −91.86 ± 0.19 −46.29 ± 0.06 +1110.5 ± 6.3 +1056 ± 2 −69.13 ± 2

Zn+
Hg

2.5 6.8 −78.06 ± 0.59 −48.47 ± 1.3 +12.53 ± 1.3 +710.4 ± 5.1 +300.6 ± 1.4 +149.8 ± 0.9

20 54.4 −95.6 ± 0.11 −89.52 ± 0.2 −15.6 ± 1.8 +935.68 ± 5.2 +534.43 ± 2 −3.7 ± 0.15

80 217.2 −96.83 ± 0.12 −92.62 ± 0.2 −43.9 ± 0.2 +1203.9 ± 7.1 +1212.18 ± 1.4 −64.59 ± 0.6
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days were performed. In this investigation, ROS generation
was found to be increasing significantly (P<0.05) in both
metal exposures, in both single and combined effects (Figs.
3 and 4; Tables 4, 5, 6, and 7) in concentration-dependent
manner. In the individual toxicity test with Zn, during acute
exposure at 2.5% concentration, 5-fold increase in ROS pro-
duction was observed compared to the control, and in Hg, ~ 6-
fold increase was observed; whereas in the combined test
(Zn+Hg), 7-fold difference was observed (Table 6). All the
values were statistically significant at P<0.01 and P<0.05.
While compared to the acute test significantly higher percent-
age increase in ROS production was noticed in the chronic test
(Table 7). ROS generation by the various concentrations of
metal compounds suggests induction of oxidative stress in
C. vulgaris, which further verifies the toxic nature of the
metals in Chlorella.

Previously, ROS generation was observed in various algae
in response to metals and xenobiotics. For example, exposure
of CuO on the green microalga C. reinhardtii induced oxida-
tive stress (Melegari et al. 2013) and exposure to
polychlorinated biphenyl (PCB) in the dinoflagellate
Lingulodinium polyedrum (da Leitao et al. 2003) led to sig-
nificant induction of oxidative stress. Also, ROS generation
was noticed in the dinoflagellate Prorocentrum minimum in
response to CuCl2 and PCB (Ponmani et al. 2015), while the
accumulation of the intracellular ROS was reported in the
microalgae C. vulgaris and P. subcapitatain response to Cu
(Knauert and Knauer 2008). In agreement with our results, the
similar tendency in ROS generation has been reported in the
microalgal cells ofAnabaena sp. in response to Zn2+, reaching
the maximum peak at a concentration higher than 0.7 mg/L
Zn2+. In fact, heavy metals promote oxidative damage in two
ways, by increasing the cellular concentrations of ROS
(Winterbourn 1982) and/or by reducing the cellular antioxi-
dant potential (Sies 1999). The adverse effects of ROS accu-
mulation on cellular levels are highly associated with protein
oxidation, lipids, and nucleic acids, which ultimately lead to

alterations in cell structure and mutagenesis (Halliwell and
Gutteridge 1999; Pinto et al. 2003). Furthermore, negative
effects of metal and/or xenobiotic-induced ROS generation
and consequent oxidative stress pose a higher threat in photo-
synthetic organisms compared to animals, as the common
biological source of oxygen is acquired through intense elec-
tron flux within the microenvironment, which is already filled
with elevated oxygen levels and metal ion concentrations,
making photosynthetic organisms highly susceptible to oxida-
tive stress (Pinto et al. 2003). Taken together, the single and
combined effect of metal (Zn and Hg) induced a significant
increase in ROS levels in C. vulgaris, which may be closely
associated with concentration-dependent cell morphological
deformity; however, further studies on morphological alter-
ation in association to intracellular ROS levels are required
to fully elucidate this phenomenon due to the presence of
ambiguity in mechanisms of heavy metal toxicity.

Microalgae have diverse antioxidant enzymes to mitigate
the increased generation of ROS caused by metals. For ROS
scavenging, antioxidant enzymes perform a vital role (Kang
et al. 1999; Sharma et al. 2012). Antioxidant enzymes are
well-known biomarkers of protection in response to oxidative
stress and generation of antioxidant enzymes is regarded to be
one of the ways to avoid or overcome the metal-induced cell
destruction (Wu and Lee 2008). CAT, SOD, glutathione re-
ductase (GR), and glutathione peroxidase (GPx) are meant to
safeguard cells and tissues from oxidative damages and to
counteract the toxicity of ROS (Ensibi et al. 2013). CAT is
the key enzyme for the conversion of H2O2 to H2O and O2.
CAT involved in the mechanism to shield the cells against the
damage caused by ROS to cellular components including
nucleic acids, lipids, and proteins (Imlay 2002).

The initial key enzyme for ROS scavenging is considered
to be SOD in plants and other organisms, playing an important
role in active O2 metabolism and altering superoxide radicals
(O2

-) to H2O2 at a rapid rate. SOD, among other antioxidant
enzymes, detoxifies superoxide anions (Beyer et al. 1991;

Table 7 Percentage increase (+)/decrease (−) from control of Zn, Hg, and Zn+Hg on Chlorella vulgaris after 7th day post-exposure

Metals Concentration Percentage increase/decrease compared to control

(%) (mg/L) Chl-a (μg/mL) Chl-b (μg/mL) Protein (μg/mL) ROS (AU) CAT (U/mg protein) SOD (U/mg protein)

Zn 2.5 4.2 −67.09 ± 1 −6.69 ± 4.7 +57.15 ± 3.6 +652.59 ± 3.8 +83.15 ± 0.28 +58.19 ± 0.6

20 33.6 −86.39 ± 1 −40.37 ± 0.8 −37.22 ± 0.9 +863.01 ± 4.9 +826.95 ± 1.1 −63.89 ± 0.6

80 133.8 −94.17 ± 0.03 −75.67 ± 0.5 −59.01 ± 0.97 +1240.9 ± 7.1 +1446.4 ± 2.7 −87.21 ± 0.2

Hg 2.5 2.6 −75.33 ± 0.6 −2.77 ± 1.8 +58.07 ± 2 +705.51 ± 6.2 +114.7 ± 1.4 +63.97 ± 0.6

20 20.8 −93.34 ± 1.1 −73.69 ± 2.7 −36.31 ± 1.68 +917.5 ± 6.3 +910.51 ± 1.4 −48.84 ± 0.28

80 83.4 −97.04 ± 0.1 −89.37 ± 0.5 −57.53 ± 0.58 +1312.9 ± 6.4 +1553.8 ± 1.5 −78.73 ± 0.21

Zn+
Hg

2.5 6.8 −94.89 ± 0.04 −75.15 ± 0.64 +79.84 ± 2.8 +804.54 ± 5.1 +151.3 ± 0.9 +79.28 ± 0.5

20 54.4 −98.18 ± 0.02 −91.76 ± 0.2 −35.09 ± 1.7 +1001.5 ± 5.2 +1016.8 ± 1.4 −35.92 ± 0.8

80 217.2 −99.83 ± 0.004 −99.25 ± 0.02 −56.12 ± 0.1 +1400.5 ± 6.4 +1605.2 ± 1.7 −73.83 ± 0.9
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Mellado et al. 2012) and considered to be a renowned bio-
marker of defense in response to oxidative stress (Assche and
Clijsters 1990; Chongpraditnun et al. 1992). In this study, both
single and combined exposure to Zn and Hg in C. vulgaris
resulted in significant elevation at initial concentration,
followed by gradual reduction under acute and chronic expo-
sures (Fig. 5A and Tables 4, 5, 6, and 7). A bell-shaped con-
centration-response pattern was noticed in the SOD activity.
In the individual toxicity tests of Zn and Hg, the percentage
reduction in SOD activity during acute exposure at 20% con-
centration was found to be 16.7± 0.4 and 6.5 ± 0.1, while in
the combined test, the value was significantly reduced to 3.7 ±
0.1 due to the combined effect of Zn and Hg (Table 6). All the
values were statistically significant at P<0.01 and P<0.05. A
concentration-dependent significant percentage reduction was
noticed in both acute and chronic tests with Zn, Hg, and Zn+
Hg (Tables 6 and 7).

In plant cells, SOD activity increased as a result of different
kind of chemical compounds and physical stresses (Mittler
2002). Induction of superoxide anion content was also shown
in metals-exposed macroalgae (Çelekli et al. 2016; Wu et al.
2014). Increased SOD activity was observed in the cyanobac-
terium Spirulina platensis in response to Zn, Pb, Cu over a
concentration gradient of 0.05–0.20 mg/L (Choudhary et al.

2007). Also, the combined effects of Cu and Cd increased the
SOD activity in C. vulgaris (Qian et al. 2011) and the second
exposure effect of Cu2+ and CTC showed increased SOD
act iv i ty on the microa lgae C. pyrenoidosa and
M. aeruginosa (Lu et al. 2015). Furthermore, single and com-
bined effects of Cd and 4-n-NP on the microalga
C. sorokiniana for 48 h, 72 h, and 96 h showed induction of
SOD activity and reduced during the exposure time increased
(Wang et al. 2018). Overall, initial induction of SOD activity
under acute and chronic exposures to single and combined
treatment of Zn and Hg in C. vulgaris may suggest that both
mitochondrial and chloroplast electron transport systems may
be affected by heavy metal-induced oxidative stress (Pinto
et al. 2003). Also, an initial increase in SOD activity relative

Fig. 3 Generation of reactive
oxygen species in response to Zn,
Hg, and combination (Zn+Hg)
during acute and chronic
exposure. Different letters
represent significant differences
(P < 0.05) in response to different
concentrations after Tukey’s post
hoc analysis. Data are the mean ±
SD of triplicates

�Fig. 4 Fluorescent confocal microscopy images demonstrate Zn-, Hg-,
and Zn+Hg-induced reactive oxygen species (ROS) generation in
Chlorella vulgaris. (A) Non-treated cells (control), cells treated with
2.5, 20, and 80% concentrations of Zn for 48 h and 7 days; (B) Non-
treated cells (control), cells exposed to different concentrations of Hg
(2.5, 20, and 80%) incubated for 48 h and 7 days; Non-treated cells
(control), cells exposed to different concentrations of Zn+Hg (2.5, 20,
and 80%) incubated for 48 h and 7 days. Red fluorescence is the auto-
fluorescence ofC. vulgaris cells, green fluorescence originated during the
reaction of ROS with DHR123. (Scale bar = 5 μm)
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to a reduction over time may suggest disruption of oxidative
balance which possibly depends on the severity of the stress
and metal properties.

When C. vulgaris cultures were exposed to various con-
centrations of Zn and Hg under acute and chronic periods
(48 h and 7 days, respectively), a significant increase
(P<0.05) in CAT activity was observed as shown in Fig. 5B
and Tables 4, 5, 6, and 7. In the single toxicity tests, during
acute exposure, the percentage increase in CAT activity com-
pared to control at 80% concentration in Zn and Hg were 941
± 2 (9-fold) and 1056 ± 2 (10-fold), respectively; whereas in

the combined test (Zn+Hg), increase in CAT activity was
significantly higher (P<0.01 and P<0.05) (1212 ± 1.4 [12-
fold]) compared to the single exposure tests (Table 6). While
compared to the acute exposure, percentage increase in CAT
activity during chronic exposure was high in both individual
and combined test (Table 7).

In the marine microalga Pavlova viridis, the antioxidant
enzymatic activities were increased at the highest concentra-
tions in response to Zn and Cu (Li et al. 2006). Similar to that
of the findings in the toxicity test of C. vulgaris cells with Zn,
significant increasing trend (P<0.05) in CAT activity was

a

b

Fig. 5 Effects of diverse concentrations of Zn, Hg, and Zn+Hg for 48-h
and 7-day exposure on superoxide dismutase activity (A) and catalase
activity (B) in Chlorella vulgaris cells. Different letters represent

significant differences (P < 0.05) in response to different concentrations
after Tukey’s post hoc analysis. Data are the mean ± SD of triplicates
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observed for both individual toxicity and combined toxicity
(Fig. 5B). A dose-dependent increase in the antioxidant activ-
ity was reported in C. vulgaris in response to Cu, Pb, and Cd
(Bajguz 2010; Cheng et al. 2016). Antioxidant enzymes inter-
act together to prevail over metal impacts in the marine
microalgae Acanthophora spicifera and Chaetomorpha
antennina and the seaweed Ulva reticulate (Babu et al.
2014). CAT demonstrates an essential function in the
microalga P. subcapitata at greater toxicant concentrations
(Soto et al. 2011). Activation of CAT activity occurred in
the freshwater cyanobacterium Anabaena doliolum in re-
sponse to Cu (Mallick and Rai 1999). Production of antioxi-
dant enzymes such as CAT, GR, and GPx in C. vulgaris in
response to Cd exposure illustrates that these antioxidant en-
zymes perform together to reduce the toxic effects of metals
(Cheng et al. 2016). Indeed, increase in CAT activity is re-
ferred to be an adaptation method developed by plants (Reddy
et al. 2005). Single toxicity tests of Cu and Cd on C. vulgaris
showed a slight increase in CAT activity (Qian et al. 2011).
Besides, single and combined effects of Cd and 4-n-NP on the
microalga C. sorokiniana demonstrated initial stimulation in
CAT activity which then decreased over time (Wang et al.
2018). In this study, however, metal-induced (Zn and Hg)
elevation in ROS was not successfully scavenged by the anti-
oxidant CAT, despite significant increase in CAT activity in
C. vulgaris, which may suggest incapability of CAT in the
clearance of Zn and Hg-induced ROS, possibly due to
concentration-specific modulations of SOD activities, which
may not have fully catalyzed superoxide into oxygen in re-
sponse to the two metals

In summary, Zn and Hg established a significant impact on
the C. vulgaris cells. The observation from this study clearly
documents a higher level of dose-dependent toxic effect of Hg
and Zn in combination than in single, which suggests syner-
gistic effects. These effects were observed in both acute and
chronic toxicity studies through significant flection in photo-
synthetic pigment content, total protein content, ROS produc-
tion, antioxidant enzymes (SOD and CAT) along with mor-
phological aberrations. However, elaborative study with large
data sets including the genomics and proteomics data are re-
quired to find out the synergistic effects of metals at the mo-
lecular level in C. vulgaris.
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