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Abstract
Urban air pollution, especially in the form of haze events, has become a serious threat to socio-economic development and public
health in most developing countries. It is of great importance to assess the frequency of urban air pollution occurrence and its
influencing factors. The objective of our study is to develop consistent methodologies for constructing an index system and for
assessing the influencing factors of the urban air pollution occurrence based on the Driver-Pressure-State-Impact-Response
(DPSIR) framework by incorporating spatial analysis, geographical detector, and geographically weighted regression models.
The 27 influencing factors were selected for assessing their influences on the urban air pollution occurrence in 337 Chinese cities.
The results indicate that the spatial pattern of the urban air pollution in China was mostly consistent with the Chinese population-
based Hu Line. Urban air pollution frequently occurred in North China, Central China, Northeast China, and East China, and
displayed strong seasonality. The influencing factors of urban air pollution were complex and diverse, varying from season to
season. Influencing factor analysis also shows that the explanatory power between any two influencing factors was greater than
that of a single influencing factor of the urban air pollution. Furthermore, most influencing factors had both positive and negative
effects and local effects on urban air pollution. Finally, we put forward five suggestions on reducing urban air pollution
occurrence, which can provide the basis and reference for the government to make policies on urban air pollution control in
China.

Keywords DPSIR framework . Geographical detector . Geographically weighted regression . Urban air pollution . Influencing
factor . Riskmanagement

Introduction

After rapid industrialization and urbanization for more than
four decades, China, in recent years, is facing a series of eco-
logical and environmental challenges, such as land/soil deg-
radation (Zhou et al. 2013), landscape fragmentation (Cui
et al. 2019), biodiversity losses (Hou et al. 2014), water eutro-
phication (Malekmohammadi and Jahanishakib 2017), and
urban air pollution (Huang et al. 2014). Since 2013, severe
urban air pollution has started to occur extensively in many
Chinese cities, especially in the rapid urbanization areas (Fu
and Chen 2017), such as the Beijing-Tianjin-Hebei urban ag-
glomeration (Zhang et al. 2018), the Yangtze River Delta
urban agglomerations (Han and Ma 2020), the Pearl River
Delta urban agglomerations (Li et al. 2018), and the Yellow
River Basin (Chen et al. 2020).

Urban air pollution in Chinese cities is mainly manifested
in the form of haze event, which is a weather phenomenon
with a visibility of less than 10 km resulting from the dense
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accumulation of fine aerosol particles (Huang et al. 2014; Tao
et al. 2012), not only affects people’s daily life and physical
health, but also causes enormous economic losses and social
instability. It contributes negatively to regional climate condi-
tions (Fu and Chen 2017), visibility (Shen et al. 2015), agri-
cultural production (Zhou et al. 2018b), and public health
(Song et al. 2019). Currently, urban air pollution has become
a great environmental hazard and caused widespread social
concerns in China (Braithwaite et al. 2019; Liu et al. 2017a;
Song et al. 2017; Wu et al. 2017; Wu et al. 2020; Wu et al.
2021; Zhang et al. 2015; Zhou et al. 2018a).

Previous studies on urban air pollution have mainly fo-
cused on sources and types of air pollutants (e.g., PM2.5,
PM10, NO2, SO2.) (Fu and Chen 2017), temporal and spatial
variation of pollutants (Song et al. 2017), factors and forma-
tion mechanism of air pollution (Zhan et al. 2018), the rela-
tionship between human activities and air pollution (Li et al.
2020), and health damage caused by urban air pollution (Song
et al. 2019). Studies find that urban air pollution usually re-
sulted from a combination of high levels of air pollutant emis-
sions and adverse meteorological conditions at the same time
(Fu and Chen 2017). In terms of the sources of air pollutants
and the process of pollutants transmission, the factors contrib-
uting to the formation of urban air pollution can be divided
into two categories: (1) emissions of air pollutants from hu-
man activities, such as industrial exhaust, vehicle exhaust,
coal, and dust; and (2) adverse climatic conditions caused by
special landforms and unreasonable spatial structure of land
use. Furthermore, Fu and Chen (2017) suggested that over 70
particulate matter sources have been identified, ranging from
natural to anthropogenic sources. Chen et al. (2015) explored
the spatial variations of air pollutants and air quality of Beijing
at multiple temporal scales such as daily, weekly, and
monthly. Cheng et al. (2017) discovered that there was a spill-
over effect in the time and space dimensions of the urban air
pollution in China. Other studies also suggested that urban air
pollution in Chinese cities were mainly a result of the interac-
tions between natural (e.g., climate, topography, etc.) and
socio-economic (e.g., industry structure, population, urbani-
zation, and ventilation corridors) factors (e.g., Dong et al.
2019; Hao and Liu 2016).

Although the existing studies have made considerable
achievements on this topic, they are not without limitations.
First, regarding the selection of influencing factors, the
existing studies mainly relied on subjective judgment that
usually does not consider the causal relationship between ur-
ban air pollution and its influencing factors (Lin and Zhu
2018). Niemeijer and de Groot (2007) eloquently stated that
a conceptual framework should play an important role in the
processes of selecting influencing factors and developing a
consistent influencing factor set. This is especially true in
the case of assessing the urban air pollution risks and identi-
fying their key influencing factors ranging from natural to

human dimensions. Second, the quantitative methods
employed for analyzing the influencing factors of urban air
pollution employed by the existing studies mainly included
factor analysis (Zhang et al. 2018), dynamic factor analysis
(DFA) (Yu et al. 2015), principal component analysis (Pandey
et al. 2014), extreme boundary analysis (Wang and Chen
2016), spatial Durbin model (Liu et al. 2017a), spatial lag
model and spatial error model (Hao and Liu 2016), and land
use regression (Huang et al. 2017). These statistical tools were
effective in identifying the influence of individual factors on
urban air pollution; however, most of them were global
models that ignored the local effects of the influencing factors
and interactive effects of multiple factors (Zhan et al. 2018).
The geographical detector model proposed by Wang et al.
(2010) was intended to address these problems by dividing
the study area into a few subareas to identify the spatially
stratified heterogeneity and the factors that are responsible
for such spatial heterogeneity. The geographical detector
was used in Zhou et al. (2018a) and Ding et al. (2019) to
examine the effects of socio-economic development on
PM2.5 in China. Furthermore, the geographically weighted
regression (GWR), a local form of spatial analysis tool, was
also widely used to explore the local spatial relationship be-
tween the explanatory variables and the response variable
(You et al. 2016) as the regression coefficients in the GWR
vary with locations (Zeng et al. 2016).

Therefore, our study aims to develop an index for the urban
air pollution occurrence and to employ spatial analysis tools to
answer the following questions:

(1) What is the frequency and spatial pattern of urban air
pollution occurrence in a certain period (a year, a season,
or a month) in China?

(2) What are the influencing factors of urban air pollution
and how do they interact with each other?

(3) What are the positive and negative effects and the local
effects of the influencing factors on urban air pollution?

(4) What measures should we take to alleviate the occur-
rence of urban air pollution, given that it is impossible
to completely eradicate the emissions of air pollutants in
China in a short period?

The main innovations of this paper are: (1) developing a
Driver-Pressure-State-Impact-Response (DPSIR) frame-
work to qualitatively elucidate the complex causal relation-
ship between urban air pollution and their influencing fac-
tors and to avoid the subjective judgment in the process of
selecting the influencing factors, and (2) employing the
geographical detector and the geographically weighted re-
gression model to quantitatively detect the effect of the
influencing factors’ interactions on urban air pollution
and the local effects of the influencing factors on urban
air pollution, respectively.
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The paper is organized as follows: the “Materials and
methods” section describes the materials and methods; the
“Results” section presents the findings of our study; the
“Discussion” section discusses the complexity of the influenc-
ing factors of urban air pollution and proposes five paths to
alleviating the occurrence of urban air pollution in China.
Conclusions are given in the “Conclusions” section. The tech-
nical flowchart of this study is shown in Fig. 1.

Materials and methods

Developing the DPSIR-based framework for urban air
pollution

Proposed by the European Environmental Agency (EEA), the
DPSIR framework is an improvement over the Pressure-State-
Response (PSR) framework. In recent years, the DPSIR
framework has been widely applied in sustainability assess-
ment (Maurya et al. 2020), eco-environmental quality assess-
ment (Chen et al. 2019), soil quality risk assessment (Zhou
et al. 2013), land use assessment (Potschin 2009), wetland
resources assessment (Malekmohammadi and Jahanishakib

2017), ecological security assessment (Gari et al. 2015), bio-
diversity risk assessment (Hou et al. 2014), and industrial
economic sustainability assessment (Liu et al. 2018). The
DPSIR framework is mainly used for identifying and evaluat-
ing environmental problems that are generally complex.

The DPSIR framework describes that the natural factors
and/or socio-economic factors act as the driver (underlying
drivers) and underpin the pressure (direct or proximate
drivers—for example, secondary industrial development in
this study) to change the environment (state, e.g., urban air
quality), which further affects the socio-economic condition
of the region of interest (impact). Finally, this complex situa-
tion is responded by the government or society through dif-
ferent initiatives (response) to reduce the negative impacts or
to encourage the positive impacts (Potschin 2009; Qu et al.
2020).

On the one hand, the DPSIR framework provides a system-
atic mechanism to monitor the status of an environment or
system, to describe the system’s dynamics, and to express
the coupling relationship among various influencing factors
(Rapport and Friend 1979). Within the DPSIR framework,
feedback may be provided to policymakers based on environ-
mental quality and/or the resulting impact of policies made or

Fig. 1 The technical flowchart of
this study. Note: DPSIR, Driver-
Pressure-State-Impact-Response
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to be made in the future (Bidone and Lacerda 2004). On the
other hand, establishing the DPSIR framework under certain
circumstances is a complex task because various cause-effect
relationships must be carefully examined, and the environ-
mental changes are rarely attributed to a single cause (Feld
et al. 2010).

In this study, the DPSIR framework was used to elucidate
the complex causal relationship between urban air pollution
and its influencing factors by avoiding subjective factor selec-
tion. As illustrated in Fig. 2, by considering the complex rela-
tionship between urban air pollution and its influencing fac-
tors, we employed the DPSIR framework to construct an in-
dex system for assessing the influencing factors of urban air
pollution (Table 1): (1) the “driver” factors include climate,
topography, landform, and socio-economic activities that
have positive or negative influences on urban air quality; (2)
the “pressure” factors include urban spread, population
growth, and energy consumption; (3) the driver and pressure
factors contribute collectively to the change of urban air qual-
ity (i.e., “state”); (4) urban air pollution imposes negative “im-
pacts” on a living quality, public health, social security, and
economic development; and (5) the “response” factors include
the actions taken by the government, society, and industrial
sectors to mitigate the occurrence or risk of urban air
pollution.

In Table 1, the state in the DPSIR framework for our study
is the risk of urban air pollution represented by the urban air

pollution index, which is the dependent variable in the follow-
ing influencing factor assessment. The impact factors are the
negative effects of urban air pollution on public health and
social security, such as respiratory diseases, carcinogenesis,
social panic, and psychological illness risk (Braithwaite et al.
2019; Song et al. 2019). Urban air pollution also reduces vis-
ibility and increases the number of traffic accidents (Shen
et al. 2015). Unfortunately, due to limited data, these impact
indicators were not included in the following case study.
Therefore, a set of 27 individual indicators were selected to
assess the influencing factors of urban air pollution in this
study (Table 1).

Developing the urban air pollution index

Based on the air quality index (AQI) (Appendix A), we de-
veloped the urban air pollution index (UAPI) to represent the
potential that may lead to haze events (urban air pollution) in
Chinese cities in a certain period (e.g., annual, seasonal, or
monthly) when AQI is at the 3 to 6 levels. The UAPI is de-
fined as follows:

UAPI ¼ ∑6
k¼3Dk

Sk
ð1Þ

where k is the level of AQI (k = 3,4,5, and 6); Dk is the
number of days at the k level; Sk is the total number of days in

Fig. 2 The DPSIR framework for
the cause-effect chain of urban air
pollution and its influencing
factors
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Table 1 The selected influencing factors of urban air pollution based on the DPSIR framework

Criteria Categories First-level indicators Basic-level indicators Sources

Driver (D) Natural factor Landform D1 Relative elevation (m) Cao et al. (2015); Zhan et al.
(2018); Zhou et al. (2017)Temperature D2 Annual average temperature (°C)

Humidity D3 Humidity index (-)

Air motion D4 Wind speed (m/s)

Precipitation D5 Annual average precipitation (mm)

Economy Economic growth D6 Regional GDP growth rate (%) Hao and Liu (2016)

Industrial structure D7 Proportion of secondary industry
in regional GDP (%)

Zhou et al. (2018a)

Real estate development D8 Investment in real estate development
(108 Yuan)

Wang and Fang (2016)

Foreign investment D9 Actually utilized foreign capital (108 Yuan) Liu et al. (2017b)

Society Population growth D10 Natural population growth rate (‰) Wang et al. 2015

Pressure (P) Land use Land development P1 Proportion of construction land to the
total area of the city (%)

Xu et al. (2015)

Energy
consumption

Energy structure P2 Proportion of coal consumption (%) Wang and Chen (2016)

Economy Industrial size P3 Number of manufacturing enterprises (#) Dong et al. (2019)

Agricultural production P4 Nitrogen fertilizer application rate (104 t) Zhao et al. (2017)

Society Population size P5 Population density (people/km2) Lin and Zhu (2018)

Building construction P6 Per unit construction building area (m2/hm2) Wang and Fang (2016)

Private car ownership P7 Number of domestically made car
ownership (104 #)

Song et al. (2017)

Road network P8 Highway density (104m/km2) Zhou et al. (2018a)

Heat supply P9 Ratio of the central heating (%) Cheng et al. (2017)

State (S) * Air quality SO2 S1 Annual average SO2 concentration (μg/m3) Chen et al. (2015); Hao and
Liu (2016); Zhan et al. 2018NO2 S2 Annual average NO2 concentration (μg/m

3)

PM2.5 S3 Annual average PM2.5 concentration
(μg/m3)

PM10 S4 Annual average PM10 concentration (μg/m3)

CO S5 Annual average CO concentration (mg/m3)

O3 S6 Annual average O3 concentration (mg/m
3)

Impact (I) Human health Tumor disease§ I1 Mortality rates in cancer diseases (‰) Lin et al. (2016)

Respiratory disease § I2 Mortality rates in respiratory diseases (‰) Zhang et al. (2015)

Social safety Traffic accident § I3 Amount of traffic accident loss (104 Yuan) Shen et al. (2015)

Response
(R)

Ecological
construction

Green land cover R1 Rate of green land in built-up area (%) Liu et al. (2017b)

Environmental
governance

R2 Proportion of energy conservation and
environmental protection expenditures
to local fiscal expenditure (%)

López et al. (2011)

Economic
readjustment

Industrial upgrading R3 Ratio between the third industry and the
second industry (-)

Wang and Chen (2016)

Industrial agglomeration R4 Per unit area industrial output (104 yuan/km2) Dong et al. (2015)

Energy
utilization
adjustment

Energy price R5 Ex-factory price index of industrial
products (-)

Xu et al. (2018)

Efficiency of energy
utilization

R6 Per unit GDP in energy consumption
(104 Yuan/t)

Hao and Liu (2016)

Gas utilization R7 Gas penetration rate (%) Lin and Zhu (2018)

Technical
innovation

Research input R8 Expenditure of research and experimental
development funds (R&D) (104 Yuan)

López et al. (2011)

*The dependent (explained) variable
§ The factor that was excluded in this study due to limited data
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a certain period (annual, seasonal, or monthly). A higher
UAPI value corresponds to more days with bad air quality.

Figure 3 compares the daily characteristics of AQI (Fig. 3a)
and the monthly characteristics of UAPI (Fig. 3b) from 2015
to 2019 in China. It is evident that both AQI and UAPI display
the U-shape periodic characteristics.

Spatial autocorrelation analysis

Spatial autocorrelation analysis, which reveals the degree of
similarity of the attributes of neighboring geospatial units,
includes calculations of the global Moran’ I and the local
indicators of spatial association (LISA). While the global
Moran’s I quantifies the spatial autocorrelation as a whole,
the LISA measures the degree of spatial autocorrelation (spa-
tial clustering) at each specific location by using localMoran’s
I (Anselin 1995). The global Moran’ I can be expressed as
(Moran 1948):

Global Moran’s I ¼
n ∑

n

i¼1
∑
n

j¼1
Wij xi−x�ð Þ x j−x�

� �

n ∑
n

i¼1
∑
n

j¼1
Wij

 !
∑
n

i¼1
xi−x�ð Þ2

; i≠ jð Þ ð2Þ

where xi and xj are the values of variables for evaluation
units i and j respectively; i = 1, 2,…, n; j = 1, 2,…, m; n is the
number of evaluation units; m represents the number of eval-
uation units which geographically adjacent to evaluation unit
i;‾x is the average value of x;Wij is a weight parameter for the
pair of evaluation units i and j in proximity; when i and j are
adjacent, Wij = 1; otherwise, Wij = 0. The Moran’s I ranges
from − 1 to 1. When I > 0, it indicates a positive spatial

correlation with the spatial pattern being agglomeration distri-
bution; when I < 0, it indicates a negative spatial correlation
the spatial pattern being diffusion or uniform distribution; and
when I = 0, it indicates no spatial autocorrelation with the
spatial pattern being random distribution.

The local Moran’s I is used to identify local spatial cluster-
ing and is defined as (Anselin 1995):

Local Moran’s I ¼
n xi−xð Þ ∑

m

j¼1
Wij x j−x
� �

∑
n

i¼1
xi−xð Þ2

; i≠ jð Þ ð3Þ

The LISA has four kinds of local spatial associations:
High-high or low-low indicates a spatial positive association
or clustering; high-low or low-high represents a spatial nega-
tive association or heterogeneity (Li et al. 2014).

Assessment of influencing factors

Geographical detector

The geographical detector, a spatial statistical tool newly pro-
posed by Jinfeng Wang (Wang et al. 2010; Shi et al. 2018), is
used to reveal the global effects of the influencing factors of urban
air pollution at the global scale in this study. It examines whether
the spatial distribution of the dependent variable Y (an event or a
phenomenon) and that of the independent variable X (the
influencing factors) are likely to be the same (Luo et al. 2019).

The principle of the geographical detector is to divide a
spatial region into several subregions with spatially stratified
heterogeneity based on influencing factors’ subclasses. The
geographical detector is similar to variance analysis

Fig. 3 The temporal characteristics of a the air quality index (AQI) and b the urban air pollution index (UAPI) from 2015 to 2019
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(ANOVA) in that it provides feasible means to measure spa-
tially (globally) stratified heterogeneity of the dependent var-
iable Y between subregions (Ding et al. 2019; Peng et al.
2019; Liu et al. 2020). The hypothesis is that if the sum of
the variances of the subareas, which are classified by the fac-
tor, is less than the variance of the whole region, spatially
stratified heterogeneity exists (Wang and Xu 2017; Ding
et al. 2019). The geographical detector has the following ad-
vantages over the classical statistical methods: (1) as a spatial
analysis tool grounded in spatial statistics, it does not require
the assumption that the independent or dependent variables
must be independently and identically distributed (IID) as
generally required by traditional classical statistics (Ding
et al. 2019; Wang et al. 2017; Zhou et al. 2018a; Zhao et al.
2020); (2) the geographical detector does not require consid-
eration of the collinearity of multiple independent variables so
that any influencing factors can be included in the analysis
(Zhou et al. 2018a; Ding et al. 2019; Duan and Tan 2020);
(3) the geographical detector has also a unique advantage that
can be used to explore the interactions of two influencing
factors affecting the dependent variable and to reveal whether
the interactions of the two factors are linear or nonlinear (Bai
et al. 2019); and (4) the stratified independent variables in the
geographical detector can enhance the representation of a
sample unit to afford a greater level of statistical accuracy
(Duan and Tan 2020).

Therefore, we used the geographical detector to further an-
swer the following three questions (see also Qiao et al. 2019):
(1) which influencing factors contribute to urban air pollution?
(2) what is the level of contribution from each influencing fac-
tor? and (3) whether these factors work independently or inter-
dependently to influence urban air pollution?

The geographical detector consists of four processes
(Wang and Xu 2017): factor detection, risk detection, interac-
tion detection, and ecological detection (see Appendix A for
more about the geographical detector). The geographical de-
tector employs the q-statistic to measure the explanatory pow-
er of the independent variables to the dependent variable. The
q-statistic is defined as in Eq. (4).

q ¼ 1
∑
1

h¼1
Nhσ2

h

Nσ2
ð4Þ

where h = 1, …, l is the stratification of the independent
variable; Nh and N are the sample size of the h (h = 1, …, l)
layer and across all subregions, respectively; σh

2 and σ2 are
the variances of the dependent variable of the h (h = 1,…, l)
layer and across all subregions, respectively. The values of q
range from 0 to 1, meaning the independent variables could
explain 100×q% of the dependent variable. The greater the
value of q is, the stronger the explanatory power of the inde-
pendent variable to the dependent variable, or vice versa.

Because discrete variables are superior to continuous variables
in the geographic detector (Wang et al. 2010), the continuous
data of independent variables were discretized using the
quantile and the natural breakpoint method.

Geographically weighted regression

The geographically weighted regression (GWR) was
employed to assess the influencing factors of urban air pollu-
tion at the local scale. GWR is a locally weighted least squares
linear regression model for spatial analysis (You et al. 2016).
The spatial weighting function employed in a GWR model
assumes that spatial locations close to each other have similar
characteristics than those distant from each other. The GWR
model can be expressed as follows:

yi ¼ β0 μivið Þ þ ∑
k

j¼1
β j μivið Þxij þ εi ð5Þ

where yi and xij are the observed values of the response
variable and the explanatory variables at the location (μi, vi);
(μi, vi) is the x–y coordinate of the ith location; βj (μi, vi) is the
regression coefficient associated with the jth explanatory var-
iable at location i whose geographical coordinates are (μi, vi);
εi is the model error at location i.

For the GWR model defined in Eq. (5), the regression
coefficient βj (μi, vi) varies from location to location, which
can be estimated using

bβ μivið Þ XTW μi; við ÞX� �−1 þ XTW μi;vi
� �

Y ð6Þ

where X is the matrix of the observed explanatory vari-
ables; Y is the vector of observed values of the response var-
iable; andW (μi, vi), is the spatial weight matrix, which can be
estimated using Gaussian distance function or chi-square dis-
tance function. In our study, the Gaussian distance function
was used.

Data sources and pre-processing

Due to limitations in data availability, we only tested the as-
sessment of the influencing factors of the urban air pollution in
337 Chinese cities in 2015. The data in this study include three
categories: air quality, geographical and meteorological data,
and socio-economic data. The air quality data was collected
from the Ministry of Environmental Protection (http://www.
mee.gov.cn/hjzl/), which mainly included the 24-h average
values of six pollutants (PM10, NO2, SO2, PM2.5, O3, and
CO). The geographical data, including altitude, temperature,
humidity, and precipitation, were collected from the Resource
and Environment Data Cloud Platform (http://www.resdc.cn).
The meteorological data, including annual mean temperature,
annual mean precipitation, and humidity index, were retrieved
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from 1915 meteorological stations in China, and their spatial
interpolation maps were produced in ArcMap 10.5 (ESRI Inc.,
CA) by using the inverse distance weighted method. Because
more than 60% of China is mountainous and the
meteorological conditions in mountainous areas are
significantly affected by topography, we used the national
digital elevation model (DEM) to adjust the temperatures at
different elevations at the rate that temperature declines 0.6
°C per 100 m increase. The wind speed data was downloaded
from the National Meteorological Information Center (https://
data.cma.cn/en). The socio-economic data were obtained from
China Urban Construction Statistical Yearbook (National
Bureau of Statistics 2016), China Urban Statistical Yearbook
(National Bureau of Statistics 2016), and local statistical year-
books and annual reports. The four seasons are defined as fol-
lows: winter (January 1–March 20, December 24–December
31), spring (March 21–June 22), summer (June 23–September
22), and autumn (September 23–December 23).

Results

Spatial-temporal characteristics of UAPI

Annual characteristics Figure 4 shows that the average of the
UAPI in the 337 Chinese cities in 2015 was 0.22. The 337 cities
were classified into ten groupswith their UAPI values falling into
the following intervals [0, 0.1], (0.1, 0.2], …, (0.9, 1.0], respec-
tively. In 2015, about 30 cities (8.9%) hadUAPI greater than 0.5.

Interestingly, as shown in Fig. 4, the spatial pattern of the
UAPI was largely consistent with the population-based Hu
Line that generally divides China into east and west regions
(Hu et al. 2016). The cities in the eastern region generally had
higher UAPI values than the cities in the west region.
Similarly, the Yangtze River divides China into north and
south regions, and the cities in the north had higher UAPI than
the cities in the south. The cities with annual average UAPI
greater than 0.5 were mostly concentrated in North China,
Central China, Northeast China, and East China, whereas
the cities with lower UAPI (< 0.5) were mostly distributed
in the west of the Hu Line and the south of the Yangtze
River, except for the four cities in west-central Xinjiang and
northern Tibet Autonomous Regions.

Seasonal characteristics Figures 5 and 6 present the seasonal
characteristics and spatial patterns of the UAPI in 2015, re-
spectively. Not surprisingly, the winter had the most frequent
urban air pollution days in 2015, with an average UAPI of
0.42. In this winter, about 100 cities in North, Central, and
Northwest China (Fig. 6d) had UAPI higher than 0.5. In con-
trast, the summer had the least urban air pollution days in 2015
(Fig. 5b), with an average UAPI of 0.11. Only 12 cities spread
in South Xinjiang and North China had UAPI greater than 0.5

(Fig. 6b). In general, there were more urban air pollution days
in the autumn (Fig. 6c) than in the spring (Fig. 6a). For exam-
ple, there were 34 cities in the autumn and 30 cities in the
spring that had UAPI higher than 0.5.

Monthly characteristics Figure 7 shows the monthly averages
of UAPI at the spatial and temporal scales. The UAPI declined
continuously from December/January to August, then in-
creased continuously from August to November. In January
when the UAPI’s peaked for almost all cities, there were 162
cities with UAPI higher than 0.5. These cities were mainly
concentrated in the east of the Hu Line, the north of the
Yangtze River, the eastern coastal region, and Northwest
China.

Spatial analysis

The global Moran’s I analysis of UAPI shows that annual
Moran’s I was 0.7652 (p < 0.05) and the seasonal Moran’s
Is were as follows (in decreasing order): autumn (0.7098) >
spring (0.7036) > winter (0.6646) > summer (0.5337). The
results indicate that the UAPI had significant positive spatial
autocorrelation at the global scale, which means the occur-
rence of urban air pollution events such as haze days in one
area was positively affected by its adjacent areas.

On the other hand, the LISA analysis shows that the
annual and seasonal UAPIs can basically be divided into
four or five clusters (Fig. 8, see also Fig. A1 in Appendix A
for monthly information). The H-H (hot spot) agglomera-
tion areas were mainly concentrated in North China,
Central China, and the southern Xinjiang, whereas the L-
L (cold spot) agglomeration areas were mainly located in
Southwest China, Southeast China, and the Great Xing-an
Mountains of Northeast China. There were a few regions
with high values of UAPI surrounded by the regions with
low values (H-L, heterogeneity spot), and they were main-
ly distributed in the southeast of Qinghai and Guizhou
provinces. The areas with a low value of UAPI that were
surrounded by the high-value areas (L-H) were mainly dis-
tributed in northern Tibet, North China, and the Shandong
Peninsula, scattered across mainland China.

Global effects of the UAPI influencing
factors—geographical detector

Factor detection Table 2 presents the factor detection results
for the UAPI at the annual and seasonal scales. The q values of
the influencing factors were ranked for a better comparison of
the contributions from individual influencing factors to the
UAPI. First, the ranks of the influencing factors varied from
season to season. For example, wind speed (D4) rose from
23rd place in the summer to 14th place in the winter at α =
0.05, which indicated that wind might have played a more
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important role in the formation of the air pollution events in
the winter than in the summer. Second, annual average tem-
perature (D2), humidity index (D3), and annual average pre-
cipitation (D5) were the biggest contributors among natural
factors to urban air pollution in 2015. Third, the socio-
economic factors in the pressure group, such as the proportion
of the construction land to the total area of the city (P1), num-
ber of manufacturing enterprises (P3), nitrogen fertilizer ap-
plication rate (P4), number of domestically made car owner-
ship (P7), highway density (P8), and the ratio of the central
heating (P9), had larger contributions than the factors in the

driver’s group. Fourth, the responses to urban air pollution
need to be strengthened because the contribution from the
response factors was generally low, although some measures
(such as industrial upgrading and energy efficiency) had al-
ready played an active role in alleviating urban air pollution.
The complex, interactive relationships between the influenc-
ing factors were further explored by using risk detection and
interaction detection as shown in the following paragraphs.

Risk detection The risk detector was used to further identify
the direction and magnitude of the influencing factors’ effect

Fig. 4 The urban air pollution index (UAPI) in 337 Chinese cities in 2015
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on urban air pollution. As shown in Fig. 9 and Table 3, the
influence of natural factors on urban air pollution is more
complicated than that of socio-economic factors when com-
paring the difference between the subregions of influencing
factors.

First, the natural factors such as annual average tempera-
ture (D2), humidity index (D3), and annual average precipita-
tion (D5) had apparently nonlinear effects on the urban air
pollution at the subregion level, whereas the effects of the
relative elevation (D1) and the wind speed (D4) on the urban
air pollution were monotonically decreasing with the subre-
gion level. Second, in terms of the anthropogenic factors, the
relationships between most influencing factors and urban air
pollution were close to monotonically increasing or decreas-
ing (Fig. 9 and Table 3). In general, the relationships between
urban air pollution and its influencing factors at the subregion
level may be categorized into six types of linear or nonlinear
relationship as defined in Table 3.

Interaction detection and ecological detection Table 4 lists
the q values of interaction detection. It shows that the explan-
atory power (interactive effect) between any two influencing
factors (i.e., the q values in the off-diagonal cells) was always
greater than that of a single individual influencing factor to the
urban air pollution (i.e., the q value in the diagonal cells).
Furthermore, the interaction relationship was mainly
expressed as nonlinear enhance (287 pairs, accounting for
81.77%) and bi-enhance (64 pairs, accounting for 18.23%)
(refer to Table A2 for more details). First, in terms of nonlinear
enhance, the explanatory power had a maximum value of

0.664 (D5∩P3) and a minimum value of 0.050 (R2∩R6).
The explanatory powers for 16 pairs were greater than 0.5,
of which 13 pairs were interactions between a natural factor
and a socio-economic factor. Second, in terms of bi-enhance,
the maximum value of the explanatory power was 0.4748
(D2∩P8), whereas the minimum value was 0.1172
(D1∩R8). These results show that, to some extent, the inter-
actions between the natural factors and the socio-economic
factors can enhance the explanatory ability of the influencing
factors to the urban air pollution in China.

Table 5 further explores whether the influences from dif-
ferent influencing factors on urban air pollution were signifi-
cantly different from each other. For example, the natural
factors, including relative elevation (D1), annual average tem-
perature (D2), humidity index (D3), and annual average pre-
cipitation (D5), had a significant effect on urban air pollution,
compared with the effect of wind speed (D4). In terms of
socio-economic factors, the effects of the factors D10, P5,
P8, P9, R1, R2, R3, R4, and R6 on urban air pollution were
significantly different from each other. These results show that
these influencing factors dominated the temporal and spatial
evolutions of urban air pollution and urban air pollution was a
result of the interactions among multiple influencing factors.

Local effects of the UAPI influencing
factors—geographically weighted regression

Since the q statistic of the geographical detector can only
describe the explanatory power of the influencing factors on
urban air pollution, we also used the GWR model to further

Fig. 5 Seasonal characteristics of the urban air pollution index in 2015. a Spring. b Summer. c Autumn. d Winter
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quantify the local positive and negative effects of the influenc-
ing factors, which were to be represented by the signs and
magnitudes of the estimated regression coefficients of the
GWR. As compared in Table 6, the GWR model is clearly a
better model than the ordinary least squares (OLS) linear re-
gression model to explain the relationships between urban air
pollution and its influencing factors. This is because the OLS
model ignored the potential spatial effects of the independent
and dependent variables (Wang et al. 2017).

Table 7 lists the descriptive statistics of the regression
coefficients of the GWR model (see also Fig. A2 for the
percentages of the positive and negative values of the grid-
level regression coefficients). As shown in Table 7, all
influencing factors had both positive and negative effects

on urban air pollution at the local scale. The four factors that
had the largest positive average local effects were the pro-
portion of secondary industry in regional GDP (D7), the ratio
between the third industry and the second industry (R3),
number of domestically made car ownership (P7), and high-
way density (P8). The four factors that had the largest aver-
age negative local effects were relative elevation (D1), annu-
al average precipitation (D5), actually utilized foreign capital
(D9), and annual average temperature (D2). Figure 10 further
depicts the spatial characteristics of the regression coeffi-
cients of the GWR model. Apparently, the effects of the
influencing factors on UAPI were different in different re-
gions. For example, most natural driving factors (D1–D5)
contributed positively to UAPI in western China, but not in

Fig. 6 Spatial patterns of the urban air pollution index in four seasons in 2015. a Spring. b Summer. c Autumn. d Winter
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other regions. Some influencing factors such as the number
of manufacturing enterprises (P3), number of domestically
made car ownership (P7), and highway density (P8) contrib-
uted positively to urban air pollution in central China. The

response factors such as the rate of green land in built-up
area (R1) and per unit GDP in energy consumption (R6) had
greater mitigation effects on urban air pollution in most areas
from northwestern to southeastern China.

Fig. 7 Spatial variation of monthly average urban air pollution index (UAPI) in 2015. a January. b February. cMarch. d April. eMay. f June. g July. h
August. i September. j October. k November. l December
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Discussion

Complexity of the influencing factors of urban air
pollution

Driver

The drivers, natural or socio-economic, have an indirect
(potential) positive or negative contribution to urban air

pollution (Tables 1, 2, and 3). In this study, the explanatory
power of the natural drivers (such as temperature, precipitation,
and humidity) on the urban air pollution is slightly higher than
that of the socio-economic drivers (Table 2), which is consistent
with the findings of Zhou et al. (2017) and Zhan et al. (2018).
Our analysis shows that urban air pollution is closely related to
natural factors. For example, meteorology is the main factor that
affects the self-purification ability of the air environment and
indirectly affects the formation of air pollution events in

Fig. 8 Annual and seasonal spatial clustering of the urban air pollution index in 2015. a Annual. b Spring. c Summer. d Autumn. e Winter
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Chinese cities. In terms of air temperature, high temperature
promotes air photochemical reactions, which are conducive to
the formation of air pollutants such as O3 (Song et al. 2017). On
the other hand, cities with lower average annual temperatures
tend to burn more coals or other fuels for heating in the winter,
emitting a large number of air pollutants. Moreover, the altitude
of a city has an important effect on the dispersion and
concentration of air pollutants. Han et al. (2016) also found that
urban air pollution events occurred more frequently in the low-
altitude areas than in the high-altitude areas. Wind can transport
air pollutants and dilute the concentration of air pollutants, thus
reducing the possibility of the formation and persistence of ur-
ban air pollution events. Precipitation can remove the suspended
particles and gaseous pollutants from the air and clean the atmo-
sphere to reduce the possibility of urban air pollution events.

Table 2 The results of the factor detection for the influencing factors of urban air pollution in 2015

Criteria Basic-level indicators Annual Spring Summer Autumn Winter

q Rank q Rank q Rank q Rank q Rank

Driver
(D)

D1 Relative elevation 0.0675** 16 0.0242 19 0.0231 21 0.0631** 17 0.0937** 12
D2 Annual average temperature 0.3028** 1 0.3012** 1 0.1564** 3 0.2612** 2 0.2679** 1
D3 Humidity index 0.2190** 4 0.2237** 4 0.1410** 6 0.2162** 4 0.1208** 6
D4 Wind speed 0.0237 22 0.0214 21 0.0173 23 0.0184 23 0.0773** 14
D5 Annual average precipitation 0.2579** 2 0.2682** 2 0.1827** 1 0.2533** 3 0.1802** 2
D6 Regional GDP growth rate 0.0221 23 0.0210 22 0.0438** 16 0.0347* 20 0.0106 24
D7 Proportion of secondary industry in

regional GDP
0.0561** 18 0.0382** 18 0.0279* 19 0.0455** 19 0.0469** 16

D8 Investment to real estate development 0.1004** 13 0.0764** 14 0.0960** 13 0.0817** 15 0.0967** 11
D9 Actually utilized foreign capital 0.0646** 17 0.0638** 16 0.0617** 14 0.0682** 16 0.0385** 18
D10 Natural population growth rate 0.0038 27 0.0045 27 0.0139 25 0.0143 26 0.0054 26

Pressure
(P)

P1 Proportion of construction land to the total
area of the city

0.1421** 9 0.1255** 6 0.1131** 11 0.1495** 6 0.0974** 10

P2 Proportion of coal consumption 0.0454** 19 0.0646** 15 0.0204 22 0.1028** 12 0.0286* 21
P3 Number of manufacturing enterprises 0.1453** 8 0.1190** 8 0.1145** 10 0.1097** 8 0.1200** 7
P4 Nitrogen fertilizer application rate 0.1338** 11 0.1056** 11 0.0470** 15 0.1159** 7 0.1381** 4
P5 Population density 0.0266* 20 0.0129 24 0.0264* 20 0.0177 24 0.0100 25
P6 Per unit construction building area 0.1455** 7 0.1058** 10 0.1388** 7 0.0945** 14 0.1540** 3
P7 Number of domestically made car

ownership
0.1418** 10 0.1008** 12 0.1806** 2 0.1086** 10 0.0921** 13

P8 Highway density 0.1767** 5 0.1448** 5 0.1226** 9 0.1710** 5 0.1138** 8
P9 Ratio of the central heating 0.2514** 3 0.2612** 3 0.1335** 8 0.3073** 1 0.1316** 5

Response
(R)

R1 Rate of green land in built-up area 0.0159 24 0.0125 25 0.0166 24 0.0229 21 0.0203 22
R2 Proportion of energy conservation and

environmental protection expenditures
to local fiscal expenditure

0.0128 25 0.0151 23 0.0392** 18 0.0148 25 0.0018 27

R3 Ratio between the third industry and the
second industry

0.0262* 21 0.0238 20 0.0135 26 0.0222 22 0.0313** 20

R4 Per unit area industrial output 0.1551** 6 0.1248** 7 0.1473** 4 0.1094** 9 0.1001** 9
R5 Ex-factory price index of industrial

products
0.0846** 14 0.1187** 9 0.0425** 17 0.1083** 11 0.0365** 19

R6 Per unit GDP in energy consumption 0.0090 26 0.0075 26 0.0106 27 0.0104 27 0.0167 23
R7 Gas penetration rate 0.1207** 12 0.0830** 13 0.1413** 5 0.0978** 13 0.0685** 15
R8 Expenditure of research and experimental

development funds (R&D)
0.0728** 15 0.0504** 17 0.1075** 12 0.0589** 18 0.0427** 17

*Statistically significant at the 0.1 level

**Statistically significant at the 0.05 level

�Fig. 9 The risk detection of the influencing factors to urban air pollution.
Notes: the x-axis is the subregion of influencing factors; the y-axis is the
urban air pollution index. (a) D1, relative elevation; (b) D2, annual aver-
age temperature; (c) D3, humidity index; (d) D4, wind speed; (e) D5,
annual average precipitation; (f) D6, regional GDP growth rate; (g) D7,
proportion of secondary industry in regional GDP; (h) D8, investment to
real estate development; (i) D9, actually utilized foreign capital; (j) D10,
natural population growth rate; (k) P1, proportion of construction land to
the total area of the city; (l) P2, proportion of coal consumption; (m) P3,
number of manufacturing enterprises; (n) P4, nitrogen fertilizer applica-
tion rate; (o) P5, population density; (p) P6, per unit construction building
area; (q) P7, number of domesticallymade car ownership; (r) P8, highway
density; (s) P9, ratio of the central heating; (t) R1, rate of green land in
built-up area; (u) R2, proportion of energy conservation and environmen-
tal protection expenditures to local fiscal expenditure; (v) R3, ratio be-
tween the third industry and the second industry; (w) R4, per unit area
industrial output; (x) R5, ex-factory price index of industrial products;
(y) R6, per unit GDP in energy consumption; (z) R7, gas penetration rate;
(aa) R8, expenditure of research and experimental development funds
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Since its opening up to foreign trade and investment and
implementing free-market reforms in 1979, China has been
among the world’s fastest-growing economies. Social and
economic drivers also resulted in various environmental
problems. First, an unsound industrial structure led to
considerable pollution emission. For example, Hao and Liu
(2016) reported that the secondary industry had contributedmost
to pollutant emissions and the formation of urban air pollution
events. Second, the real estate industry has driven the rapid
development of the relevant industries. Cheng et al. (2017) found
that once the real estate industry had exceeded a reasonable scale,
it would be an important driving factor to aggravate urban air
pollution indirectly. Third, as shown in Fig. 9 and Table 3, our
findings simultaneously support the two popular views about the
effect of the foreign direct investment (D9) on the environment
of China. One is the “pollution haven” hypothesis (Bakirtas and
Cetin 2017), namely, foreign enterprises carry out industrial

migration through investment abroad, transferring environmen-
tal pollution to China. The opposing view is the “pollution halo”
hypothesis (Wang et al. 2019a), i.e., foreign companies can bring
efficient production and clean technologies, promoting the effi-
ciency of energy utilization in China, reducing pollutant emis-
sions, and improving environmental quality. Fourth, studies
found that population growth made the slope of the environmen-
tal Kuznets curve steeper; that is, the increment of GDP per
capita led to higher natural resource consumption and pollution
accumulation (Wang et al. 2015).

Pressure

In this study, the pressure factors include four aspects: land
use, energy consumption, economy, and society. First, the
land use pressure mainly comes from construction land
sprawl. Unreasonable land use structure is not conducive to

Table 3 The complex
relationship between urban air
pollution and its influencing
factors

Criteria Basic-level indicators Relations

Driver (D) D1 Relative elevation −
D2 Annual average temperature ±

D3 Humidity index ±

D4 Wind speed −
D5 Annual average precipitation ±

D6 Regional GDP growth rate ±

D7 Proportion of secondary industry in regional GDP +

D8 Investment to real estate development +

D9 Actually utilized foreign capital −/+
D10 Natural population growth rate −/+

Pressure (P) P1 Proportion of construction land to the total area of the city +

P2 Proportion of coal consumption +

P3 Number of manufacturing enterprises +

P4 Nitrogen fertilizer application rate +

P5 Population density ±

P6 Per unit construction building area +

P7 Number of domestically made car ownership +

P8 Highway density +

P9 Ratio of the central heating +

Response (R) R1 Rate of green land in built-up area +/−
R2 Proportion of energy conservation and environmental

protection expenditures to local fiscal expenditure
−/+

R3 Ratio between the third industry and the second industry −
R4 Per unit area industrial output +

R5 Ex-factory price index of industrial products ±

R6 Per unit GDP in energy consumption ±

R7 Gas penetration rate +

R8 Expenditure of research and experimental development funds (R&D) ×

“+” means a positive effect. “−” means a negative effect. “±” means the relationship between urban air pollution
and its influencing factors is complex. “−/+” means the effect of the influencing factor on air pollution changes
from negative to positive from subregion 1 to subregion 5, whereas “+/−” means the change of the effect is
reversed from positive to negative. “×” means the relationship between air pollution and its influencing factors
cannot be defined

36249Environ Sci Pollut Res  (2021) 28:36234–36258



Ta
bl
e
4

T
he

ex
pl
an
at
or
y
po
w
er

be
tw
ee
n
an
y
tw
o
in
fl
ue
nc
in
g
fa
ct
or
s

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

P
1

P2
P3

P4
P
5

P
6

P
7

P
8

P
9

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

D
1

0.
06
7

D
2

0.
43
4

0.
30
3

D
3

0.
37
6

0.
57
1

0.
21
9

D
4

0.
11
9

0.
36
7

0.
32
1

0.
02
4

D
5

0.
48
3

0.
60
4

0.
41
5

0.
38
9

0.
25
8

D
6

0.
10
4

0.
41
0

0.
31
0

0.
07
1

0.
39
5

0.
02
2

D
7

0.
14
5

0.
36
8

0.
33
8

0.
12
2

0.
46
2

0.
12
9

0.
05
6

D
8

0.
14
7

0.
38
2

0.
51
6

0.
19
0

0.
58
1

0.
17
3

0.
16
7

0.
10
0

D
9

0.
14
9

0.
36
8

0.
35
7

0.
13
5

0.
43
3

0.
19
7

0.
19
3

0.
19
3

0.
06
5

D
10

0.
11
8

0.
35
2

0.
41
1

0.
10
8

0.
42
1

0.
11
9

0.
16
9

0.
16
7

0.
17
9

0.
00
4

P1
0.
20
9

0.
44
8

0.
41
8

0.
22
8

0.
51
1

0.
21
7

0.
19
4

0.
23
4

0.
23
6

0.
22
7

0.
14
2

P2
0.
14
5

0.
38
8

0.
32
2

0.
14
2

0.
37
5

0.
13
4

0.
16
3

0.
20
5

0.
15
4

0.
15
1

0.
23
6

0.
04
5

P3
0.
18
2

0.
46
3

0.
53
3

0.
22
6

0.
66
4

0.
23
1

0.
19
5

0.
21
8

0.
21
1

0.
25
9

0.
25
3

0.
30
0

0.
14
5

P4
0.
22
0

0.
35
4

0.
38
3

0.
22
1

0.
48
8

0.
19
5

0.
22
6

0.
23
7

0.
21
0

0.
22
6

0.
28
2

0.
22
0

0.
26
3

0.
13
4

P5
0.
11
0

0.
32
9

0.
27
3

0.
08
4

0.
37
8

0.
07
8

0.
13
1

0.
13
9

0.
16
0

0.
13
3

0.
20
6

0.
11
5

0.
20
6

0.
18
0

0.
02
7

P6
0.
21
0

0.
48
9

0.
50
1

0.
22
7

0.
59
7

0.
23
7

0.
19
6

0.
26
8

0.
22
8

0.
31
2

0.
23
3

0.
25
4

0.
21
5

0.
30
9

0.
20
7

0.
14
5

P7
0.
20
3

0.
40
9

0.
40
1

0.
21
2

0.
52
5

0.
22
9

0.
23
9

0.
18
9

0.
22
1

0.
17
6

0.
26
5

0.
23
8

0.
22
1

0.
26
4

0.
19
5

0.
24
1

0.
14
2

P8
0.
22
5

0.
47
5

0.
46
2

0.
25
8

0.
56
2

0.
24
4

0.
21
4

0.
24
3

0.
26
8

0.
26
1

0.
20
0

0.
25
8

0.
23
4

0.
31
3

0.
21
5

0.
23
7

0.
26
2

0.
17
7

P9
0.
33
5

0.
57
2

0.
33
1

0.
37
6

0.
44
6

0.
32
9

0.
33
0

0.
47
2

0.
35
1

0.
46
4

0.
43
9

0.
39
1

0.
50
9

0.
37
9

0.
33
7

0.
43
1

0.
39
1

0.
46
5

0.
25
1

R
1

0.
09
9

0.
34
1

0.
32
6

0.
09
2

0.
41
9

0.
08
1

0.
11
3

0.
14
8

0.
13
5

0.
09
6

0.
20
5

0.
12
2

0.
18
4

0.
18
5

0.
09
8

0.
20
6

0.
20
4

0.
23
3

0.
30
8

0.
01
6

R
2

0.
12
8

0.
34
9

0.
27
7

0.
07
3

0.
36
1

0.
10
0

0.
11
8

0.
19
3

0.
13
6

0.
18
3

0.
18
4

0.
13
3

0.
21
9

0.
16
4

0.
07
8

0.
22
8

0.
21
2

0.
23
4

0.
30
8

0.
09
9

0.
01
3

R
3

0.
11
4

0.
33
2

0.
32
2

0.
07
6

0.
41
1

0.
08
5

0.
10
9

0.
15
9

0.
19
0

0.
16
0

0.
19
1

0.
12
4

0.
19
0

0.
20
7

0.
09
5

0.
21
1

0.
23
7

0.
22
8

0.
31
8

0.
09
8

0.
12
0

0.
02
6

R
4

0.
19
1

0.
58
6

0.
54
2

0.
24
5

0.
63
8

0.
22
7

0.
19
7

0.
26
3

0.
25
1

0.
34
4

0.
27
4

0.
28
1

0.
24
1

0.
34
4

0.
21
5

0.
21
8

0.
26
4

0.
25
2

0.
45
6

0.
20
5

0.
23
0

0.
19
4

0.
15
5

R
5

0.
20
4

0.
44
8

0.
32
2

0.
14
6

0.
39
3

0.
15
4

0.
16
6

0.
28
5

0.
20
5

0.
18
6

0.
28
1

0.
22
2

0.
30
7

0.
24
7

0.
16
7

0.
29
4

0.
31
6

0.
28
7

0.
32
5

0.
15
2

0.
12
1

0.
13
2

0.
29
2

0.
08
5

R
6

0.
12
2

0.
35
6

0.
28
8

0.
07
6

0.
35
5

0.
07
9

0.
13
5

0.
19
8

0.
11
6

0.
13
0

0.
25
2

0.
10
6

0.
27
0

0.
19
8

0.
09
0

0.
25
8

0.
23
4

0.
29
2

0.
33
1

0.
09
2

0.
05
0

0.
11
4

0.
28
1

0.
14
7

0.
00
9

R
7

0.
17
4

0.
45
7

0.
37
0

0.
18
2

0.
49
3

0.
22
8

0.
21
8

0.
19
0

0.
23
3

0.
16
8

0.
24
3

0.
25
7

0.
25
0

0.
25
9

0.
20
6

0.
29
0

0.
22
7

0.
31
7

0.
36
9

0.
20
9

0.
19
3

0.
18
4

0.
28
5

0.
23
8

0.
22
7

0.
12
1

R
8

0.
11
7

0.
41
6

0.
34
2

0.
14
5

0.
41
8

0.
17
7

0.
17
6

0.
17
2

0.
15
3

0.
22
2

0.
23
7

0.
21
0

0.
19
0

0.
23
1

0.
13
5

0.
21
8

0.
17
4

0.
22
9

0.
33
7

0.
11
8

0.
14
8

0.
17
3

0.
21
4

0.
21
3

0.
15
7

0.
21
0

0.
07
3

T
he

di
ag
on
al
q
va
lu
es

re
pr
es
en
tt
he

ex
pl
an
at
or
y
po
w
er
of

th
e
si
ng
le
fa
ct
or
,w

he
re
as

th
e
of
f-
di
ag
on
al
q
va
lu
es

re
pr
es
en
tt
he

in
te
ra
ct
io
ns

be
tw
ee
n
th
e
in
fl
ue
nc
in
g
fa
ct
or
s.
D
1,
re
la
tiv

e
el
ev
at
io
n;
D
2,
an
nu
al

av
er
ag
e
te
m
pe
ra
tu
re
;D

3,
hu
m
id
ity

in
de
x;
D
4,
w
in
d
sp
ee
d;
D
5,
an
nu
al
av
er
ag
e
pr
ec
ip
ita
tio

n;
D
6,
re
gi
on
al
G
D
P
gr
ow

th
ra
te
;D

7,
pr
op
or
tio

n
of

se
co
nd
ar
y
in
du
st
ry

in
re
gi
on
al
G
D
P;

D
8,
in
ve
st
m
en
tt
o
re
al

es
ta
te
de
ve
lo
pm

en
t;
D
9,
ac
tu
al
ly
ut
ili
ze
d
fo
re
ig
n
ca
pi
ta
l;
D
10
,n
at
ur
al
po
pu
la
tio

n
gr
ow

th
ra
te
;P
1,
pr
op
or
tio

n
of
co
ns
tr
uc
tio

n
la
nd

to
th
e
to
ta
la
re
a
of
th
e
ci
ty
;P
2,
pr
op
or
tio

n
of
co
al
co
ns
um

pt
io
n;
P3

,n
um

be
r

of
m
an
uf
ac
tu
ri
ng

en
te
rp
ri
se
s;
P
4,
ni
tr
og
en

fe
rt
ili
ze
r
ap
pl
ic
at
io
n
ra
te
;P

5,
po
pu
la
tio

n
de
ns
ity

;P
6,
pe
r
un
it
co
ns
tr
uc
tio

n
bu
ild

in
g
ar
ea
;P

7,
nu
m
be
r
of

do
m
es
tic
al
ly
m
ad
e
ca
r
ow

ne
rs
hi
p;
P8

,h
ig
hw

ay
de
ns
ity

;
P
9,
ra
tio

of
th
e
ce
nt
ra
lh

ea
tin

g;
R
1,
ra
te
of

gr
ee
n
la
nd

in
bu
ilt
-u
p
ar
ea
;R

2,
pr
op
or
tio

n
of

en
er
gy

co
ns
er
va
tio

n
an
d
en
vi
ro
nm

en
ta
lp

ro
te
ct
io
n
ex
pe
nd
itu

re
s
to
lo
ca
lf
is
ca
le
xp
en
di
tu
re
;R

3,
ra
tio

be
tw
ee
n
th
e

th
ir
d
in
du
st
ry

an
d
th
e
se
co
nd

in
du
st
ry
;
R
4,

pe
r
un
it
ar
ea

in
du
st
ri
al

ou
tp
ut
;
R
5,

ex
-f
ac
to
ry

pr
ic
e
in
de
x
of

in
du
st
ri
al

pr
od
uc
ts
;
R
6,

pe
r
un
it
G
D
P
in

en
er
gy

co
ns
um

pt
io
n;

R
7,

ga
s
pe
ne
tr
at
io
n
ra
te
;
R
8,

ex
pe
nd
itu

re
of

re
se
ar
ch

an
d
ex
pe
ri
m
en
ta
ld

ev
el
op
m
en
tf
un
ds

36250 Environ Sci Pollut Res  (2021) 28:36234–36258



the overall ventilation capacity of a city, resulting accumula-
tion of air pollutants in a certain area. Second, energy

consumption is the primary source of air pollutants. The pol-
lutant emission coefficients vary among different energy
sources, especially the air pollutant emission coefficient of
coal combustion is significantly higher than other energy pro-
duction sources (Hao and Liu 2016). Third, although the emis-
sion from industries is the primary source of many air pollut-
ants, the excessive use of nitrogen fertilizer in agriculture is
the main cause of ammonia pollution, which plays an impor-
tant role in increasing the concentration of PM2.5 (Zhao et al.
2019). During the process of industrialization in China, the
additive effect of industrial pollution and soil and water pol-
lutions in the vast rural areas also formed a mechanism of
severe rural air pollution (Gu 2014). Unfortunately, few

Table 5 The results of the ecological detection

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 P1 P2 P3 P4 P5 P6 P7 P8 P9 R1 R2 R3 R4 R5 R6 R7 R8

D1

D2 Y

D3 Y N

D4 N Y Y

D5 Y N N Y

D6 N Y Y N Y

D7 N Y Y N Y N

D8 N Y Y N Y N N

D9 N Y Y N Y N N N

D10 N Y Y N Y N N N N

P1 N Y N N Y N N N N Y

P2 N Y Y N Y N N N N N N

P3 N Y N N Y N N N N Y N N

P4 N Y N N Y N N N N N N N N

P5 N Y Y N Y N N N N N N N N N

P6 N Y N N Y N N N N Y N N N N N

P7 N Y N N Y N N N N Y N N N N N N

P8 N Y N Y N Y N N N Y N Y N N Y N N

P9 Y N N Y N Y Y Y Y Y N Y N Y Y N N N

R1 N Y Y N Y N N N N N N N Y N N Y N Y Y

R2 N Y Y N Y N N N N N Y N Y N N Y Y Y Y N

R3 N Y Y N Y N N N N N N N N N N N N Y Y N N

R4 N Y N Y N Y N N N Y N N N N Y N N N N Y Y Y

R5 N Y Y N Y N N N N N N N N N N N N N Y N N N N

R6 N Y Y N Y N N N N N Y N Y N N Y Y Y Y N N N Y N

R7 N Y N N Y N N N N N N N N N N N N N Y N N N N N N

R8 N Y Y N Y N N N N N N N N N N N N N Y N N N N N N N

Y means there is a significant difference in the influence between two influencing factors on urban air pollution, N means there is no difference. D1,
relative elevation; D2, annual average temperature; D3, humidity index; D4, wind speed; D5, annual average precipitation; D6, regional GDP growth
rate; D7, proportion of secondary industry in regional GDP; D8, investment to real estate development; D9, actually utilized foreign capital; D10, natural
population growth rate; P1, proportion of construction land to the total area of the city; P2, proportion of coal consumption; P3, number of manufacturing
enterprises; P4, nitrogen fertilizer application rate; P5, population density; P6, per unit construction building area; P7, number of domestically made car
ownership; P8, highway density; P9, ratio of the central heating; R1, rate of green land in built-up area; R2, proportion of energy conservation and
environmental protection expenditures to local fiscal expenditure; R3, ratio between the third industry and the second industry; R4, per unit area
industrial output; R5, ex-factory price index of industrial products; R6, per unit GDP in energy consumption; R7, gas penetration rate; R8, expenditure
of research and experimental development funds

Table 6 Comparisons of
regression models Model R2 AIC RSS

OLS 0.5670 734.47 136.59

GWR 0.7603 536.16 56.48

(1) R2 is the coefficient of determination;
AIC, Akaike information criteria; RSS, re-
sidual sum of squares in the model. (2)
OLS, ordinary least squares; GWR, geo-
graphically weighted regression
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studies explored the relationship between agricultural produc-
tion and air pollution in rural China (Zhou et al. 2018b).
Fourth, additional pressures also come from population
growth, building construction, vehicle holdings, and road
density. Increasing the residential density in urban areas
stimulates private consumption, which, in turn, may result in
more industrial pollutions. Lin et al. (2016) found that the
dusts from construction activities were important sources of
urban air particles in China. Chen et al. (2015) and Lin and
Zhu (2018) also found that the emissions from the vehicles
would gradually become a key driving force of urban air pol-
lution in China. Also, the winter heating in North China pro-
moted harmful gas emission, which was one of the important
causes of urban air pollution at the regional scale.

Response

The response includes various countermeasures implemented
by policymakers and environmental managers. The responses

to mitigate the urban air pollution included ecological con-
struction, economic adjustment, energy utilization adjustment,
and technology innovation (Table 1). First, ecological con-
struction, such as forest coverage and urban green space,
played an important role in absorbing air pollutants and
purifying the air. Second, López et al. (2011) reported that
increasing investment in environmental protection helped to
reduce the emission of air pollutants. Economic adjustment
such as industrial upgrading promoted the transformation of
industrial structures that might have potentially contributed to
alleviating the haze air pollution risks. For example, Zeng and
Zhao (2009) deemed that industrial agglomeration led to
cleaner production due to the efficient utilization of capital
and labor resources. Zhao et al. (2019) suggested that econom-
ic agglomeration was convenient for cities to deal with indus-
trial pollution and air quality control by optimizing the indus-
trial structure and improving business innovation. Third, en-
ergy utilization adjustment included energy price adjustment
and energy efficiency improvement. Through adjusting

Table 7 Descriptive statistics of the regression coefficients of the geographically weighted regression model

Variable Min Max Mean Q1 Median Q3 SD

Constant − 3.39 0.87 0.07 0.04 0.08 0.10 0.26

Relative elevation (D1) − 1.24 0.79 − 0.75 − 1.00 − 0.77 − 0.65 0.37

Annual average temperature (D2) − 0.65 1.37 − 0.20 − 0.57 − 0.37 0.14 0.44

Wind speed (D4) − 0.28 1.33 − 0.15 − 0.21 − 0.19 − 0.15 0.16

Annual average precipitation (D5) − 0.99 1.81 − 0.50 − 0.72 − 0.51 − 0.32 0.31

Regional GDP growth rate (D6) − 0.18 0.16 − 0.08 − 0.11 − 0.08 − 0.05 0.05

Proportion of secondary industry in regional GDP (D7) 0.03 0.52 0.28 0.18 0.28 0.38 0.12

Investment to real estate development (D8) − 0.35 5.77 0.08 − 0.07 − 0.01 0.07 0.54

Actually utilized foreign capital (D9) − 2.25 0.20 − 0.22 − 0.22 − 0.17 − 0.08 0.33

Natural population growth rate (D10) − 0.05 0.82 0.07 0.02 0.06 0.07 0.13

Proportion of construction land to the total area of the city (P1) − 2.20 0.85 − 0.02 − 0.05 − 0.02 0.00 0.19

Proportion of coal consumption (P2) − 0.39 0.97 0.03 − 0.01 0.02 0.06 0.11

Number of manufacturing enterprises (P3) − 12.39 0.79 0.09 0.11 0.19 0.26 0.94

Nitrogen fertilizer application rate (P4) − 0.01 1.26 0.08 0.05 0.06 0.07 0.11

Population density (P5) − 0.31 0.26 − 0.01 − 0.02 − 0.01 0.00 0.04

Per unit construction building area (P6) − 2.04 1.48 0.07 0.01 0.03 0.10 0.22

Number of domestically made car ownership (P7) − 0.37 3.52 0.16 0.09 0.12 0.15 0.28

Highway density (P8) − 1.76 0.62 0.13 0.12 0.15 0.18 0.15

Ratio of the central heating (P9) − 0.59 0.63 0.00 -0.01 0.00 0.02 0.09

Rate of green land in built-up area (R1) − 0.29 0.15 − 0.09 − 0.12 − 0.11 − 0.08 0.05

Proportion of energy conservation and environmental
protection expenditures to local fiscal expenditure (R2)

− 0.17 0.28 − 0.03 − 0.08 − 0.02 0.02 0.07

Ratio between the third industry and the second industry (R3) − 0.02 0.80 0.21 0.09 0.21 0.30 0.14

Per unit area industrial output (R4) − 0.24 2.70 0.06 0.00 0.02 0.07 0.24

Ex-factory price index of industrial products (R5) − 0.51 0.15 0.04 0.03 0.07 0.08 0.10

Per unit GDP in energy consumption (R6) − 0.57 0.17 − 0.13 − 0.17 − 0.14 − 0.11 0.11

Gas penetration rate (R7) − 0.32 0.13 − 0.04 − 0.08 − 0.04 0.00 0.05

Expenditure of research and experimental development funds (R8) − 3.33 0.27 − 0.07 − 0.11 − 0.06 0.02 0.27

Q1, lower quartile; Q3, upper quartile; SD, standard deviation
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Fig. 10 Spatial patterns of the estimated regression coefficients of the
geographically weighted regression (GWR)model. (a) D1, relative elevation;
(b) D2, annual average temperature; (c) D4, wind speed; (d) D5, annual
average precipitation; (e) D6, regional GDP growth rate; (f) D7, proportion
of secondary industry in regional GDP; (g) D8, investment to real estate
development; (h) D9, actually utilized foreign capital; (i) D10, natural popu-
lation growth rate; (j) P1, proportion of construction land to the total area of
the city; (k) P2, proportion of coal consumption; (l) P3, number of
manufacturing enterprises; (m) P4, nitrogen fertilizer application rate;

(n) P6, per unit construction building area; (o) P7, number of domestically
made car ownership; (p) P8, highway density; (q) P9, ratio of the central
heating; (r) R1, rate of green land in built-up area; (s) R2, proportion of energy
conservation and environmental protection expenditures to local fiscal expen-
diture; (t) R3, ratio between the third industry and the second industry; (u) R4,
per unit area industrial output; (v) R5, ex-factory price index of industrial
products; (w) R6, per unit GDP in energy consumption; (x) R8, expenditure
of research and experimental development funds
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energy prices, the government can control the total consump-
tion of coal and optimize the composition of energy sources.
Also, air quality may be improved by increasing energy effi-
ciency. The development of clean energy technology is an
important way to reduce the occurrence of urban air pollution
events (Zhan et al. 2018).

Path to mitigating the urban air pollution in China

Based on the above analysis of spatial and temporal charac-
teristics of urban air pollution in China and the influencing
factors, we attempt to propose a specific path to reducing the
occurrence of urban air pollution events in China. The pro-
posed path includes the following five themes.

The first theme is multi-sectoral, multi-regional, and col-
laborative legislation and governance. The spatial pattern and
variation analysis in this study show that the urban air pollu-
tion days in a city is not only related to local influencing
factors but also related to the urban air quality in the neigh-
boring cities. These results indicate that urban air pollutants
have strong spatial diffusion or spatial spillover effects.
Consequently, we suggest that local governments should
strengthen regional cooperation on scientific research, pro-
mote the unification of regional environmental standards on
energy conservation and emission reduction, and improve the
mechanism for industry entry and exit. Moreover, it is impor-
tant to establish a cooperation and law enforcement system for
regional information sharing on air quality and emergency
response.

The second theme is industrial upgrading and reconstruc-
tion. On the one hand, the industrial upgrade should be ori-
ented toward raising the standards for environmental protec-
tion and energy consumption, increasing the penalties for en-
vironmental protection violations, and shutting down back-
ward and excessive production capacities. On the other hand,
China needs additional industrial upgrades, which will be
driven by the new-type urbanization development and ecolog-
ical civilization construction (Zhou et al. 2015). Chinese cities
should strengthen structural adjustment in heavily polluting
industries, strengthen source control, and reduce pollutant
emissions by increasing technological innovation and
upgrading heavily polluting industries, so as to change the
pattern of economic growth and alleviate the increasing pres-
sure on the environment.

The third theme is to upgrade the energy consumption
structure. Economic development is not only a process of
goods production and city infrastructure construction, but also
a process of material and energy consumption (Lin and Zhu
2018). In the future, China should limit the use of low-grade
coals, promote central heating, and combine heat and power
supplies, so as to minimize fuel consumption and pollutant
emissions. China should also increase the supply and con-
sumption of clean energy such as natural gas, liquefied

petroleum gas, and solar energy in the cities. In addition,
China should promote the use of new energy vehicles and
speed up the construction of supporting facilities and transpor-
tation networks for new energy vehicles in the cities.

The fourth theme is to optimize the “spatial distribution” of
the population. China’s rapid urbanization has resulted in a
series of population issues, such as population overgrowth,
rural population moving to urban areas, and spatial imbalance
between population and economy (Wang et al. 2015).
Currently, the population’s spatial distribution and changes
are becoming more and more important for regional socio-
economic development in China. China’s urbanization needs
to transform from the “land-based urbanization” to the “pop-
ulation-based urbanization” (Chen et al. 2013). Therefore,
China should put a limit on megacity’ population and form
the “new-type” urbanization (Chen et al. 2016) development
plans that take into account the sustainability of the environ-
ment and resources in a region for balanced economic, social,
and resource allocations.

The fifth theme is the reconstruction of the multi-level air
duct systems. In recent years, spatial layout and structure
change driven by urban expansion and land use have been
among the main research areas on air pollution control (Xu
et al. 2015; Yuan et al. 2017; Zhao et al. 2019). For example,
Xu et al. (2015) found that unreasonable urban expansion
would lead to the obstruction of the urban ventilation corri-
dors, further reducing the speed and intensity of wind flowing
through the city and increasing the frequency of stagnant air.
The urban heat island effect and the temperature inversion
effect may weaken the convection and diffusion of air pollut-
ants (Fu and Chen 2017), which may lead to the microclimate
conditions that favor the formation of urban air pollution
events. Furthermore, Wang et al. (2019b) reported that the
Chinese Academy of Sciences proposed a new low-cost
charge-coupled device (CCD) Lidar detection system to mea-
sure the near-ground (< 500 m) aerosol profiles in haze days.
Unfortunately, urban ventilation corridors have often been
disregarded in the process of rapid urbanization development
and land utilization in China in the past. Our results indicate
that (Table 2) topographic and climate conditions are impor-
tant factors of urban air pollution on a global scale. As shown
in Fig. 4, urban air pollution events frequently occurred in the
Northwest and North China. From summer to winter, air pol-
lutionmainly centered inNorth China and gradually expanded
from there. Under the influence of the northwest monsoon,
northwestern China has also become a “hotspot” of urban air
pollution events and has gradually spread fromKashi in South
Xinjiang to the northwest and the southeast Xinjiang.With the
arrival of the southeast monsoon and the increase of precipi-
tation in summer and autumn, the air pollutants are dissipated
in the southeastern region of China. Therefore, we propose
two measures for the reconstruction of air duct systems. One
is to understand the importance of regional air duct systems
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based on regional climate, terrain, and wind conditions, mak-
ing good use of the natural air duct in a region (such as green
open space, ecological space, and ecological corridor). The
other is to reduce near-ground (< 500 m) urban air pollution
by combining urban planning, land use planning, and spatial
planning, by designing the height and density of urban build-
ings reasonably at the city level, and by developing computer
models to improve the urban air pollution forecasting based
on urban air duct optimization and reconstruction.

Conclusions

In this study, we integrated the DPSIR framework, the geo-
graphical detector, and the geographically weighted regres-
sion model to understand the spatial and temporal character-
istics of urban air pollution in China and to study the individ-
ual and interactive effects of the 27 influencing factors on the
urban air pollution. Our empirical study in the 337 Chinese
cities demonstrates that the proposed urban air pollution as-
sessment framework is an effective tool to examine the impor-
tant links among nature, society, and economic systems.

On the one hand, the DPSIR framework assumes a chain of
causal links starting with the drivers (natural conditions and
human activities) through the pressures (production, living,
and emissions) to the states (air environment and quality)
and the impacts on the nature-society-economy complex sys-
tems (public health and functions), finally leading to the “re-
sponses” (legal, economic, and administrative). The DPSIR
framework is able to capture the cause-effect relationships
among social, economic, environmental, and other systems,
to simplify the complex human-environmental integrated sys-
tem, and to contribute to the formulation of policies. On the
other hand, the geographical detector is used to explore the
influencing factors of urban air pollution and how they inter-
act with each other at the global scale, while the geographi-
cally weighted regression model is used to detect the positive/
negative effects of the influencing factors on the urban air
pollution at the local scale.

Our findings suggest that the influencing factors of urban
air pollution are complex and diverse, varying from season to
season. Urban air pollution is the result of the interactions of
multiple influencing factors, while the explanatory power be-
tween any two influencing factors is greater than that of a
single influencing factor to the urban air pollution.
Furthermore, the interaction of natural factors and socio-
economic factors can enhance the explanatory ability of the
influencing factors to urban air pollution.

Nevertheless, our study is not without limitations. The
main limitation is that the cross-section dataset of the UAPI
in the Chinese 337 cities is from a single year (2015). It is
necessary to use multiple years of data over a long period for
trend analysis of the urban air pollution in China. Another

limitation is that urban air pollution is a systemic global or
local problem, reflecting the complex relationship between
human activities and the environment. It is also necessary to
adopt a multidisciplinary approach to reveal the deep-rooted
causes of urban air pollution. We plan to integrate process-
based simulation and risk assessment to study the long-term
dynamics of the urban air pollution in China and to recom-
mend science-based mitigation strategies. In addition, data
precision mismatch and partially missing data caused by com-
piling multiple data sources are also important factors that
may affect the reliability of the results.
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