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Abstract
Wetland risk assessment is a global concern especially in developing countries like Bangladesh. The present study explored the
spatiotemporal dynamics of wetlands, prediction of wetland risk assessment. The wetland risk assessment was predicted based on
ten selected parameters, such as fragmentation probability, distance to road, and settlement. We used M5P, random forest (RF),
reduced error pruning tree (REPTree), and support vector machine (SVM) machine learning techniques for wetland risk assess-
ment. The results showed that wetland areas at present are declining less than one-third of those in 1988 due to the construction of
the dam at Farakka, which is situated at the upstream of the Padma River. The distance to the river and built-up area are the two
most contributing drivers influencing the wetland risk assessment based on information gain ratio (InGR). The prediction results
of machine learning models showed 64.48% of area byM5P, 61.75% of area by RF, 62.18% of area by REPTree, and 55.74% of
area by SVM have been predicted as the high and very high-risk zones. The results of accuracy assessment showed that the RF
outperformed than other models (area under curve: 0.83), followed by the SVM, M5P, and REPTree. Degradation of wetlands
explored in this study demonstrated the negative effects on biodiversity. Therefore, to conserve and protect the wetlands,
continuous monitoring of wetlands using high resolution satellite images, feeding with the ecological flow, confining built up
area and agricultural expansion towards wetlands, and new wetland creation is essential for wetland management.
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Introduction

Wetlands are considered to be the world’s most precious nat-
ural ecosystem, accounting for just 6% of the global land
surface (Acreman et al. 2007; Whyte et al. 2018; Li et al.
2019). They strongly patronize global biodiversity (Savickis

et al. 2016), smoothen the water cycle (Bullock and Acreman
2003), and rein climatic change (Karim et al. 2016). Wetlands
have been widely reported as the “world’s kidneys,” life sup-
port system and origin of modern civilization (Wu and Lane
2017). They serve as critical functions including ecological,
socioeconomic, and recreational purposes, and management
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of catastrophic events (White and Kaplan 2017; Asomani-
Boateng 2019; Sutton-Grier and Sandifer 2018). Moreover,
wetlands act as flood prevention, stream flow maintenance,
fertile farming lands (Rippon 2009), fish and wildlife safe
environment (Wu and Lane 2017), sinks and sources of car-
bon (Kayranli et al. 2010), and multiple services to human
well-being (Junk et al. 2013). Despite the benefits of wetlands
for human well-being, wetlands around the world are becom-
ing vulnerable due to abrupt changes in climate regulation and
anthropological footprints, such as water control through
dams, agricultural expansion, over population growth, excess
groundwater withdrawal, resource over-exploitation, pollu-
tion, and rapid urbanization (Karim et al. 2016; Islam et al.
2016; Lefebvre and Laille 2019). Besides, a lack of public
awareness about the advantages of the wetlands and their eco-
logical benefits (Bai et al. 2011; Adekola and Mitchell 2011)
and the decline in groundwater levels (Das and Pal 2017;
Mahato and Pal 2019b; Pal et al. 2020) are important factors
of wetland vulnerability, because the continuous decline of the
groundwater table is categorized as one of the major factors
causing the conversion of wetlands. Evidence indicates that
almost half of the wetlands around the world have disap-
peared, 3.7 times faster than other diverse ecosystems
over the past 150 years (Davidson 2014).

In such circumstances, wetlands are considered the most
vulnerable ecosystems on the planet (Poff et al. 2002; Bates
et al. 2008). Physical processes of wetland risk assessment
threaten the magnitude of wetlands to provide these ecosys-
tem services to humanity (Zedler and Kercher 2005). Hence,
wetlands are natural ecosystems of global and local signifi-
cance that need support for their effective conservation plans
(Keddy 2010). Therefore, it is of paramount importance to
investigate the spatiotemporal dynamics of wetland risk as-
sessment and its underlying drivers for identifying sustainable
wetland use policies.

Wetland risk assessment appears when the risk exposures
of a specific wetland phenomenon approach stress the poten-
tial of wetlands to sustain the impact or the endeavors are
required to reduce it (Miller and Fujii 2010). Recently, risk
assessment to the integrity of wetlands including decrease
in wetland area, degradation and rise in gas emissions has
drawn substantial attention among the researchers (Davidson
2014; Song et al. 2014; Pal and Talukdar 2018; Debanshi and
Pal 2020). Some scholars have investigated the physical pro-
cesses that drive wetland risk assessment (Pal and
Talukdar 2018; Saha and Pal 2019). Moreover, several
studies of wetland dynamics and risk assessment have
concentrated on variations in land use/cover, wetland
habitat, and water level (Khaznadar et al. 2009; Pal and
Talukdar 2018; Jiang et al. 2017; Malekmohammadi and
Jahanishakib 2017; Debanshi and Pal 2020). The outcomes of
these studies have been utilized to aid with the wetlands
protection.

Recently, wetland risk assessment based on the image anal-
ysis has attracted the researchers’ attention (Wu et al. 2014;
Talukdar and Pal 2018). Although high-resolution images
have a great advantage to show the wetland unit at the mi-
cro-level, and limited availability of such images may hinder
preparing quality datasets (Sanyal et al. 2017). Landsat images
have been extensively applied for this type of research in the
data-scarce regions, like Bangladesh, India, instead of such
high-resolution images (Talukdar and Pal 2020). In general,
analysis of multi-date images can give an authentic wetland
map and reliability in the flooded wetland and floodplain areas
(Talukdar and Pal 2017). Various image matrices, such as
normalized difference vegetation index (NDVI), normalized
difference water index (NDWI), and modified normalized dif-
ference water index (MNDWI), were used in previous
studies to map water bodies (Zhou et al. 2012; Mahato and
Pal 2018; Mahato and Pal 2019a). However, each index has
some merits and demerits, showing comparative water avail-
ability, and wet and dry soil conditions (Gao 1996). Evidence
reported that these indices are not equally significant for all
types of water bodies due to the heterogeneous landscape on
the earth.

Machine learning algorithms have gained popularity in re-
mote sensing-based studies because of their reliability and
competency to classify wetlands (Rogan et al. 2008; Xu
et al. 2018; Whyte et al. 2018). Advanced machine learning
classifiers, such as random forest (RF) (Felton et al. 2019) and
support vector machine (SVM), have been successfully used
to classify and map wetlands (Breiman 2001; Cortes and
Vapnik 1995; Maxwell et al. 2018). Prediction of wetland risk
zones can be achieved by these data-driven machine-learning
techniques (Miller et al. 2016; Ekberg et al. 2017; Wardrop
et al. 2019; Saha and Pal 2019; Defne et al. 2020). SVM
achieves higher accuracy than other common classifiers using
a limited training data-set, which makes them particularly at-
tractive for wetland classification (Zang et al. 2012;
Mohammadpour et al. 2015; Liu et al. 2018). RF can handle
high-dimensional datasets, which makes it attractive for pro-
cessing remote sensing dataset (Pham et al. 2021; Maxwell
et al. 2016; Mellor et al. 2013). There are good examples of
successful application of both SVM (Petropoulos et al. 2012;
Zhang and Xie 2013; Szantoi et al. 2013; Sadeghi et al. 2012;
Lin et al. 2013) and RF (Pham et at. 2019; Sesnie et al. 2010;
Mellor et al. 2013; Maxwell et al. 2016) in environmental
studies. Furthermore, SVM has been used extensively in wet-
land studies (Dronova et al. 2012; Betbeder et al. 2013; Zhang
and Xie 2013). RF is also frequently used in risk zoning and
assessment studies (Pourghasemi and Kerle 2016; Pal and
Debanshi 2021; Ghosh and Das 2020).

However, previous literature reported that very rare studies
on the application of machine learning algorithms were ap-
plied in the wetland risk assessment. Therefore, based on this
line of thinking, the objectives of the present study were set to
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(1) analyze the spatiotemporal dynamics of wetlands for the
periods of 1988–2018, (2) explore the drivers, which are re-
sponsible for wetlands degradation, and (3) predict the wet-
land risk assessment through the integration of machine learn-
ing algorithms and selected drivers.

The present study contains two novelties which
are objective and technical aspects. In the case of objective
novelty, this study is the first study in Bangladesh, which has
explored the long-term wetland dynamics in the Teesta river
basin. In addition, ten drivers were identified, which were
responsible for wetland transformation in the present study.
Based on these drivers, the risk zones of wetlands were pre-
dicted. In other words, the wetland areas having high-risk
zone can be considered the most vulnerable areas of the wet-
lands, which can be transformed to other land use types in the
near future. Therefore, probable areas in the wetlands, which
are going to be transformed, have been identified preciously.
This finding could be the opportunity to the authorities and
planners to focus more on the high-risk zones of the wetlands
to limit the wetland degradation and keep the low-risk wet-
lands as safe or non-convertible wetlands. In the case of tech-
nical novelty, in the present study, we used remote sensing
techniques (MNDWI) to monitor the wetland dynamics for
the period of 1988-2018, which is a very new work in
Bangladesh. Furthermore, for the identification of drivers of
wetland changes, we employed remote sensing techniques
and machine learning algorithms like ANN, RF.We predicted
probable wetland fragmented model, which is also a driver
using ANN model. To the best of authors’ knowledge, the
modelling of probable wetland fragmented model is the first
and novel work to present the wetland areas which are going
to be fragmented. In addition, major influencing drivers for
wetland transformation were identified and quantified using
information gain ratio. Based on the identified drivers along
with probable wetland fragmented model, the M5P, SVM,
RF, and REPTree algorithms were utilized to predict the wet-
land risk zones, which are very novel and first in the
Bangladesh. Therefore, it can be stated that present study is
technically robust and sound.

Study area

The Padma river is the main downstream stretch of the Ganges
river, which flows more than 2562 km originating from
Gangotri glacier of the Himalaya. The basin area of Ganges
river is considered one of the densely populated inhabitants on
the Earth. About 407 million population of five countries,
namely China, India, Nepal, Bhutan, and Bangladesh, either
directly or indirectly derive benefits from the Ganges river.
This river plays a vital role in the socio-ecological settings
of these countries. The stretch of the Padma river runs for
108 km before the confluence with river Meghna at

Chandpur. The aggregated discharge of the Ganges river and
Brahmaputra flows through the course of the Padma river,
which is on an average 30,000 m3/s and it can be 75,000
m3/s during bank full stage (Hydraulics D, DHI (FAP 24)
1996). The elevation of the river course decreases by 5 cm/
km (Sarker and Thorne 2006). This study has been conducted
on the Padma river basin and the study area covers almost 8
districts, including Pabna, Shirajganj, Natore, Bogura,
Jaypurhat, Naogaon, Rajshahi, and Chapainawabganj (Fig.
1). The study area is located between 23° 48′ and 25° 18′ north
latitudes and 88° 27′ and 89° 48′ east longitudes. Annually,
900 metric tons of sediment load passes through the river out
of which 60% is either silt or clay while the rest is bed load
(Hossain 2010). Dewan et al. (2017) described the plan of the
river as a “wandering” pattern. This region has the geo-
environmental privilege to nourish the wetlands from the geo-
logical past. The monotonous plain formed by the phase after
phase alluvial deposition and a small amount of slope pro-
motes the wetland occurrences with the help of ambient mon-
soonal rainfall. Apart from that, the wetlands of the riparian
zone regularly get the supply of water from spilling river wa-
ter. As a result, this region composes favorable conditions of
wetland habitat, but as mentioned earlier, the huge anthropo-
genic pressure would not let the wetlands to pursue ecological
functions. The man-environmental conflicts are very often
there in the form of draining and infilling of wetlands.

Materials and methods

Materials

LANDSAT 4-5TM (Thematic Mapper), LANDSAT 7ETM+

(Enhanced Thematic Mapper Plus), and LANDSAT 8OLI
(Operation Land Imager) images have been downloaded from
the website of USGS Earth Explorer (United State Geological
Survey). The collected satellite imageries (Level 1 Terrain
Corrected (L1T) product) were pre-geo-referenced to
Universal Transverse Mercator (UTM) zone 45 North projec-
tion applying the WGS-84 datum. The particulars of those
satellite data, which are used in this present study, are men-
tioned in Table 1. Geo-referencing refers to the source of
errors of multi-resolution satellite imageries, and a conven-
tional geo-referencing tool has been applied for the present
study. Therefore, geometric correction has been carried out
to amend the image to the UTM-46 N projection system
through image processing. The basin area has been delineated
with the help of Google Earth Pro. The whole study has been
carried out using WEKA (version 3.8.2), ERDAS IMAGINE
(version 2014), and ArcGIS 10.5 software environment. The
hydrological time series are considered inclusive responses of
integrated climate situations, natural geographical conditions,
and human deeds (Sang and Wang 2008). Daily water flow
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data (1970 to 2018) of the Padma river basin is acquired from
respecting the river gauge station (Hardinge bridge station).

Methods for wetland mapping and risk assessment
modelling

Wetland extraction for spatiotemporal mapping

For the identification of wetland, several satellite imageries
derived indices, such as the NDWI, MNDWI, and WI, have
frequently been used, while these indices are not compatible
with every region for extracting accurate water bodies. The

distance from water feature towards other corresponding fea-
tures and the spectral proximity has been considered the im-
portant parameters of satellite images based indices for
extracting wetlands. The NDWI overestimates wetland areas
along with impervious land and agriculture land with a com-
paratively higher moisture level. We found that some built-up
areas are overlapped with water bodies due to complex LULC
types in the study area. On the other hand, we decided to use
MNDWI in the present study because it generates three types
of outputs, such as (1) higher positive values in the MNDWI
over water body denotes the maximum absorption of MIR
(middle infrared) light compare to the NIR (near-infrared)
light; (2) accordingly, the built-up area has been represented
by the negative values, and (3) the negative values have been
observed over the soil and vegetated areas, while the soil
reflects the maximum MIR light compare to the NIR light.
Similarly, the vegetated area also reflects the maximum MIR
light in comparison to the green light (Jensen 2004).
Therefore, the dissimilarity between the water body and the
built-up area has been increased significantly rather than the
output of NDWI. Consequently, the output of MNDWI gen-
erates higher values for a water body and the lower values
(positive to negative) for the built-up area. The maximum

Fig. 1 Location of the study area

Table 1 List of satellite imageries used for the study

Satellite Sensors Path and row Date of the imageries

Landsat 4-5 TM 138/43 08-11-1988

Landsat 4-5 TM 28-11-1994

Landsat 4-5 TM 17-11-2000

Landsat 7 ETM+ 18-11-2006

Landsat 7 ETM+ 17-10-2012

Landsat 8 OLI 27-11-2018
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enhancement of the spectral values and brightness of the water
body detected by the MNDWI have been benefited to extract
the open water body, the built-up area, soil, and vegetated area
more precisely, while these have been markedly concealed
and removed (Xu 2006). Therefore, we used the MNDWI in
the present study for resolving the flaws of NDWI. The
MNDWI has been calculated using Equation 1:

MNDWI ¼ Green−MIR

GreenþMIR
ð1Þ

where MIR represents the band 5 of Landsat 4-5TM.

Inventories

In the present study, we used wetland inventories for two
purposes, such as for wetland fragmentation potentiality and
for wetland risk assessment. For wetland fragmentation poten-
tiality modeling (considered one of the important driver for
wetland degradation), we, first, prepared wetland fragmented
model using landscape fragmentation tool, a ArcGIS exten-
sion. For this, some steps were followed, such as (1) the wet-
land maps (including non-wetland areas) for all periods were
integrated and prepared average wetland maps; (2) the non-
wetland area was assigned as 1 and wetland area was assigned
was 2 (the requirement of the landscape fragmentation tool to
execute the model); (3) the landscape fragmentation maps
were generated, which had six classes, such as patch, edge,
perforated, small core, medium core, and large core based on
the concentration of wetland pixel in a particular area; and (4)
finally, we considered patch as the inventories for wetland
fragmentation potentiality modeling because it is the most
detached part from the concentrated or core wetlands and
has the higher potentiality to be transformed or lost in near
future. Then, we randomly selected 200 points from the patch
as most fragmented zone, while 200 points were also collected
from large core (it is considered most un-disturbed or natural
wetlands) as non-fragmented zone. Then, we assigned 1 as
fragmented zone and 0 as natural zone. The total 400 points
were divided into training and testing datasets based 80-20
ratio. Each datasets contain both 0 and 1 value as fragmented
and natural zones. Based on training datasets, the ANNmodel
was executed to predict the fragmentation potential zones,
while the testing dataset was used to validate the fragmenta-
tion potential model.

On the other hand, for wetland risk assessment, we used
same landscape fragmentation map (generated using land-
scape fragmentation tool, an extension of ArcGIS) to prepare
the inventories. In this case, the logic is that the patch and edge
are the most detached parts of main or natural wetlands, which
have very high risk to be converted to other land uses, while
the large core of the wetlands has the very low or no risk to be
converted to other land uses. Therefore, based on this logic,

we randomly selected 250 points from each fragmentation
classes and assigned them as 1 and 0. Then, we divided the
whole data points into training (80%) and testing (20%)
datasets. The training points, which contain both 0 and 1
values, were used to extract the data from ten drivers of wet-
lands. Based on the training datasets, the machine learning
algorithms were executed to prepare the wetland risk assess-
ment models. Then, the validation points were used to extract
the predicted data from the wetland risk assessment models,
which were utilized to validate the risk assessment models.

Drivers of wetland risk assessment

Agriculture land Cropland area for all the selected years is
extracted by using the normalized difference vegetation index
(NDVI). The NDVI (Townshend and Justice 1986) is com-
puted by the following equation:

NDVI ¼ IR−R
IRþ R

ð2Þ

where the IR refers to the band 4 of Landsat 4-5TM (near-
infrared), and while the band 5 is IR band of Landsat OLI. The
R (red) is the 3rd and 4th band of Landsat 4-5TM and 8OLI
respectively. The positive NDVI values ranging from 0 to 1
denote vegetation. The values close 1 represent the higher
intensity of increasing vegetation health in the relative term.

Built-up area Wang et al. (2011) reported that built-up areas
are expanding due to an unprecedented population and eco-
nomic growth. Environmental problems (i.e., wetland loss)
are turning to a cumulative alarming phenomenon with the
expanse of impervious area (Sun and Lockaby 2012).
Therefore, it is necessary to consider this parameter for model-
ing the wetland risk assessment. The year of 2018 was chosen
for computing normalized difference built-up index (NDBI)
considering the last years of post-dam phases and it was com-
puted by using Equation 3.

NDBI ¼ MIRþ NIR

MIRþ NIR
ð3Þ

where the MIR indicates middle infrared (band 5 and 6 of
Landsat 4-5TM and 8OLI respectively), NIR (near-infrared) is
band 4, and 5 of Landsat 4-5 TM and 8 OLI respectively.

Soil moisture The normalized difference moisture index
(NDMI) is effective to measure the moisture levels in vegeta-
tion. This index is often used in monitoring the droughts and
fuel levels in fire-prone areas. It includes NIR and SWIR
bands to generate a ratio aimed to mitigate brightening and
atmospheric effects. NDMI is calculated by the following
equation (Wilson and Sader 2002; Skakun et al. 2003)-
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NDMI ¼ NIR−SWIR1

NIRþ SWIR1
ð4Þ

where NIR indicates DN values of the near-infrared band;
SWIR1 refers to DN values of the short-wave infrared 1 band.

Distance to road/railway The effect of anthropogenic activi-
ties on the wetlands is very proximate to the road, which has
numerous effects such as social, economic, and ecological
effects (Chomitz and Gray 1996). Therefore, the distance to
the road from the wetlands has been considered the relevant
causative indicator of wetland loss. The road density has been
continuously increasing along the wetlands in terms of devel-
opment. The Euclidean distance method was employed for
preparing the distance to road and railway maps.

Population density The main source of income of the Padma
river basin area is a wetland, so the population exerts pressure
on the wetland. For the assessment of anthropogenic pressure
on the vegetation or forest, the pixel-wise population density
map was prepared based on the data of the Population Census
2001.

Slope and elevation The slope and elevation are two relevant
biophysical factors for wetland risk assessment. The slope
map prepared using SRTM DEM with a resolution of 30 m
was split into two different slope categories. There was found
0–17.40° variation in the slope gradient over the study area.
Moreover, an altitude map was also prepared from SRTM
DEM data.

Fragmentation potential zones Fragmentation denotes the
disintegration of the continuous large-scale landscape such
as wetland into small-scale different landscape units
(Huising 2002). The extension of agricultural land, construc-
tion of roads, settlement, and germination are themain reasons
for wetland fragmentation (Murungweni 2013; Pal and
Talukdar 2018). The FRAGSTATS software was used for
calculating different fragmentation indices. Only one land-
scape metric cannot describe all the perspectives of fragmen-
tation (Davidson 1998). The number of chosen metrics can be
beneficial for the explanation of landscape alteration and must
be considered relative to the type of alteration (the patches)
and the background matrix (the forest mosaic) carefully. In
this regard, several landscape fragmentation matrices were
derived to model the chances of fragmentation probability.

The metrics were selected through the literature review and
the knowledge of the study area that can explain LULC alter-
ation influence on landscape fragmentation. Therefore, in this
study, several metrics were used, such as the number of
patches (NP), the largest patch index (LPI), the patch density
(PD), the edge density (ED), the aggregation index (AI),

landscape shape index (LSI), and perimeter area ratio (P/A
ratio) for illustrating the landscape alteration between the pe-
riods of pre and post-dam. The FRAGSTAT 4.2 software was
used for modeling these landscape fragmentation indices. The
details of the mentioned indices are listed in Table 2.

Based on mentioned fragmentation parameters, the artifi-
cial neural network (ANN) was applied for preparing the frag-
mentation probability model. The ANN is an abstract mathe-
matical and black box model. It has been applying in un-
countless fields, including decision making, pattern recogni-
tion, automatic controlling systems, and robotics (Conforti
et al. 2014). It can handle the complex, non-linear and unbal-
anced data sets. Therefore, it can imitate the functioning of the
human brain and is even able to generalize and predict the
output from a large number of complex inputs. For this reason,
researchers across the world have widely been used to solve
the different problems in different fields. The ANNmodel can
perform like an expert, which can detect the complex predic-
tive pattern, which is not apparent non-expert. It can act on the
category, continuous and binary data without violating the
assumption and characters of the data (Wang et al. 2016).

Several architectures of the neural network have widely
been used (Moayedi et al. 2019; Harmouzi et al. 2019;
Sevgen et al. 2019; Falah et al. 2019; Termeh et al. 2018;
Zhao et al. 2019; Garosi et al. 2019; Huang and Cao 2018).
In this study, the feed-forward–based multilayer perceptron
(MLP) architecture was used. The standard MLP consists of
three layers, such as an input, one or more hidden and output
layers of non-linear activation nodes. Each layer contains
many neurons or nodes, which are connected with a certain
weight to every node in the next layer. Their work is to trans-
fer the information. Thus, the neural network has been
formed. The MLP uses the backpropagation algorithm for
training the network until the minimum errors are achieved
between the anticipated and output values of the network.
Thus, the ANN model generates the results. In the present
study, the following model parameters were optimized to ob-
tain the best ANN model for train and predict the fragmenta-
tion probability model (Table 3).

Information gain ratio to assess the factors influencing
the wetland risk assessment

Before start modelling process, it is important to primarily
appraise the relevance of the parameters for influencing flood
(Unler and Murat 2010). The importance of each collected
parameter enumerates by using their statistical characteristics
in this feature process. The information gain ratio (InGR)
technique (Quinlan 1986) is a feature selection model, which
is capable of recognizing the high-ranking parameters for
explaining the flood susceptibility prediction. This model pro-
vides an InGR value to each wetland transforming drivers to
evaluate its relevance. The higher the InGR value indicates
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more influence of the drivers to wetland degredation. One of
the main reasons to consider the InGRmodel for evaluation of
the parameters is its simplicity and efficacy. However, we
followed Equation 5 for executing the model.

Gain ratio y;Mð Þ

¼
Entropy Mð Þ−∑n

1∑
n
i¼1

Mij j
Mj j Entropy Mið Þ

−∑n
1¼1

Mij j
Mj j log

Mij j
Mj j

ð5Þ

where the attribute y belongs to a training pointMwith subsets
Mi = 1, 2, 3, …. n

Wetland risk assessment using machine learning algorithms

M5P modelM5P consists of a conventional decision tree hav-
ing the option of linear regression functions at the nodes. The
divergence metric is known as the standard deviation reduc-
tion (SDR), which is used to generate the decision tree.
Moreover, a linear regression function is also applied to de-
velop tree models. The process works through pruning, evac-
uation, and substitution of trees. Finally, a final tree model is
constructed (Suthar and Aggarwal 2019). A tree model is
generally used to predict the output of several input values
after analyzing the provided data sets. Table 4 shows the

optimized model parameters of different algorithms used in
the study.

A linear regression model exists at all the leaf of the tree
model for casting the non-existent value of the input data that
arrive in this leaf. This model has two parts, such as in the first
part, a decision-making tree has been constructed, whereas in
the second part, pruning of non-essential branches and
discarding of these subtrees with linear regression functions
have been carried out. The construction of a model associates
the output values of the training data to the input values. They
explicitly analyze the patterns and relationships implicit in
data based on rules and regression equations. On the contrary,
the other artificial intelligent models, such as ANN and SVR,
keep them as hidden (Nahm-Chung et al. 2010; Etemad-
Shahidi and Ghaemi 2011; Etemad-Shahidi and Bonakdar
2009; Azadi et al. 2016). A predicted data set was created
by the training data set.

Random forest Random forest (RF) is known as the modified
bagging supervised machine learning method that is mainly
applied for the prediction as well as the classification (Polikar
2012). Recently, the RF has been applied for time series fore-
casting (Qiu et al. 2017; Tyralis and Papacharalampous 2017).
In this part of the study, the RF has been used for assessing the
risk assessment of the wetlands. The application of ensemble
machine learning for predicting wetland risk assessment is
very new. The RF algorithm is a nonparametric ensemble
classifier technique that works by using the algorithm of the
flexible decision tree of Breiman (Breiman 2001). The RF
builds decision trees, in which each tree is constructed by
utilizing the bootstrap training samples (Breiman 2001). To
build a better model, it is important to grow a large tree
(Breiman 2001). Accordingly, it is necessary to have a requi-
site number of selected predictor variables at all the nodes of
the trees. The number of observations at the terminal nodes of
the trees would be minimum. In this method, randomly select-
ed training data from the actual dataset through the algorithm
were applied to generate the model (Catani et al. 2013a;
Breiman 2001; Costache and Bui 2019; Youssef et al.

Table 2 Details specification of the landscape matrices generated using the FRAGSTAT 4.2 software

Acronym Name (units) Description Justification

NP Number of patch The landscape has been covered by the total numbers of patches Fragmentation

PD Patch density (per
100 ha)

The presence of the particular numbers of patches in the particular area of the landscape. Fragmentation

ED Edge density McGarigal and Marks (1995) defined ED as the numbers of edges in respect to the landscape area that
are likely to boost in the primary stages of habitat fragmentation.

Fragmentation

LPI The largest patch
index

The particular patch in the class has been covering the largest area, which is considered LPI (expressed
as the percentage to the total landscape area).

Dominance

AI Aggregation
index

Bregt and Wopereis (1990) defined the AI as the ratio between the actual edge and the total numbers of
possible edges.

Fragmentation

P/A ratio Perimeter area
ratio

The PA ratio is considered the measure of the magnitude to which the perimeter of the particular object's
floor is exposed.

Fragmentation

Table 3 Calculated parameters for ANN algorithms used in the study

Parameters ANN

Number of hidden layers 6

Activation function in the hidden unit Logistic

Number of iteration 1000

Learning algorithm Back propagation

Learning rate 0.2

Momentum 0.3

Seed 5
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2016). The performance of different models is dependent sig-
nificantly on the optimization of the model’s parameters
(Table 4). However, classification errors have beenminimized
by expanding each tree, whereas output has been influenced
by random selection (Zabihi et al. 2016). The main objective
of the RF algorithm is to observe howmuch error in prediction
increases with the shifting of the output of data for a certain
variable. Therefore, it can compute the significance of the
variable, while the other variables remain unchanged (Liaw
and Wiener 2002; Catani et al. 2013b; Jog et al. 2017). A
strong correlation between the training data and the predicted
data model and minimum error has been observed in this
model of the present study.

REPTreeGenerally, REPTree is considered speedy decision tree
learning, which generates a decision tree by using information
gain or minimizing the variance. REPTree incorporates the re-
gression tree logic and prepares multiple trees in various itera-
tions (Table 4). Thereafter, it picks unsuitable ones from all
constructed trees. That will be taken into account as the repre-
sentative. The mean square error has been used in pruning the
tree on the forecastingmade by the tree. The REPTree, a speedy
decision tree learner, constructs a decision or regression tree
based on the information gain as the splitting criterion and
prunes it based on decreased error pruning. It only selects values
for numeric attributes once (Srinivasan and Mekala 2014;
Dhakate et al. 2014; Kalmegh 2015). The correlation between
training data and predicted model was correlation coefficient
0.925, MAE was 0.01, and RMSE was 0.017 (Table 5).

Support vector machine One of the widely used soft comput-
ing machines learning techniques is support vector machine
(SVM), which commonly applied for solving the problems of
classification, prediction, pattern recognition, and regression.
Moreover, the SVM has been performed to forecast the time

series analysis and gives good performance among the artifi-
cial intelligence models. Therefore, the many branches, such
as statistics, finance, and environment along with hydrology,
have been started to use SVM (Adnan et al. 2017; Garsole and
Rajurkar 2015; Kisi 2015; Deo et al. 2017; Costache
2019; Gong et al. 2016). The structural risk minimization
and statistical machine learning process have been considered
the philosophy behind the SVM development, which are two
different fundamental bases of the SVM (Hamidi et al. 2015).
The risk minimization decreases the upper-bound generaliza-
tion error, rather than the traditional local training error. The
model can be expressed by Equation 6:

z ¼ f yð Þ ¼ ∑
p

i¼1
wiϕi ¼ wϕ yð Þ ð6Þ

where the output of the model refers to the part of linear
P,() The converter is presented by the nonlinear model. The
SVM model is represented by the Equation 7:

z ¼ f yð Þ ¼ ∑
l

i¼1
wiK Y i;Y

� �� �
−c ð7Þ

where K is the kernel function, wi and c represent the param-
eters of the model. L denotes the number of learning patterns,

Table 4 Optimized model’s parameters of different algorithms used in the study

Parameters M5P SVM RF REPTree

Batch size 100 100 100

Minimum number of instance 4

Unpruned False

Bag size percent - 100

Number of iteration 0.2 100

Threads - 1

Seed 5 4

Max depth - 3 3

Number of fold 3

Minimum proportion of variance 0.001

Filter type Normalize training data

Kernel Radial basis function

Gamma 0.18

Table 5 Temporal change of wetland area

Year Wetland area (km2)

1988 2830.077

1994 3203.102

2000 2594.32

2006 2692.139

2012 2184.107

2018 771.49
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accordingly, while the Yi and Y represent the data vector for
network learning and independent vector, respectively. The
parameters of the model are ascertained with the maximizing
the objective of the function.

Based on the previous literature, it can be stated that no
machine learning algorithms are perfect to resolve the prob-
lems. In the present study, the applied machine learning algo-
rithms also have some flaws, such as random forest, REPTree,
andM5P have been suffered from over-fitting and less model-
ing speed, while the SVM has been suffered from mis-
classification error. Although previous literature stated that
the mentioned machine learning algorithms have been applied
successfully to solve the various environmental problems.
However, several flaws of standalone machine learning algo-
rithms could be overcome by employing the ensemble ma-
chine learning algorithms.

Validation

In the present study, the validation was conducted for two
purposes. The first purpose was to validate the wetland maps,
while the second purpose was to validate the risk assessment
models. However, to validate the wetland maps, the collection
of ground truth was done in two ways. First, we visited field in
2018 for collecting the wetlands location using global posi-
tioning system (GPS). For field survey, we took help from
topographical map, local people’s perception, and expert
opinion. Therefore, based on the collected ground truth of
the wetlands location, we validated the wetland maps of
2018. On the other hand, for the past wetland maps (2012
and 2006), we collected ground truth or wetland locations
from very high resolution image of Google Earth. Based on
the collected ground truth or reality, we employed the Kappa
coefficient to compare between the satellite image-based wet-
land maps and ground data. Thus, the wetland validation was
performed for the wetlands of 2006, 2012, and 2018.
Furthermore, the wetland risk assessment models were evalu-
ated and validated using ROC curve. To construct ROC curve,
we used validation datasets (20%).

The ROC curve has been used to validate the performance
of the ensemble machine learning algorithms used for model-
ing the wetland risk assessment. The sensitivity as the x-axis
and the specificity as the y-axis are plotted to construct the
ROC curve. The number of positive pixels (the pixels consid-
ered to a particularly vulnerable class was truly predicted or
identified), which are correctly predicted, is considered the
sensitivity of the AI model, while the number of negative
pixels, which are correctly predicted, is considered the speci-
ficity (the pixels not considered to a particularly vulnerable
class was truly predicted or identified). The sensitivity and
specificity were calculated following Equations (8) and
(9) (Costache and Bui 2020; Saha et al. 2021):

Sensitivity ¼ a
aþ c

ð8Þ

Specificity ¼ d
bþ d

ð9Þ

where a refers to the true positive, d represents as the true
negative, b refers to the false positive, and c indicates the false
negative.

The AUC of the ROC curve indicates the magnitude of the
performance of the ensemble machine learning algorithms for
predicting the wetland risk assessment (Costache et al. 2020;
Yariyan et al. 2020) . In addition, the AUC varies from 0 to 1,
while the values adjacent to 1 indicate the high magnitude or
satisfactory model performance (Arabameri et al. 2021).

The Pearson’s correlation coefficient, mean absolute error
(MAE), and root mean square error (RMSE) were utilized for
evaluating the performances of machine learning algorithms
during training the models of wetland risk assessment.

Figure 2 displays the overall methodology flowchart of the
study which is adopted for this research.

Result and discussion

Spatiotemporal analysis of wetland

The spatiotemporal analysis of wetland has been shown in
Fig. 3. Among 1988 to 2018, six figures have been analyzed
by using MNDWI for assessing the change of the wetland
area. The index score of MNDWI was more than 0 for water
bodies (including water covered cropland) where some vege-
tation areas were mixed with it. The higher values show the
dominance of wetlands.

Based on ground truth data and high resolution google
earth images, we validated the satellite images derived wet-
lands by using kappa coefficient. The overall accuracy for
2006, 2012, and 2018 were 86.26%, 84.38%, and 87.6% re-
spectively which indicate very agreement between ground
reality and satellite-derived images. The images of previous
years (before 2006) were not available. Therefore, based on
the findings of the accuracy assessments for 2006–2018, we
concluded that the extracted wetlands for 1988–2000 would
have agreements with ground reality as like last years because
we followed the same methods and procedures for extracting.

Figure 3 reveals that the wetland area is changing with
time. Visually, the maximum wetland area has been seen in
1994. MNDWI value was also higher in 1994. In the other 5
years, the value is decreasing gradually. In 2018, the domi-
nance of the water body is less than the previous years, so at
present, the poor situation of the wetland area is a major con-
cern for us. In 2018, the wetlands are lost in most of the area of
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the basin. Only a small portion exists in the northwestern part
of the Padma basin.

The water discharge is decreasing over time due to the
Farakka dam. Various anthropogenic activities are responsible

for changing climate and the rainfall is decreasing over time.
The groundwater layer is depleting due to excessive pumping
of water and the wetlands become vulnerable. The table below
shows the area of wetland in different years.

Fig. 2 Flow chart of the methods adopted for this research
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In 1988, 1994, 2000, 2006, 2012, and 2018, the total area
of the wetland is 2830.07, 3203.10, 2594.32, 2692.13,
2184.10, and 771.49 km2 respectively (Table 5). The area
coverage of the wetland is almost one-third of the wetland of
2012 and one-fourth percent of the wetland of 1988. The table
confirms how rapidly the wetlands are lost with time.

Figure 3 shows that the areas of wetlands have been
changed since 1988 to 2018, but wetlands area was increased
in 1994 and 2006 (Table 5). Therefore, it cannot be stated that
wetlands decreased continuously; we tried to correlate the
wetlands area with rainfall for similar dates in Rajshahi
Upazila. It can be found that the rainfall was 60, 130, 85,
102, 36, and 55.7 mm in 1988, 1994, 2000, 2006, 2012, and
2018 respectively. Based on the rainfall data, it can be con-
cluded that rainfall played a major role for inundation of wet-
lands. However, other factors also played a major role in de-
creasing wetlands as can be observed in 2018, because rainfall
increased, but the wetlands area did not increase accordingly.

Drivers of wetland risk assessment

Wetland risk assessment has been triggered by some drivers.
Some are natural and some are anthropogenic.

Elevation

The presence of wetlands is less in the high elevated area. The
altitude map shows that the north-western part of the basin is a
high elevated area. Figure 3 depicts that most of the wetland is
in the center of the basin area where the elevation is very low.
The elevation of the basin is increasing as the flow is reduced

and the sediment is deposited in the area mainly after the
flood.

Slope

The slope is an important biophysical triggering factor for the
wetland. Natural wetland occurs along the lower slope angle.
The slope gradient varied between 0° and 17.40°. The wet-
lands are concentrated mainly in the lower slope area. The
effect of surface slope onwetlands shows the surface area with
steeper slope makes the wetland squeeze very fast than the
surface having a gentle slope.

Distance to road network

The wetland closer to the road network is more exposed to
human disturbances and faces several economic, social, and
ecological impacts. Therefore, the proximity of wetland to-
wards the road network could be considered an important
driver of wetland risk assessment. Figure 6f shows many road
networks are formed in the wetland area which triggers the
wetland risk assessment of this basin. This increasing number
of roads disconnected the main river from the wetlands and
the water supply from the river to the wetland is decreasing.

Fragmentation probability zones

We considered fragmentation of wetlands played a major role
for wetland degradation. Therefore, to assess the wetland risk
zones, the fragmentation should be considered for modelling.
In the present study, we prepared fragmentation probability

Fig. 3 Spatiotemporal dynamics of wetland
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zones which indicate the chances to be fragmentation of wet-
lands. This parameter can be considered highly important for
analyzing wetland risk, because high fragmented probability
zones will have higher chances to be converted to other land
uses. Therefore, to model the fragmentation probability zones,
we considered several fragmentation related parameters, such
as NP, PD, ED, PARA, LPI, and AI.

NP analyzes the frequency of segments of a distinct land-
use type. Patches, the smallest unit, have the high feasibility of
transformation, whereas the large core wetlands seem to be
quite safe. The total number of patches was calculated in the
GIS environment for 2018. Increasing the patch number indi-
cates the high probability of fragmentation.

The PD estimates the patch frequency of the particular unit
area (Du et al. 2016; Li et al. 2019; Alhamad and Alrababah
2018). Thewetlands, which have experienced the higher patch
density, can be considered the most vulnerable to wetland’s
alteration, as the wetlands have lost their integrity and spatial
continuance, while the PD increases when the number of
patches increases. Therefore, it can be considered an indica-
tion of the extent to which a landscape has been fragmented
(Gullström et al. 2008).

The ED equalizes the aggregate of the lengths of every
edge present in the landscape. It has been calculated by
dividing the ED with the area of the total landscape and
multiplying by 10,000 (for conversion to hectares).
Increasing the edge density shows a high fragmentation
probability. Gullström et al. (2008) suggested that the ED
is the scientific measurement of the complicacy of the
conformation of patches having the exponent of the spa-
tial diversification in the landscape.

The perimeter-area ratio (PARA) is one of the signifi-
cant measures of shape index. A shape index metric has a
problem that is its variation with the size of the patch. For
instance, if the shape remains unchanged, the enhance-
ment in the patch size will reduce the perimeter-area ratio.
The lower perimeter area shows lower fragmentation
probability.

The LPI indicates the higher area covered by the particular
patch in the landscape. Notable reduction in LPI and an in-
crease in PD represent the highly fragmented types of land
cover. The range of the LPI is 1 to 100.

The patch in the landscape has several structures. If the
patch forms the single and compact structure, except for
square, then the maximum aggregation can be achieved. The
AI ranges from 0<AI<100. The higher the value of AI indi-
cates a lower fragmentation probability and vice-versa.

Figure 4 shows the parameter of the fragmentation proba-
bility of wetlands. We have prepared the chances of fragmen-
tation probability based on the mentioned fragmentation indi-
ces using ANN. The output of the chances of fragmentation
probability was considered one of the major inputs or param-
eters for wetland risk assessment modeling.

Landscape fragmentation analysis of forest areas exhibited
that the core parts have faced the highest disturbances due to
the major transformation taken place in this region. The
change of fragmentation probability has been divided into five
classes based on the fragmentation probability parameters.

Figure 6e clearly depicts that a significant portion of the
core area has a moderate, high, and very high probability of
fragmentation. The very high rate of fragmentation is identi-
fied in the core area of the wetland. The higher the fragmen-
tation probability, the higher the wetland risk assessment.

The ROC curve shows the validation of wetland fragmen-
tation method (Fig. 5). Here, the area under the curve (AUC)
is 0.809, which indicates the fragmentation method is consid-
ered to be highly accurate and we can use this for an indicator
of wetland risk assessment.

Built-up area

Built-up area is an important indicator of anthropogenic
consequences on wetland and its deterioration. This also
raises the chance of wetland loss as the settlement ex-
pands with an increase in population size. It has been
evident from several studies that well access to wetland
areas and closeness to the population centers increase the
wetland risk assessment rate. It has been seen quite often
that wetland adjacent to human settlements always re-
mains under certain pressure. Figure 7 shows the built-
up area is increasing near the wetland area. Expansion
of agricultural lands and human settlement (Fig. 7i)
breach the connecting channels between the main river
and wetlands resulting in a curtail in the water supply to
the wetland. Therefore, a large wetland area remains in-
undated which eventually increases wetland risk
assessment.

Population distribution

As the built-up area or settlements are increasing near the
wetland area, the population density of the area is also increas-
ing people directly or indirectly increases the risk assessment
of the wetlands. Figure 6c shows the population density range
from low (341.516 person/sq2) to high (3816.23 person/km2).
There are moderate to high population density where the wet-
lands are identified. The anthropogenic activity is also respon-
sible for increasing wetland risk assessment.

Agricultural expansion

Huge pressure on wetland has emerged from the agricultural
practice of the rural inhabitants. Figure 6d shows the density
of agricultural land. The agricultural lands are surrounding the
wetland area when the wetlands are dried up then the people
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use the land as agricultural land. This activity damages the
natural condition of the wetland.

Distance to river

The wetlands which have a high distance from the river are
almost in a highly vulnerable condition. The wetland areas
which are situated near the river have a low chance of loss
as the water supply does not disturb by distance. Figure 6
shows that the wetland which exists in 2018 has a lower dis-
tance from the river.

Distance to the railway station

The distance to the railway station is high. The wetland which
was near to the rail line has been lost, as the elevation in-
creases in those areas.

Wetland change rate

The wetland change rate is high in the present condition. The
area of the wetland decreases with time. According to the
drivers of wetland change, it is found that the existing wetland
in the Padma river basin is in a vulnerable condition. The
changing rate of these wetlands is very high. The drivers of
wetland risk assessment clearly depict that the anthropogenic
activity is mainly responsible for this high changing rate.

Risk assessment using M5P, RF, REPTree, and SVM

For machine learning algorithms viz. M5P, RF, REPTree, and
SVM are used for wetland risk assessment of Padma river
basin. All these models are classified into five wetland vulner-
able zones (Fig. 7). In the M5P model-based map, the high
and very high vulnerable area covers 356.899 km2 and

Fig. 4 Fragmentation probability parameter of wetland risk assessment: a number of patches, b patch density, c edge density, d perimeter area ratio, e the
largest patch index, and f aggregation index

Fig. 5 The ROC curve for
validating themodel of chances of
fragmentation probability
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140.588 km2 respectively and the lowest area (82.722 km2) is
found over the very low vulnerable zone (Table 6). RF model
reveals that 99.49km2, 98.50 km2, 97.07km2, 308.61 km2, and
167.82 km2 areas come under very low, low, moderate, high,
and very high vulnerable zones respectively (Table 6). In the
REPTree-based vulnerability model, 85.70 km2, 103.81 km2,
102.25km2, 345.80km2, and 133.94 km2 areas come under
very low, low, moderate, high, and very high vulnerable zones
respectively (Table 6). Accordingly, area under high and very
high vulnerable zone is computed as 322.98 km2 and 107.105
km2 respectively in case of SVM based model. In these four

models, the maximum area found over the high vulnerable
zone which is more than 40% of the total area. Very high
vulnerable wetlands are mostly situated in the western and
northeastern part of the basin.

Validation of risk assessment model

We validated wetland risk assessment models using machine
learning algorithms for training and testing data (Figs. 8a and
8b). For doing so, the pixel rank of the wetland and sensitivity
was plotted in descending order, respectively on the x- and y-

Fig. 6 The wetland risk assessment conditioning parameters, a elevation, b slope, c population density, d encroachment of agricultural land, e wetland
fragmentation zones, f distance to road, g distance to river, h distance to railway, i encroachment of built-up areas, and j wetland change rate
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axis according to the accumulated 1% interval (Fig. 8). The
AUC of wetland risk assessment for training data by using
M5P, RF, REPTree, and SVM is respectively 0.81, 0.83,
0.77, and 0.83 (Fig. 8a), while the AUC for testing data of
M5P, RF, REPTree, and SVM is 0.805, 0.808, 0.813, and
0.773 respectively (Fig. 8b). Raysid et al. (2016) suggest the
accuracy category of the model based on its ROC AUC
values. These categories are excellent; AUC value lies be-
tween 0.90 and 1.0, good value lies between 0.8 and 0.9, fair
value lies between 0.7 and 0.8, poor value lies between 0.6
and 0.7, and the model fails if the value is less than 0.6. From

the above discussion and findings of the AUC values, it can be
inferred that the results are accurate enough and have good
agreement with ground truth reality while assessing and de-
marcating wetland risk assessment. Among all of these
methods, SVM and RF are considered the best methods. The
four methods are used for identifying and assessing the accu-
racy of the result. One method supports the other method for
validation.

The correlation coefficient was 0.882, while the MAE was
0.013 and the RMSE was 0.022 for the REPTree model based
on training data (Table 7), while SVM outperformed for both

Table 6 Vulnerable wetlands of various categories in 2018 by using machine learning techniques

Wetland risk assessment Very low Low Moderate High Very high

SVM Area (%) 13.17 14.46 16.62 41.86 13.88

Area (km2) 101.637 111.524 128.259 322.989 107.105

Pixel count 112931 123916 142510 358877 119006

REPTree Area (%) 11.11 13.46 13.25 44.82 17.36

Area (km2) 85.704 103.814 102.253 345.80 133.94

Pixel count 95227 115349 113615 384223 148823

RF Area (%) 12.9 12.77 12.58 40 21.75

Area (km2) 99.49 98.505 97.074 308.613 167.823

Pixel count 110554 109451 107860 342904 186471

M5P Area (%) 10.72 12.91 11.89 46.26 18.22

Area (km2) 82.7226 99.6093 91.6965 356.8995 140.5881

Pixel count 91914 110677 101885 396555 156209

Fig. 7 The wetland risk assessment modelling using a M5P, b RF, c REPTree, and d SVM
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training and testing based model, followed by RF and M5P
(Table 7)

The findings of the accuracy assessment of the wetland risk
assessment models by machine learning algorithms showed
that SVM outperformed modeling, followed by RF
algorithms.

Discussion

The study tries to find out the present vulnerable condition of
the wetlands in the Padma river basin. Khan et al. (2014)
remarked that risk assessment can help us to devise strategies
to reduce damages and fatalities; additionally, it helps to rec-
ognize the susceptibility of landscape people or property to
damage.

In the result section, the spatiotemporal dynamics of the
wetland has been evaluated by MNDWI. The analysis shows
that the area of the wetland is decreasing with time. In 1994,
the wetland area was high. In 2018, the area decreased unfa-
vorably. It has become almost one-third of the wetland area of
2012. The dynamic of wetlands makes clear that the wetlands
are in a vulnerable condition. Pal and Talukdar (2018) found
that 21.42% permanent and 29.34% non-perennial wetland
area has been decreased after dam construction in the
Punarbhaba river. The statistical analysis evaluated that the
Farakka dam is largely responsible for the alteration of the
inundation pattern of the river resulting in the squeezing of
the wetland areas in riparian zones with time. The present
situation of the wetland is very poor in this basin (Fig. 5).

Various drivers are analyzed for assessing wetland risk
assessment. The wetlands of the Padma river basin are strong-
ly impacted by agricultural extension, decreasing the river
flow, population expansion, decreasing rainfall, increasing
temperature, building of road and rail networks, and increas-
ing the elevation of the area. These drivers hinder the flow of
the river water to the wetlands. Expansion of agricultural land
is one of the major causes of the rising physical habitat risk
assessment of the wetlands (Saha and Pal 2019; Das and Pal
2017). In the Gangetic floodplain, more than 50% of the wet-
land area has disappeared in the last century (Panigrahy et al.
2012). The study reveals that not always agricultural invasion
itself deteriorates wetland directly, more often the lean season,
areal squeezing and lowering of water depth make the wetland
area lucrative for agricultural encroachment. Regulations of

Fig. 8 ROC curve of a training data and b testing data

Table 7 Correlation coefficient, MAE, and RMSE of M5P, RF,
REPTree, and SVM

Model Correlation
coefficient

MAE RMSE

Training Testing Training Testing Training Testing

M5P 0.905 0.846 0.011 0.017 0.02 0.06

SVM 0.95 0.88 0.003 0.009 0.006 0.01

RF 0.925 0.91 0.01 0.023 0.017 0.015

REPTree 0.882 0.854 0.013 0.026 0.022 0.029
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the river regime and water flow in riparian zones through dam
condition promote this process (Talukdar and Pal 2017). Pal
and Akoma (2009), Yin et al. (2012), Dronova et al. (2012),
Das and Pal (2017), and Saha and Pal (2019) identified agri-
cultural interferences as a major cause behind the crisis and
loss of wetland habitat in a riparian floodplain environment.
Mondal and Pal (2018) stated that infrastructural develop-
ment, construction of communication network, and expansion
of built-up areas are some other causes that result in fragmen-
tation and connectivity loss of wetland areas. Due to this frag-
mentation, the ecosystem of inner wetland parts becomes
more exposed to anthropogenic interventions (Abdu-
Raheem 2014; Nindi et al. 2014; Pal and Saha 2017). From
the fragmentation parameters which were used for analysis, it
becomes clear that the chance of wetland fragmentation prob-
ability has been increased. Dewan et al. (2012), Kamusoko
and Aniya (2007), and Hanson et al. (2007) worked on frag-
mentation and changes of the land use and land cover, in
which fragmentation has been used for identifying wetland
risk assessment. Successive fragmentation of wetlands in-
creases the number of patches, smaller cores, and path density,
whereas decreases large core area, large patch index, and ag-
gression index which play a vital role behind the risk assess-
ment of the wetlands. The changing rate of the wetland is very
high. Due to the construction of the dam, the water scarcity
has been seen in the wetland. It may disturb the morphological
and breeding habits of the wetland species. Here it should be
mentioned that the construction of the dam is not solely capa-
ble of reducing flood, but the embankment alongside the chan-
nel also stops the flood water to enter in the floodplain area
(Pal 2015). Therefore, a significant curtail can be seen in the
water supply to the wetlands (Day et al. 2011; Lukina et al.
2016) which increases the stress onwetlands. The capturing of
tie channels by agricultural lands or fragmentation into smaller
stretches due to rigid embankment also causes water scarcity
in the wetlands in many cases (Woodruff et al. 2013). Apart
from these reasons for modification of wetland hydrology,
insisting on historical drought, over-extraction of wetland wa-
ter also has the capability to pose severe damage to the wet-
land habitat condition.

The drivers which have been discussed above are respon-
sible for the wetland risk assessment. Four machine learning
techniques have been used in this study for identifying and
quantifying wetland risk assessment. Some recent studies ad-
vocated for the successful application of soft computing tech-
niques, viz. M5P, RF, REPTree, and SVM, can be accurately
identified the wetland vulnerable areas (Sihag et al. 2019;
Angelaki et al. 2018; Singh et al. 2017; Choubin et al.
2019).M5P, RF, REPTree, and SVM are used here for esti-
mating the wetland area which is a vulnerable condition. All
four methods showed almost similar results. The wetland was
divided into five categories and among these categories, a
large portion of the wetland is in high to very high vulnerable

conditions. The ROC curve shows that among the four
methods, SVM and RF are considered the best methods.
More than half of the total area of the wetland is at present
in critical condition. The four alternative methods are used;
the result of one method can help to validate others. If the four
usedmethods assess the results almost in the same rhythm, the
results may be treated as acceptable. As a result, the four
methods have given results in the same rhythm which makes
this study valid.

Despite the successful application of machine learning
modeling of wetland vulnerability, few limitations of this re-
search should be stated. First, wetland expansion occurs most-
ly during the rainy season caused by heavy precipitation, but
we used only post-monsoon images due to dense cloud cover
images of the rainy monsoon season. Second, the spatial res-
olution is an obstacle for good spatial precision, so better
resolution of elevation and image data might have generated
a more accurate outcome. Third, the flow modification up-
stream of the Padma river, lack of water supply from the river,
encroachments of agricultural land, roads, settlements, and
lowering of groundwater level are the major cause of wetland
degradation and losses in various forms. Apart from these
causes of wetland risk assessment, the hidden causes such as
the absence of deep people’s perception of the productivity of
wetland are one of the key vital reasons. These causes will
have immense negative effects on the ecological stability of
wetland habitat and local inhabitant’s livelihood patterns. The
current research has produced good outcomes, although some
limitations of this research can be overcome. Machine learn-
ing models have clearly demonstrated that a larger part of the
wetland area is dominated by high to very high vulnerabilities.
This study will shed light on some scientific basis for conserv-
ing and restoring wetlands. Future work should concentrate on
forecasting the wetland area for a particular period and the
effect of wetland risk assessment in the Padma river basin.
In addition to this, field data-based risk assessment modeling
can improve the precision of wetland risk assessment results.
It is mentioned that we could not represent acid deposition
effects on wetlands, a probably imperative indicator of wet-
land health aspect. Further studies are also required that in-
clude this driver in wetland vulnerability indicators. This
study gives a consistent, defendable policy implication to in-
sight into the distribution and protection of wetlands over the
Padma River basin area. Our analysis also detects wetland
high vulnerability and gets useful information essential to
building efficient plans for conserving wetlands. Respective
authorities managing the protection of these vulnerable wet-
lands should be cautious in monitoring their state for signs of
loss and consider these regions for restoring or remediating. A
focHoque

used, robust tool to wetland conservation by ecological
managers and conservation agencies within the Padma River
basin wetlands could lessen this potential risk.
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Conclusion

This research, to authors’ knowledge, is the first study about
assessing the spatiotemporal dynamics of wetland risk assess-
ment by the integration of machine learning and remote sens-
ing over the Padma River basin in Bangladesh. The following
major conclusions are summarized from the aforementioned
findings.

1. The spatial-temporal dynamics of the wetland indicates
that the wetland decreased by one-fourth of the total area.

2. Multiple drivers influence the wetland transformation. Of
these, the distance to the river and built-up areas are the
two most influential drivers affecting the wetland risk
assessment based on the InGR.

3. The fragmentation probability is increasing due to in-
creasing of the built-up area, agricultural activity, and
overpopulation in the wetland area over time. 4. More
than half of the total wetland area was categorized as very
high to highly vulnerable conditions. Findings showed
that the RF model appears as the best model followed
by M5P and REPTree models.

From the abovementioned findings and analysis, it is evi-
dent that a large portion of the wetlands is suffering from high-
risk assessment which is further supported by machine learn-
ing modeling approaches. Therefore, policymakers and corre-
sponding authorities can easily prioritize the area that requires
wetland conservation. Before taking any long-term wetland
conservation strategies, special attention should be focused
on the awareness built-up among inhabitants and how to be
a wetland economy associated with the market economy. Our
study provides a basic and vital information on the ecological
and wetland conservation perspective and offers planning
tools that will allow policy-makers to assign limited resources
more efficiently to keep and restore the resident’s wetlands.
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