
RESEARCH ARTICLE

Mercury in the world’s largest hypersaline lagoon Bay Sivash,
the Sea of Azov

Nickolai Shadrin1
& Aleksandra Stetsiuk1

& Alexander Latushkin2
& Elena Anufriieva1

Received: 7 July 2020 /Accepted: 27 January 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
There are few studies on mercury content in hypersaline waters. Mercury content was studied in Bay Sivash (the Sea of Azov),
the world’s largest hypersaline lagoon with a strong salinity gradient from 36 to 90 g l−1. The dissolved mercury compounds
ranged from 120 to 250 ng l−1, Hg varied from 60 to 450 ng l−1 in the suspended matter, and total mercury in the water ranged
from 200 to 600 ng l−1. Salinity and the total suspendedmatter had practically no effect on the amount of dissolved and suspended
forms of mercury separately, but their growth significantly increased total mercury content in water. Only the concentration of
dissolved forms of mercury in water significantly correlated with dissolved organic matter. The Hg concentration in the bottom
sediments averaged 13.8 ng g−1 wet weight. Both high salinity and human activities on the Sivash drainage area are responsible
for high Hg content in lagoon water.

Keywords Hypersaline waters . Mercury . Lagoon . Total suspendedmatter . Dissolved organic matter . Ecosystem

Introduction

Heavy metal pollution of the biosphere is accelerated now.
Their release into the atmosphere from human activity signif-
icantly exceeded that from natural sources, for individual
metals this excess was from 2 to 335 times (Norton et al.
1990; Likens 1992; Pirrone et al. 2010; Mason 2013).
Mercury (Hg) degassing from the World Ocean and soils are
probably the most important natural contributions to the Hg
global atmospheric content (Pirrone et al. 2010). Mercury
compounds were widely used as fungicides, in the manufac-
ture of paper, but now, in most agricultural and pharmaceuti-
cal products, the use of inorganic mercury has been
discontinued in most countries around the world. It serves as
catalysts in the production of plastics, etc., and so, their dif-
ferent forms fall into industrial effluents or the air (Norton
et al. 1990; Schmidt 1991; Likens 1992; Pirrone et al. 2010;

Eagles-Smith et al. 2016; Gębka et al. 2016). Currently, the
estimated contribution from natural sources is only about 10%
of a total annual emitted Hg to the atmosphere from all sources
of 5500–8900 t (Zillioux 2015). Global and regional Hg emis-
sions both lead to an increase of Hg content in the atmosphere
and water bodies (Norton et al. 1990; Bank 2012; Eagles-
Smith et al. 2016). Direct atmospheric fallout and income
from watershed contribute to the pollution of water bodies
by Hg (Norton et al. 1990; Van Metre and Fuller 2009;
Eagles-Smith et al. 2016). Coastal erosion is also a source of
Hg coming into water bodies, and there is a trend of its in-
crease due to natural and anthropogenic causes (Zhang et al.
2004; Shadrin and Anufriieva 2013; Bełdowska et al. 2016).
Analysis of the bottom sediment depth profiles in different
water bodies showed a strong enrichment of mercury concen-
trations in the past decades (Arnason and Fletcher 2003; Díaz-
Asencio et al. 2009).

Mercury can enter water bodies in a wide variety of forms,
and in the aquatic environment, every form of mercury is con-
verted to methyl mercury (MMHg), which is a highly toxic and
persistent compound (Schmidt 1991; Canário et al. 2008;
Johnson et al. 2015; Zillioux 2015; Boyd et al. 2017). Aquatic
ecosystems are the most sensitive to MMHg pollution, as they
are the main repositories of natural and anthropogenic mercury
and the habitats for active populations of methylating mercury
bacteria (Fitzgerald et al. 2007). Mercury was accumulated by
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planktonic organisms, and in the aquatic food chains, methyl-
mercury concentration increases from lower trophic level organ-
isms to higher link. In the top-level predators (fish, birds,
humans), it may reach the highest concentration endangering
health and livehood (Schmidt 1991; Sonesten 2003; Helgason
et al. 2008; Eagles-Smith et al. 2016). So, every knowledge of
Hg concentration and behavior in an aquatic environment is
highly important to the sustainable use of water bodies. There
are a lot of articles on the concentration of different Hg forms
and their biological role in fresh and marine waters due to Hg
health effects for humans and ecosystem disturbing (Schmidt
1991; Prato et al. 2006; Zillioux 2015; Boyd et al. 2017).
However, there are only a few data on such issues in hypersaline
waters despite that the highest concentration of Hgwas recorded
in some of them (Shumilin et al. 2002; Pietrelli andBiondi 2009;
Johnson et al. 2015; Boyd et al. 2017).

Bay Sivash (the Sea of Azov) is the world’s largest hyper-
saline lagoon with a strong spatial salinity gradient from 30 to
35 to 100–110 g l−1 (Shadrin et al. 2018). In 2018, mercury
content was studied in water and bottom sediments of the
lagoon along with salinity, total suspended solids, and dis-
solved organic matter. The goals of this paper are to present
new data, to discuss them comparing with published data for
other hypersaline water bodies, and to prove or disprove a
hypothesis that salinity may influence Hg concentration in
the lagoon.

Material and methods

Study area

In Europe, Bay Sivash is the largest lagoon with its area of about
2600 km2 (Vorobyev 1940; Shadrin et al. 2018; Sergeeva et al.
2019). The narrow sand Arabat Spit of 112–116 km long sepa-
rates the lagoon from the Sea of Azov, and the Crimean penin-
sula, largest in the Black Sea, is a lagoonwest coast. Two narrow
straits connect the Sea of Azovwith the lagoon on the north (Fig.
1). Maximum depth does not exceed 2 m in the shallow semi-
closed lagoon. Before the construction of the North Crimean
Canal (from 1963 to 1975), Bay Sivash was a highly productive
shallow hypersaline lagoon (average salinity of about 140 g l−1

and more than 200 g l−1 in the southern part); the small salt lakes
and pools were in depressions surrounded it. The North Crimean
Canal was built to improve water supply to the Crimean
Peninsula by waters of the Dnieper River. Irrigated agriculture
occupying 4000 km2, mainly rice cultivation, was developed on
the Bay Sivash drainage area. A lot of different pesticides and
fertilizers were used, especially, for rice cultivation. Drainage
waters from agricultural lands began discharging into Bay
Sivash in large volume, up to 1.1 × 106 m3 per year. As a result,
in the lagoon, the salinity began to drop, and its average value
had decreased up to 17–23 g l−1. The Dnieper River collects

almost all Ukrainian industry and agriculture effluents, which
are then supplied to Crimea through the North Crimean Canal.
This led to an increase in the pollution level of many Crimean
water bodies that were shown, as an example, for artificial radio-
nuclides (Mirzoeva et al. 2020). In April 2014, the North
Crimean Canal was blocked, and the supply of Dnieper water
in Crimea was ceased. The discharge of drainage waters to the
bay was also stopped. Salinity grew from 22 to 24 g l−1 up to 6–
75 g l−1 in 2015, and up to 100 g l−1 in 2019 (Shadrin et al. 2019;
Anufriieva and Shadrin 2020). The lagoon again became hyper-
saline. Changes occurred in ecosystem biotic structure leading
also to changes in the environment. As an example,Cladophora
siwaschensis (C.J. Meyer, 1922), filamentous green algae, again
creates floating mats with high wet weight biomass up to 2.5–
3.0 kg m−2 as before dropping salinity after the canal construc-
tion. Currently, they cover large areas leading often to hypoxic
and even anoxic events below them near the bottom (Shadrin
et al. 2018, 2019). There is a range of bottom sediment types in
the bay—silt and silty-sand with fragments of mollusk shells.

Fig. 1 Bay Sivash on the maps and distribution of the sampling sites in
2018
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Sampling and analyses

To analyze the mercury content, six water samples (stations 1,
3–7) were collected inMay 2018 and seven samples of bottom
sediments (stations 1–7) in November 2019 at different sta-
tions in Bay Sivash (Fig. 1, Table 1). To study the mercury
content, 1-l water samples were taken at each station by
bathometer. The upper layer of bottom sediments (4–5 cm)
was taken by a manual grab with an area of 0.01 m2. In sam-
pling stations, the concentrations of total suspended solids
(TSS) and dissolved organic matter (DOM) were determined
using the Condor complex (Akvastandart-Yug, Sevastopol,
Russia) as described (Shadrin et al. 2019). Salinity was mea-
sured by a WZ212 refractometer (Kelilong Electron Co. Ltd,
Fuan, Fujian, China), and temperature by РНН-830 electronic
thermometer (OMEGA Engineering, INC., Norwalk, CT). To
separate the forms of mercury, water samples, fixed by con-
centrated nitric acid (10 ml of HNO3 per 1 l of water), were
filtered through pre-weighed nuclear 0.45-μmpore size filters.

The dissolved form of mercury was determined in the fil-
trate and the suspended form on the filters. Potassium perman-
ganate was added to the filtered water sample for oxidation in
a volume of 15–20 ml and then 5 ml ½ sulfuric acid, thereby
destroying all dissolved forms of mercury to ions. Suspension
and bottom sediments were acid burned (10 ml ½H2SO4 and
5 ml HNO3 per sample). Next, the samples were subjected to
destruction at nomore than 60 °C, and then cooled. A solution
of potassium permanganate was added to the samples in an
amount ensuring complete oxidation of the test sample (from
15 to 20 ml). After 10–15 min, the samples were filtered. For
analysis on a device, sulfuric acid (1:1) in a volume of 5 ml
was added to 100 ml of the filtered sample. A hydroxylamine
solution (up to 5 ml) was poured into all samples to remove

excess potassium permanganate. Before the determination, a
reducing agent (SnCl2) was added in a volume of 10 ml. The
prepared samples were analyzed by the flameless atomic ab-
sorption method on a Hiranuma-1 mercury analyzer
(Hiranuma Sangyo Co. Ltd, Mito, Ibaraki, Japan). Mercury
ions were reduced by tin dichloride (5 ml per sample) to gas-
eous form and then immediately introduced into the aerator of
the device. The amount of mercury was determined on the
scale of the device at a wavelength of 253.7 nm. To calibrate
the Hiranuma-1 mercury analyzer, a standard sample of solu-
tions of mercury (II) ions was used. First, a “blank calibration”
was carried out (100 ml of distilled water + 5 ml of H2SO4

(1:1)), then calibration using a series of calibration solutions:
0.2; 0.4; 0.6; 0.8; 1 μg dm−3 (10 replicates for each concen-
tration). The sensitivity of the Hiranuma-1mercury analyzer is
0.01; the detection limit is 0.5 ng l−1 of mercury with high
sensitivity 1/1000 of standard 0.5 ppb.

Coefficients of mercury accumulation by a suspended
phase (also known as distribution coefficient) were calculated
by the equation (Polikarpov and Egorov 1986):

Kss ¼ 1000� Cssð Þ=Cw; ð1Þ

where Kss – coefficients of mercury accumulation by TSS;
Css – the concentration of mercury in TSS, ng g−1; Сw is the
concentration of mercury in the dissolved phase, ng kg−1.

Data analysis

Statistical processing of the results was carried out in MS
Excel 2007 and Statistica 6.0, where mean values, standard
deviations (SD), coefficients of variability (CV), correlation
(R), determination (R2), parameters of regression equations,

Table 1 Coordinates and
characteristics of sampling
stations in Bay Sivash

№ of station Coordinates Date Depth,
m

S, g l−1 T, °C TSS, mg l−1 DOM,mg l−1

1 45° 37′ 9.0″ N

35° 04′ 40.0″ E

07.11.2018 0.4 86 12 7.0 4.5

2 45° 31′ 13.7″N

35° 11′ 12.9″ E

14.05.2018 0.4 76 20 19.5 4.2

07.11.2018 0.5 90 12 1.9 3.8

3 45° 17′ 14.3″N

35° 28′ 01.2″ E

14.05.2018 0.3 82 20 8.2 3.8

07.11.2018 0.2 87 14 12.4 8.0

4 45° 19′ 05.5″N

35° 14′ 59.8″ E

15.05.2018 0.3 75 21 11.6 4.1

08.11.2018 0.2 92 13 70.2 42.1

5 45° 37′ 48.3″N

35°01′54.8″ E

15.05.2018 0.5 56 23 12.3 3.2

09.11.2018 0.5 63 10 3.6 3.8

6 45° 44′ 00.8″N

34° 48′ 10.3″ E

15.05.2018 0.6 39 26 6.2 2.9

09.11.2018 0.5 42 11 23.8 11.9

7 45° 52′38.8″ N

34° 44′ 33.3″ E

15.05.2018 0.5 36 25 1.6 3.0

09.11.2018 0.5 38 13 1.3 3.0

S salinity, T temperature, TSS total suspended solids, DOM and dissolved organic matter
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and dendrograms were calculated. The significance of differ-
ences was assessed by Student’s t-test after normality tests
(Thode 2002) were done. The confidence level (p) of the cor-
relation coefficients was found (Muller et al. 1979).

Results

General hydrographic properties

In both periods of this study, a strong spatial gradient of sa-
linity was expressed. Salinity increased from north to south,
changing at sampling points in May from 36 to 82 g l−1, and
from 38 to 90 g l−1 in November (Table 1). Changes in TSS
and DOM were correlated with changes in salinity (Table 1).
In May, TSS was determined by two methods, the average of
these two values was used in further analysis. It varied from
2.6 to 18.2 mg l−1, on average 12.4 mg l−1 (SD = 6.5, CV =
0.52). Concentrations of TSS and DOM significantly positive-
ly correlated with salinity in May (Fig. 2a), but in November
there were no such dependencies. In November, the concen-
tration of TSS was 10% higher than in May (the differences
were not significant), and the concentration of DOM was 2.6
times higher (the differences were significant, p = 0.001).
There was a reliable positive correlation between TSS and
DOM; its quantitative expression was different at different
times. In May, it was best approximated by the equation (R
= 0.918, p = 0.001):

DOM ¼ 2:40 TSS0:17 ð2Þ

and in November (R = 0.999, p = 0.0001):

DOM ¼ 0:58 TSSþ 1:22 ð3Þ

Mercury in water

In May, concentration of dissolved mercury compounds
ranged from 120 to 250 ng l−1, on average 170 ng l−1 (SD =
46.9, CV = 0.28), and the amount of mercury in TSS varied
from 60 to 450 ng l−1, on average 165 ng l−1 (SD = 112, CV =
0.68) (Table 2). The mercury content in 1 g of suspension
ranged from 3 × 103 to 50 × 103 ng g−1, on average of 23.4

× 103 ng g−1 (SD = 17.8 × 103, CV = 0.76), and this value
significantly negatively correlated with TSS (R = − 0.754, p =
0.05):

C’ss ¼ 6:1� 104e−0:14TSS; ð4Þ

where C’ss – Hg in TSS, ng g−1.
The total mercury content in the water varied from 200 to

600 ng l−1, on average of 335 ng l−1 (SD = 172, CV = 0.51).
Salinity had practically no effect on the amount of dissolved
and suspended forms of mercury separately, but significantly
(p = 0.05) influenced its total content (Fig. 2b). Salinity also
did not affect the ratio of the contents of suspended and dis-
solved forms. TSS significantly positively affected only the
total amount of mercury (R = 0.740, p = 0.05), and only the Hg
concentration in the dissolved phase significantly correlated
with DOM (R = 0.755, p = 0.05). Coefficients of mercury
accumulation by TSS varying from 1.5 × 104 to 41.7 × 104,
averaging 16.7 × 104 (SD = 15.8 × 104, CV = 0.95), did not
reliably depend on salinity and DOM. It significantly nega-
tively correlated with TSS (R = − 0.771; p = 0.05):

Kss ¼ 50� 104e−0:17TSS; ð5Þ

where Kss – coefficients of mercury accumulation in TSS
(eq. 1).

Cluster analysis using indicators of dissolved, suspended
and total mercury contents showed that all stations fall into
two main groups (Fig. 3a). Two stations located in the
shallowest southernmost part were detached in a separate
group. The content of dissolved forms of mercury practically
did not differ in the two groups of stations, and the concentra-
tion of suspendedmatter in the group of shallowwater stations
was on average 5 times higher, while the total mercury content
was 2 times higher. Cluster analysis was also carried out using
salinity, TSS, and DOM, and it led to another grouping of
stations (Fig. 3b).

Mercury in bottom sediments

There were a lot of empty shells of mollusks in the bottom
sediments. From point to point, the concentration of mercury
in the bottom sediments did not change much (Fig. 4), aver-
aging 13.8 ng g−1 wet weight –Cww (SD = 3.1, CV = 0.23) or

Fig. 2 Correlation between a total
suspended substrates (TSS) and
dissolved organic matter (DOM)
and b total content of Hg in water
and salinity in Bay Sivash during
June 2018
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19.8 ng g−1 dry weight – Cdw (SD = 6.3, CV = 0.32). The
Cdw/Cww ratio averaged 1.4 (SD = 0.15, CV = 0.11).

No significant effect of salinity, TSS, and DOM on mercu-
ry content was found. It should be noted that during sampling
of bottom sediments in November, the weather was very
windy, while the direction of the wind often changed and
resuspended bottom sediments and increased spatial homoge-
neity. The concentration of mercury in sediments in
November was on average 1600 times less than in suspended
matter in May (per g).

Discussion

The total Hg content in water of different Black Sea areas
varied between 1 and 120 ng l−1 and averaged between 7.2
and 37.0 ng l−1 in different seasons and years (Kostova and
Popovichev 2002; Stetsiuk and Egorov 2018). However, in a
highly polluted Bay Sevastopolskaya (Black Sea), a total Hg
content in the most part was not higher than 155 ng l−1

(Kostova et al. 2001) and episodically reached up to 460 ng
l−1 in the most polluted sites (Stetsiuk, unpublished data).
Hence, the total Hg concentrations in water were on average

higher in Bay Sivash than in the Black Sea. There are also
several hypersaline lakes nearby Bay Sivash with high Hg
contents exceeding 500 ng l−1 (Mirzoyeva et al. 2015;
Stetsiuk et al. 2018). It is worth comparing our data with those
from the available literature. The total Hg concentrations vary
from 0.14 to 15.1 ng l−1 in the freshwater lakes and from 2 to
45 ng l−1 in rivers (Petrisor 2006) and from < 1 to 78.0 ng l−1

in seawater (Fitzgerald et al. 2007; Mason 2013) with higher
levels in some coastal heavy polluted areas (Mousavi et al.
2011). It may be even higher, up to 145 ng l−1, in polluted
lagoons (Covelli et al. 2009). In hypersaline Great Salt Lake
(Utah, USA), the total Hg content in water is high reaching up
to 100 ng l−1 (Naftz et al. 2008) but 3–6 times lower compared
to this study.

The contributions of different sources to high Hg content in
Bay Sivash as well as the Crimean hypersaline lakes were not
quantitatively assessed yet. In high salinity basins, the en-
hanced Hg transfer from atmosphere to water (Mason and
Gill 2005) can be one of the causes since an increase of the
total Hg content was found along the salinity gradient in Bay
Sivash. The significant correlation of total Hg with salinity and
TSS with salinity could be the result of the total Hg association
with TSS. However, the human activities in the Sivash

Table 2 The concentration of Hg
in the water at different sites of
Bay Sivash during May 2018

№ of station Hg dissolved,
ng l-1

Hg in the
suspended
matter, ng l−1

Total Hg in
water, ng l−1

Hg in the
suspended matter,
× 103 ng g−1

Kss × 104

2 200 60 260 3.1 1.5

3 150 260 410 31.7 21.1

4 150 450 600 38.8 25.9

5 250 70 320 5.7 2.3

6 150 70 220 11.3 7.5

7 120 80 200 50.0 41.7

Min 120 60 200 3.1 1.5

Max 250 450 600 50.0 41.7

Average 170 165 335 23.4 16.7

SD 46.9 112 172 17.8 15.8

CV 0.28 0.68 0.51 0.76 0.95

Kss, coefficients of mercury accumulation by suspended matter

Fig. 3 Dendrogram of similarity
between the sampling sites: a
according to of the Hg content
characteristics in water, b
according to of the salinity, total
suspended substrates and
dissolved organic matter in Bay
Sivash during June 2018
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drainage area are probably more responsible. An economically
developed zone, located in Krasnoperokopsk and Armyansk in
the bay watershed, has a diverse chemical industry and their
dangerous emissions include also different Hg species. Since
the 1970s, the development of irrigated agriculture, mainly rice,
was started with intensive use of various pesticides and fertil-
izers. Most of the drainage waters from the agricultural land
were regularly discharged into Bay Sivash (Shadrin et al.
2018). Also, the water in the North Crimean Canal was initially
high polluted by various pollutants including Hg (Bashkirtseva
2003; Mirzoyeva et al. 2015).

In coastal areas aroundCrimea, except Bay Sevastopolskaya, a
Hg content in surface sediments averaged 70.4 ng g−1 wet weight
(SD = 31.5, CV = 0.45) (Kostova et al. 2001; Raybushko et al.
2005). In highly polluted Bay Sevastopolskaya, it was significant-
ly higher averaging 942 ng g−1wetweight (SD=457, CV=0.50)
for silty sediments and 96 ng g−1 wet weight (SD = 11.7, CV =
0.12) for sandy sediments (Kostova 2005). In the Bay Sivash
sediments, there was a significantly lower Hg concentration (on
average 13.8 ng g−1 wet weight) probably due to a high propor-
tion of mollusk shells in sediments and the frequent anoxic near
bottom conditions, as a result of the massive development of
floating mats of filamentous green algae Cladophora (Shadrin
et al. 2018, 2019, 2020), enhancing theHg release from sediments
(Koron and Faganeli 2012). The role of DOM, which most prob-
ably originates from the intense growth and decay of macro-
phytes, seems important in the complexation of dissolved Hg
(Ravichandran 2004).

To make a comparison of Hg content in the water col-
umn and bottom deposits, we calculated the total content in
both reservoirs. We assumed that the density of sediment is
2 g cm−3 and the average depth of Bay Sivash is 0.7 m. The
calculation showed that there was on average 0.235 mg
m−2 in the water column and 2.8 mg m−2 in the surface
(10 cm) sediment layer. The total Hg reservoir in the sur-
face sediment was, therefore, more than 100 times higher
than in the water column. The resuspension of surface sed-
iment also may contribute to high total Hg content in this
shallow water column.

The food webs are the main pathway in the Hg flux in
aquatic ecosystems (Jones and Wurtsbaugh 2014; Walters
et al. 2020). The high Hg concentration leads to disruption
of the normal functioning of aquatic ecosystems and their
use by humans. Artemia cysts are the most valuable
bioresource in Bay Sivash which can become the largest
Artemia habitat in the world (Anufriieva and Shadrin 2020).
Adult Artemia, as well cysts, can accumulate relatively high
Hg up to 0.34 μg g−1 (Jones and Wurtsbaugh 2014; Stetsiuk
et al. 2018). There are reports that salinity may affect the
concentration and behavior of Hg in the aquatic environment
as well as on toxicity of different Hg species on Artemia and
other crustaceans (Jones 1973; Okasako and Siegel 1980;
Ullrich et al. 2001; Jones and Wurtsbaugh 2014; Johnson
et al. 2015; Boyd et al. 2017). Various Hg species, e.g.,
MeHg, may affect the processes and damaging the organism
(Gebhardt 1976; Go et al. 1990; Sarabia et al. 1998; Jones and
Wurtsbaugh 2014) and, for example, reducing the brine
shrimp lifespan (Pandey and MacRae 1991). Since Artemia
is a keystone species in the Bay Sivash ecosystem (Anufriieva
and Shadrin 2020), and increased Hg concentration may dis-
turb not only the normal functioning of the Artemia popula-
tion but also the whole bay ecosystem. Since Artemia and
other invertebrates are the main food source for birds, the high
Hg content can adversely affect them (Schmidt 1991;
Helgason et al. 2008; Pietrelli and Biondi 2009). Bay Sivash
is an important area for many species of birds, which use it for
nesting, wintering, and resting during transcontinental migra-
tions (Havrylenko 2000; Verkuil et al. 2003). The bay is a
crossroad of bird migratory routes between Europe, Asia,
and Africa. Is the high content of Hg in Bay Sivash a real risk
for all birds living there? Is this contamination also a signifi-
cant risk for the Artemia cysts harvest and planned aquacul-
ture development in the lagoon? The quantitative assessment
of the impacts of this contamination on the ecosystem func-
tioning, bird diversity, aquaculture perspectives, and Artemia
cyst harvest is an urgent goal. Additional deeper studies in the
bay are needed to plan the environmental management.

Conclusion

The concentration of the total mercury content is high in the
water of Bay Sivash ranging from 200 to 600 ng l−1 due to its
hypersalinity and heavy anthropogenic pollution. After the
closing of the North Crimean Canal, the salinity growth sig-
nificantly increased total mercury content in water. Currently,
there are not enough data to quantitatively assess the salinity
effects on the behavior of Hg in the aquatic environment as on
the toxicity of different Hg forms for different aquatic organ-
isms. New studies of these issues are very important for the
development of general aquatic ecology to better understand
the role of a salinity factor in geochemical and biological

Fig. 4 The Hg content in bottom sediments on different stations in Bay
Sivash during June 2018
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processes in their coupling. Bay Sivash is an interesting area
to study due to a smooth spatial gradient of salinity from 30 to
150 g l−1 in the bay with higher salinity in some separated
pools, up to 350 g l−1.
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