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Abstract
This paper analyzes the effects of climate change on African agricultural total factor productivity (TFP) growth and test whether
agricultural TFP levels are converging in the region. The study uses cross-country balanced panel data covering 35 countries from
1981 to 2010 and a technological catching-up model based on the Ricardian analysis estimated by Feasible Generalized Least
Square (FGLS) regression. Historical country-wide rainfall and temperature are climate factors included in the model. Education,
capital intensity, and arable land equipped with irrigation are other potential confounding variables in the regression. The
empirical results show that levels of African agricultural TFP are converging over time, though the rate of convergence appears
relatively slow in the region. We also find that rain significantly increases agricultural TFP growth, but temperature does not
affect the study’s African agricultural TFP growth. Other results show that education, capital intensity, and arable land equipped
with irrigation significantly increased agricultural TFP growth.
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Introduction

Agriculture is strategic to achieving food security in Africa,
which explains why interventions aimed at improving agricul-
tural productivity are considered important programs to re-
duce poverty and enhance food security in the region
(Ogundari 2014). It is also a significant source of employment
and income in Africa (CTA 2012). Unlike other developing
regions such as Latin American and South Asia, sustained
productivity growth has remained a significant challenge in
the African agricultural sector (Fuglie and Wang 2012). The
World Bank (2007) revealed that failure to exploit the poten-
tial of agriculture in Africa could significantly compromise its
role in reducing poverty and enhancing food security.

POSTnote (2006) has stressed the significance of agricul-
tural productivity in reducing poverty and food insecurity
worldwide. Fuglie and Wang (2012) argued that improving
agricultural productivity has been the world’s primary defense
against a recurringMalthusian crisis, which postulated that the
needs of a growing world population outstrip humankind’s
ability to supply food. Because of this, agricultural productiv-
ity growth has long been considered as the key to overall
economic growth worldwide (Alene 2010).

The agricultural total factor productivity (TFP) growth
rate in Africa continues to lag behind that of the rest of
the world. It fluctuates rapidly. Rosen et al. (2014) report-
ed an annual average TFP change that declined an average
of roughly 1% per annum from 1961 to 2010. Using
1970–2004 data for the region, Alene (2010) reported an
average growth rate of 1.6%, while Yu and Nin-Pratt
(2011) reported an average growth rate of 0.2% using
1960–2006 data. Interestingly, the TFP growth rates in
some countries such as Ghana, Nigeria, Benin, Angola,
and Malawi have been able to sustain moderate rates of
improvement of more than 2% per year for the last two
decades (Block 2010). The decline in the technical effi-
ciency level component of the TFP is a significant cause
of weak TFP growth in African agriculture (Yu and Nin-
Pratt 2011; Alene 2010).
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The speed at which agricultural productivity growth keeps
pace with food demand growth is vital for global food securi-
ty. An increase in agricultural productivity is critical to stim-
ulate higher food output and lower food prices (Fuglie and
Rada 2013), boost household and national income through
increased trade (Awokuse and Xie 2015), and improved ac-
cess to food (Rada et al. 2013). In addition to the speed,
knowledge of the drivers of agricultural productivity growth
and whether differences between countries that exist in agri-
cultural productivity growth are prerequisites to meeting glob-
al food security challenges. Among the known factors based
on the reviewed literature, the effect of climate change on
agricultural productivity has gained serious attention among
both academicians and government agencies in recent years
(Barrios et al. 2008). The surge in global climate change has
been linked to this, as it increases the potential for extreme
weather events such as extended droughts or flash floods
(World Bank 2007).1

The importance of temperature and rainfall as auxiliary
climate factors on crop yield has been stressed by Cong
and Brady (2012). At the same time, there is a slow but
steady rise in temperature over the last few decades
(Barrios et al. (2008), as a decline in rainfall since the
half of the nineteenth century, has been noted in Africa
(Nicholson 2001). The implication of this is that climate
change has an enormous impact on agricultural productiv-
ity in developing countries (Rosenzweig and Parry 1994).
Africa depends heavily on rainfed agriculture, making the
region vulnerable to climatic shocks (Kotir 2011). About
60% and 30% of African countries are susceptible to
drought and extreme weather, respectively (Benson and
Clay 1998). IPPC (2007) report concluded that agricultur-
al production and food security are likely to be severely
compromised by climate change in many African coun-
tries. A literature review shows several studies have con-
tributed to the policy discussion on agricultural produc-
tivity in Africa. Many of the studies focus on the estima-
tion and decomposition of agricultural productivity using
different methodologies and datasets with different pe-
riods (see Alene 2010; Yu and Nin-Pratt 2011; Lusigi
and Thirtle 1997; Nkamleu 2004; Fuglie and Rada 2013;
Nin-Pratte 2015; Rezek et al. 2011). In addition to
decomposing agricultural productivity, other studies iden-
tify policy variables that are important in driving agricul-
tural productivity in the region, such as education, re-
search and development, political stability or governance,
and capital intensities (Alene 2010; Allen and Qaim 2012;
Block 2010; Fulginiti 2010; Rosen et al. 2014; Lusigi and
Thirtle 1997).

Except for Barrios et al. (2008) and Exenberger et al.
(2014), not much is known about the effects of climate change
in African agriculture at cross-country levels.2 We contribute
to the literature on African agricultural development by inves-
tigating the impact of climate change in African agricultural
total factor productivity (TFP) growth. The two studies focus
on the effect of climate change on African agricultural pro-
duction. Agricultural production refers to the value of total
agricultural output or production. However, TFP use in the
present study refers to the total agricultural production ratio
to all inputs’ aggregate contribution, reflecting the production
process’s overall sophistication (Beugelsdik et al. 2018).
Conversely, TFP has always been considered a better and
accurate measure of production progress or success to in-
formed better policy decisions (Mozumdar 2012).

The study of convergence frenzy of an economic indicator
such as per capita income or gross domestic product (GDP) is
often used to show whether the standard of living of poor
households improved or increasedmore rapidly relative to that
of the wealthier households following Solow’s (1956) seminar
paper. The convergence hypothesis in agricultural productiv-
ity growth is essential for agricultural policy design at the
regional level. Specifically, it provides proof of whether agri-
cultural productivity growth increases faster in some areas
than in others. Timmer et al. (2010) noted that convergence
is critical to understand whether differences in agricultural
productivity levels persist or even increase over time, as dif-
ferences in TFP play an essential role in explaining income
differences across countries (Hall and Jones 1999). Evidence
of convergence in agricultural productivity growth could help
food policymakers understand agricultural production trends.

There is a proliferation of studies that raises policy discus-
sion on the convergence hypothesis in agricultural production
across the globe in recent years (see Gutierrez 1999; Zhan
et al. 2017; Rezitis 2005; Liu et al. 2011; Ball et al. 2014;
Barath and Ferto 2017). Despite this, not much is known
about the convergence hypotheses in Africa agriculture.
There is still scarce literature on agricultural productivity con-
vergence in the region except for the work carried out by
Lusigi et al. (1998) and Thirstle et al. (2003). In contrast to
Lusigi et al. (1998) that focuses on cross-country data in
Africa, Thirstle et al. (2003) investigated convergence using
cross-state data in Botswana. Therefore, we contribute to the
literature on Africa’s agricultural productivity by testing the
convergence hypothesis using cross-country data in the
region.

The remaining part of the paper is organized as follows.
The next section presents the data used for the analysis. The

1 Term climate change in this paper refers to a change in the mean of temper-
ature and rainfall for an extended period.

2 Although many studies have attempted to explore the effects of climate
change on agricultural production or productivity for individual African coun-
tries or micro-level analysis (see Amare et al. 2018; Ochieng et al. 2016), the
present study focuses on African context as a whole or macro-level analysis.
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“Analytical framework” section reviews the analytical frame-
work and empirical models, while the “Results and discus-
sion” section presents the results and discussion. Concluding
remarks are provided in the “Concluding remarks” section.

Data description and time-series property
of the data

The data availability limits the analysis to 35 countries in
Africa.3 Due to data limitations, the study could only cover
from 1981 to 2010. We obtain the country-specific total factor
productivity index used in this paper from the United States
Department of Agriculture Economic Research Services
website (USDA-ERS 2018). The site provides information
on how the average agricultural TFP index measured over
time to a base-period index value for countries in Africa (for
detailed information on how the TFP indexwas computed, see
Fuglie 2012).

The data on the education was obtained from Barro and
Lee’s educational attainment dataset in the World 1950–
2010 (see Barro and Lee 2013). Agricultural labor, which is
measured as an economically active population in agriculture
(in thousands) and the value of the agricultural capital stock at
2005 constant price, were used to construct the capital-labor
ratio. These were obtained from the FAOSTAT of the FAO
database (see FAOSTAT 2018). The capital stock is the value
of machinery and equipment and other non-residential struc-
tures on the farm (FAOSTAT 2018).We obtained information
on the arable land equipped with irrigation as a proxy for
irrigation from the FAOSTAT database for the empirical anal-
ysis (see FAOSTA, 2018).

Data on climate factors employed in the study include tem-
perature and rainfall obtained from the World Bank
Development indicator’s Climate Change Knowledge Portal
(WDI 2018). However, we use the average long-run 5-year
and 10-year interval to capture climate change in the study.
We compute rain variability based on the variance of precip-
itation (rainfall) by years across the countries in the data. The
data used for the empirical analyses are expressed in
logarithms.

Table 5 in the appendix presents the variables’ summary
statistics, while Table 6 shows the correlation matrix of the
explanatory variables used in the regression.4 Table 7 in the
appendix shows the variance inflation factor (IVF) and

condition index computed for each explanatory variable in
regression as a robustness check to Table 6. The correlation
coefficients among the explanatory variables are less than 0 in
Table 6, suggesting that the multicollinearity problem is not
severe for the estimated model. As a robustness check, the
estimated IVF and condition index, which also measures the
impact of collinearity among the explanatory variables, are
smaller than 10 as a rule of thumb. The implication of this
also is that multicollinearity is not exerting an undue influence
on the results.

Analytical framework

Convergence hypothesis analysis in African
agricultural TFP growth

In the most general sense, the convergence concept describes
catching-up or equalizing disparities in an economic variable
across regions or countries over time. The idea of convergence
hypothesis has been applied to different economic indicators.
This includes income or economic growth (see Sala-i-Martin
1996; Bassanini et al. 2001), agriculture (Ball et al. 2014;
Barath and Ferto 2017; Rezitis 2005), nutrition (Ogundari
and Ito 2015; Angulo et al. 2001), food security (Wan 2005;
Borkowski et al. 2009), and poverty (Ravallion 2012; Ouyang
et al. 2019). And this has been a very topical subject to inves-
tigate among economists over the years. The convergence
concept is deep-rooted in two primary competitive
theories—neoclassical growth theory (Solow 1956) and en-
dogenous growth theory (Romer 1986).

The tests widely used for estimating the convergence hy-
pothesis are beta-convergence and sigma-convergence analy-
ses. Beta-convergence refers to a catch-up process of econom-
ic variables when regions/countries with low initial conditions
tend to grow faster than regions/countries with high initial
conditions in the long run (Sala-i-Martin 1996). Sigma-
convergence measures the reduction in economic variables’
dispersion across countries/regions (Philips and Sul 2007). In
other words, the beta-convergence describes the pace of par-
ticular economies in reaching the state of long-term equilibri-
um. Simultaneously, the sigma-convergence reflects more
about reducing disproportions in the level of economic vari-
ables across economies. Beta-convergence is a necessary but
not a sufficient condition for sigma-convergence (Lichtenberg
1994).5 However, two well-known frameworks for
implementing beta-convergence analyses are unconditional
(absolute) and conditional convergence.6 According to Paas

3 The countries included in the sample are Angola, Benin, Botswana, Burkina-
Faso, Burundi, Cameroon, Chad, Cote’d’ Ivoire, Ethiopia, Gabon, Guinea,
Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Madagascar, Malawi,
Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria,
Rwanda, Senegal, Sierra Leone, South Africa, Swaziland, Tanzania, Togo,
Uganda, Zambia, and Zimbabwe.
4 The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.

5 Beta-convergence does not necessarily mean sigma-convergence, but they
are complementary.
6 Sigma-convergence has always been estimated using the absolute conver-
gence framework.
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et al. (2007), absolute convergence exists when countries or
regions converge with one another in the long-term regardless
of the initial conditions, while conditional convergence
exists when countries or regions converge with one another
in the long term provided their structural characteristics are
identical.

Another convergence test that allows for a wide range of
possible time paths and individual heterogeneity is club con-
vergence (Philips and Sul 2007; Paas et al. 2007). Club con-
vergence exists when regions or countries similar in both their
structural characteristics and initial factors converge with one
another in the long term (i.e., common steady-state).
However, club convergence is analogous to sigma-conver-
gence. Because the catching-up process (i.e., beta-conver-
gence) rather than a reduction on the dispersion (i.e., sigma-
convergence) of agricultural TFP across countries in Africa
aligned with the study’s objective, we estimate this hypothesis
described subsequently below.

Consistent with earlier discussion, there are unconditional
and conditional beta-convergence analyses. Thus, for the em-
pirical purpose, unconditional (absolute) and conditional beta-
convergence is represented by Eqs. 1A and 1B, respectively
defined below

Δ lnTFPi;t
� � ¼ α0 þ β lnTFPi;t−1

� �þ νi;t for t ¼ 1; ; ::T; i ¼ 1;…N

ð1AÞ
Δ lnTFPi;t
� � ¼ π0 þ η lnTFPi;t−1

� �þφk Xik;t þ υi;t for t ¼ 1; ; ::T; i ¼ 1;…N

ð1BÞ
where TFPi,t represents the total factor productivity for i coun-
try at time t; Δ is the differencing operator which define the
growth of TFPt; ln means the logarithm transformation; TFPt-1
is the initial value of TFPt; Xik,t is a vector of kth structural
characteristics of the economies/countries/regions such as ed-
ucation, capital stock, population growth rates, and mortality
rates, etc.; β, η and, φk are the parameters to be estimated, as β
and η measure the convergence effect; α0 and π0 are the
estimated intercept; νi,t and υi,t are the error terms.

With no auxiliary variables representing structural charac-
teristics across the economies included in Eq. 1A, conver-
gence depends on this specification’s initial conditions. In
contrast, as in absolute convergence, the initial conditions
are irrelevant because the structural characteristics are includ-
ed in Eq. 1B to uncover any evidence of convergence, which
suggests that equilibrium differs by the economy, making
each particular economy approach its unique equilibrium dif-
ferently. According to Paas et al. (2007), conditional conver-
gence can occur even if the absolute convergence hypothesis
is not valid.

Empirically, convergence exists if the estimated β and η are
negative and significant in Eqs. 1A and 1B. A statistically
significant β < 0 or η <0 implies that beta-convergence is in

line with the neoclassical growth model’s proposition in
African agricultural productivity in the study.

Thus, consistent with each specification above, conver-
gence speed can be computed using the framework employed
in Wan’s (2005) work defined below.

Convergence speed = (1 − e−β) ≅ β% 2A
Convergence speed = (1 − e−η ) ≅ η% 2B

Ricardian model

A Ricardian model is a well-established approach for analyz-
ing climate change’s impact on agriculture (Ortiz-Bobea
2020). Within the context of African agriculture, the
Ricardian model of climate change impacts on the agricultural
TFP growth is consistent with conditional beta-convergence
defined below.7

Δ lnTFPi;t
� � ¼ τ lnTFPi;t−1

� �þ γ Climatei;t−5 and t−10
� �þ θk X ik;t

� �þ ζiþ ¼ αi;t

ð3Þ
where TFP is as defined earlier; Δ is differencing oper-
ator which define the growth of TFP between t-1 and t;
ln means the logarithm transformation; TFPt-1 represents
the initial level of TFP; climate is a vector of climate
factors considered in the study defined as the average
long-run 5- and 10-year interval to capture climate
change;8 τ is the estimated coefficient of TFPt-1 which
serve as the measure of the convergence effect in the
study; X represents a vector of kth other potential
drivers of agricultural TFP, which include education/
human capital, capital intensities, and irrigation; γ rep-
resents the estimated effect of climate factors on TFP
growth defined by Δ(TFPt,t); θk represents the estimated
effect of variables Xk on the TFP growth; ζi represents
country-specific effect; αi,t is the error term of the
regression.

The choice of the structural characteristics/variables includ-
ed in the Xik is guided by previous studies that account for
potential confounding factors in agricultural TFP growth such
as irrigation (Schlenker et al. 2005), capital intensities (Ball
et al. (2014), and investment in human capital (Reimers and
Klasen 2013).

7 We also estimate the unconditional or absolute beta-convergence in the study
presented in model 1 of Table 3.
8 We follow Barrios et al. (2010) and Chieng et al. (2016) to specify the
average long-run temperature and rainfall over 5- and 10-year intervals in time
t-5 and t-10 to t, respectively. Abidoye and Abidoye and Odusola (2015) also
used 5-year intervals to capture climate change in their study. All of these
studies focus on Africa.
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Results and discussion

Panel data specific tests: unit root, Hausman tests,
and serial correlation

Given that time-varying macroeconomic variables are
often not stationary, we present the panel unit root test
result in Table 1. Three-panel unit root tests (Levin-Lin-
Chu, Harris-Tzavalis, and Im-Pesaran-Shin) were carried
out on the variables to provide robust estimates. The
results show that the TFP index, capital stock-labor ra-
tio, and education were not stationary at the level judg-
ing by the p value >0.5 presented in the table but be-
come stationary with first differences. The results of
other variables (temperature, rainfall, and irrigation)
were found to be stationary at the level judging by
the p value less than 0.01.

We subsequently perform the Hausman (1978) spec-
ification test to compare the random and fixed effects
models for the data presented in the second row of
Table 2. However, with a p value less than 0.01, the
result shows that differences between the random effects
and fixed effects coefficient are systematic, as the fixed
effect is more robust to the data than the random effect
specification.

In recognition of the data’s cross-section time-series
nature, we also followed Baltagi (2005) work that there
is a possibility of a serial correlation between the error
terms across the period in a time-series cross-sectional
panel data, which is likely to bias the efficiency of the
results (i.e., standard error). We subsequently perform
the test for serial correlation using Wooldridge (2002)
test statistics, presented in the second row of Table 2.
Given the p value of less than 0.01, we reject the null
hypothesis of no serial correlation. Because of this, we
employed the Feasible Generalized Least Square Method
(FGLS) to estimate parameters of Eq. 3 since the model
is robust to t ime-series cross-sect ional (TSCS)

contemporaneous correlation problem following the work
of Baltagi (2005).9

Convergence hypothesis test in African agricultural
TFP growth

Presented in Tables 3 and 4 are the results of the estimated
catching-up model employed to investigate convergence in
levels of African agricultural total factor productivity (TFP)
based on Eq. 3. The estimated coefficient of initial TFP de-
noted by TFPt-1 serves to measure the convergence effect in
the study. The result of the absolute or unconditional beta-
convergence represented by model 1 in Table 3 is negative
but insignificant10. Simultaneously, the conditional beta-
convergence result represented in models 2–7 is negative
and significantly different from zero. We equally uncover ev-
idence of conditional beta-convergence in Table 4. Results
show that the convergence hypothesis in African agricultural
total factor productivity seems to be driven by differences in
the structural characteristics such as capital, education, irriga-
tion, and climate factors in the study. In other words, the
convergence of African agricultural TFP is conditional on
these variables, indicating that they play an important role in
the convergence process in the region. Thus, it supports the
rejection of the null hypothesis of no-convergence in levels of
African agricultural TFP in the study.

Although the number of studies that have examined con-
vergence in African agriculture is limited, nevertheless, a clos-
er look at the literature shows that Lusigi et al. (1998) found
no evidence of convergence in African agricultural TFP11.
Thirstle et al. (2003) find evidence of divergence in

Table 1 Panel unit root tests

Variables Levin-Lin-Chu1 Harris-Tzavalis1 Im-Pesaran-Shin1

Level Differenced Level Differenced Level Differenced

TFP −2.9875 [0.9527] −23.2047 [0.0000] 0.9142 [0.7399] −0.2449 [0.0000] 2.8926 [0.9981] −15.2186 [0.0000]

Temperature −14.7019 [0.0000] −38.5210 [0.0000] 0.4184 [0.0000] −0.3668 [0.0000] −6.9611 [0.0000] −30.0964 [0.0000]

Rain −5.9879 [0.0000] −9.2861 [0.0000] 0.1022 [0.0000] −0.4705 [0.0000] −12.7936 [0.0000] −31.8297 [0.0000]

Capita/labor −4.4978 [0.3896] −21.6891 [0.0000] 0.9283 [0.9289] 0.0451 [0.0000] 0.4141 [0.6606] −13.2634 [0.0000]

Education −7.2299 [0.6789] −33.7639 [0.0000] 0.9209 [0.8491] −0.3116 [0.0000] 2.0903 [0.9817] −26.3096 [0.0000]

Irrigation −9.1318 [0.0000] −15.9160 [0.0000] 0.2780 [0.0000] −0.1031 [0.0000] −1.2581 [0.0000] −5.8621 [0.0000]

1H0: panels contain unit roots; p value in the bracket; differenced is based on first differenced; all variables are expressed in logarithm

9 A similar approach has been used by Ball et al. (2014) and Ogundari and
Aromolaran (2017) for cross-state and cross-country data analyses,
respectively.
10 The estimated unconditional or absolute beta-convergence in model 1 is
similar to Eq. 1A.
11 Lusigi et al. (1998) is the only known cross-country study that test the
convergence hypothesis in African TFP.
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Bostwana agricultural productivity based on annual cross
states time-series covering 1981–1996. From a global per-
spective, our literature search shows that Ball et al. (2014)
found evidence of convergence in the US agricultural total
factor productivity. Ball et al. (2001) found evidence of con-
vergence in agricultural productivity levels in twelve OECD
countries. Cechura et al. (2014) investigated the milk sector’s
catching-up hypothesis for 24 E.U. member states over 2004–
2011. They found no sign that poorly performing farmers are
catching up to better performing farms in these regions. Zhan
et al. (2017) found evidence of convergence in Chinese agri-
cultural productivity levels, and Barath and Ferto (2017)
found evidence of convergence in European agriculture be-
tween 2004 and 2013. The evidence of the convergence of
agricultural productivity has always been mixed in the
literature.

Across all the model specifications, in Tables 3 and 4, the
results also show that the estimated speed of convergence,
which measures how quickly the growth of African agricul-
tural productivity increase over time to the steady-state path,
ranges from about 0.99–1.8%, which appears relatively
slow.12 A higher speed of convergence (let say from 50%
and above) is the expected minimum value to successfully
reduce malnutrition and food insecurity in the developing
economies, as noted by Headey (2013). The evidence of con-
vergence and slow speed of convergence in African agricul-
tural productivity levels has implications on the region’s food
policy. First, it shows that the agricultural productivity gap
between countries in the region has lessened. Second, it shows
that countries further outside the technological frontier will
likely have more rapid agricultural productivity growth in
the region. Third, evidence of convergence might be an indi-
cation of sustained technological diffusion among farmers in
the region.13 Fourth, the observed low speed of convergence
can be attributed to many factors, including institutional con-
straints such as lack of efficient credit markets, weak exten-
sion services, and poor transportation networks in the region.
These are known agricultural development problems in
Africa.

Effects of climate change on African agricultural
productivity growth

Presented in Tables 3 and 4 are the results of climate change
factors defined by 5- and 10-year temperature and rain
average coupled with a measure of rain variability on
agricultural TFP. This is consistent with previous studies by
Barrios et al. (2008) and Exenberger et al. (2014). With cli-
mate change factors specify only as long-run 5- and 10-year
average in Table 3, the result shows that rainfall consistently
increases African agricultural productivity (see models 2–7).
The results show that the long-run effect of precipitation (rain)
is consistently positive and significant across the models. The
results are the same for the average long-run temperature and
rainfall coefficient over 5- and 10-year intervals in the table.
Despite various model specifications reported in the table, the
results show that temperature has no significant effect on
African agricultural productivity growth.

Since agricultural production is mainly rainfed in Africa, it
is vital to understand how rain shocks defined by rainfall var-
iability impact agricultural productivity in the region. Ito and
Kurosaki (2009) defined a rainfall shock as the deviation from
the rainfall level in a particular year. In recognition of this, we
include rain variability in the results presented in Table 4.
Despite having the measure of rain variability in the model,
the impact of rain and temperature is significantly positive and
consistent with the results obtained in Table 3. However, the
coefficient of rain variability shows that rain shock induces a
significant negative effect on Africa’s agricultural productiv-
ity in the estimated models 4–6, especially when the average
10-year interval of rain and temperature is considered climate
change drivers in the study. The implication of this is that
rainfall variability poses agricultural production risk in the
region in the long run, which increases the risk of technology
adoption. The coefficient of rain variability is insignificant
when the average 5-year interval of rain and temperature is
considered climate change drivers.

A literature review shows that Barrios et al. (2008) obtain-
ed a significant positive and negative effect of rainfall and
temperature on agricultural production in sub-Saharan Africa
(SSA), respectively. In contrast, Exenberger et al. (2014)
found evidence of a significant positive effect of rainfall and
an insignificant negative effect of temperature on agricultural
production in SSA. Also, Patrick et al. (2011) found evidence
that cereal yields across Sub-Saharan Africa decline and

12 Usingmodel 4 of Table 3 as an example, convergence speed is equivalent to
1.1% (i.e., 0. 0106×100).
13 Martin and Mitra (2001) found strong evidence of a rapid convergence in
levels and growth rates of TFP in agriculture as a result of the international
dissemination of innovation.

Table 2 Panel data tests
Tests Statistics p value

Hausman test of fixed effect vs. random effect Chi-square statistic = 48.80 0.0000

Woodridge’s test of serial correlation of error component F-statistic = 43.250 0.0000

Woodridge (2002) test statistic of the null hypothesis of no serial correlation
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Table 4 Estimated catching-up model with rain variability included

Explanatory variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

TFPt-1 −0.0093***
[0.0034]

−0.0099***
[0.0033]

−0.0101***
[0.0034]

−0.0158***
[0.0051]

−0.0151***
[0.0046]

−0.0183***
[0.0054]

Climate change
(Raint-5)

0.0036***
[0.0009]

0.0035***
[0.0009]

Climate change
(Tempt-5)

−0.0069 [0.0042] −0.0062 [0.0043]

Climate change
(Raint-10)

0.0070***
[0.0032]

0.0050***
[0.0022]

Climate change
(Tempt-10)

−0.0103 [0.0118] −0.0103 [0.0117]

Rain variability 0.1121 [0.0101] 0.0121 [0.0108] 0.0104 [0.0105] −0.0516***
[0.0126]

−0.0578***
[0.0231]

−0.0574***
[0.0236]

ΔCapital/labor 0.0720***
[0.0156]

0.0809***
[0.0154]

0.0739***
[0.0157]

0.0729***
[0.0230]

0.0857***
[0.0242]

0.0857***
[0.0244]

ΔEducation 0.02178***
[0.0079]

0.0183** [0.0078] 0.0213***
[0.0079]

0.0211***
[0.0014]

0.0229***
[0.0016]

0.0269***
[0.0102]

Irrigation 0.0045***
[0.0003]

0.0041***
[0.0003]

0.0045***
[0.0003]

0.0047***
[0.0007]

0.0042***
[0.0008]

0.0046***
[0.0009]

Constant 0.0129 [0.0177] 0.0539** [0.0234] 0.0371 [0.0253] 0.0345 [0.0257] 0.1273** [0.0407] 0.1189***
[0.0407]

Autocorrelation AR (1) AR (1) AR (1) AR (1) AR (1) AR (1)

Number of countries 35 35 35 35 35 35

Number of observation 875 875 875 700 700 700

Wald test [p value] 0.000 0.000 0.000 0.000 0.000 0.000

*** p < 0.01, ** p < 0.05, * p < 0.1; all variables are expressed in logarithm

Table 3 Estimated catching-up model

Explanatory
variables

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

TFPt-1 −0.0015
[0.0022]

−0.0099***
[0.0033]

−0.0104***
[0.0033]

−0.0106***
[0.0034]

−0.0137**
[0.0056]

−0.0143***
[0.0046]

−0.0175***
[0.0055]

Climate change
(Raint-5)

0.0036***
[0.0009]

0.0034***
[0.0009]

Climate change
(Tempt-5)

−0.0070 [0.0043] −0.0063 [0.0042]

Climate change
(Raint-10)

0.0048***
[0.0027]

0.0049**
[0.0020]

Climate change
(Tempt-10)

−0.0095 [0.0118] −0.0095 [0.0119]

ΔCapital/labor 0.0691***
[0.0153]

0.0774***
[0.0151]

0.0711***
[0.0155]

0.0644***
[0.0253]

0.0824***
[0.0244]

0.0829***
[0.0246]

ΔEducation 0.0216***
[0.0079]

0.0181**
[0.0079]

0.0211***
[0.0079]

0.0235**
[0.0111]

0.0221***
[0.0168]

0.0262**
[0.0117]

Irrigation 0.0045***
[0.0003]

0.0042***
[0.0003]

0.0045***
[0.0003]

0.0047***
[0.0003]

0.0042***
[0.0008]

0.0046***
[0.0009]

Constant 0.0223**
[0.0155]

0.0636***
[0.0218]

0.0463**
[0.0235]

0.0335**
[0.0105]

0.0876**
[0.0374]

0.0797**
[0.0373]

Autocorrelation AR (1) AR (1) AR (1) AR (1) AR (1) AR (1) AR (1)
Number of countries 35 35 35 35 35 35 35
Number of observation 1050 875 875 875 700 700 700
Wald test [p value] 0.000 0.000 0.000 0.000 0.000 0.000 0.000

*** p < 0.01, ** p < 0.05, * p < 0.1; all variables are expressed in logarithm
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increase with increasing temperatures and precipitation, re-
spectively. Using cross-country data from Eastern Africa,
Abraha and Gårn (2014) obtained evidence that rainfall in-
creases agricultural output significantly in the region with no
significant effect from temperature. These studies consistently
identify precipitation (rain) as a critical driver of agricultural
production in the region.

Our findings are consistent with many previous studies that
African agricultural productivity growth is much more sensi-
tive to rainfall than the region’s temperature. Despite the sig-
nificant positive long-run effect of precipitation on agricultur-
al productivity in the study, it is also important to note that
rainfall has been declining since the half of the nineteenth
century in Africa, as revealed by Nicholson (2001). The im-
plication of this is that agricultural policymakers in the region
must take action that is likely to minimize the African agricul-
tural sector’s exposure to unexpected drought in the future. Of
course, this includes adopting climate-smart farming practices
to reduce the sector’s exposure to unforeseen circumstances
associated with a sudden drop in rainfall in Africa’s future.

Effect of other control variables on African
agricultural productivity growth

Across all the model specifications presented in Tables 3 and
4, the results show that the capital-labor ratio has a significant
and positive effect on agricultural productivity growth,
suggesting that technology embodied in the capital is an
essential driver of agricultural productivity growth study.
Ball et al. (2014) found a positive and significant effect of
capital intensities on agricultural productivity growth in the
USA. The positive and significant impact of education across
all the model specifications in Tables 3 and 4 shows education
is an essential driver of agricultural productivity growth in
Africa. The link between human capital and agricultural pro-
ductivity results from such instances as the possession of some
years of schooling enabling farmers to have the capacity to
evaluate new and improved input varieties critically and to be
able to read and follow product instructions for chemical in-
puts and other aspects of modern farm technology (Wouterse
2016).

A review of the literature shows that Reimers and Klasen
(2012) found a positive impact of education on agricultural
productivity in developing countries. Similarly, in a review of
empirical literature using meta-analysis technique on efficien-
cy studies published from Africa, Ogundari (2014) found ev-
idence that over the years, education ranked first among the
key drivers of African agricultural efficiency levels, followed
by years of experience and extension.

The other results from Tables 3 and 4 show that arable land
equipped with irrigation significantly increases African agri-
cultural productivity growth in the region in all the model
specifications in Tables 3 and 4. Reimers and Klasen (2012)

found a positive effect of land equipped with irrigation on
agricultural productivity in developing countries, although
the authors defined agricultural productivity using partial pro-
ductivity. The result shows that access to irrigation technology
has an enormous impact on agricultural productivity. Of
course, this enables smallholder farmers to produce consum-
able food grains directly and diversify their cropping and sup-
plement moisture deficiency in agriculture to increase produc-
tion and food consumption (van der Veen and Tagel 2011).

Concluding remarks

Identifying the drivers of agricultural productivity growth and
whether differences exist in agricultural productivity across
countries in Africa is a prerequisite to meeting the region’s
challenges. In this context, the present study tests the conver-
gence hypothesis using the catching-up model in levels of
African agricultural total factor productivity (TFP) indices
across 35 countries from 1981 to 2010 in the region. We also
investigate climate change, capital intensity, human capital,
and arable land equipped with irrigation effect on African
agricultural total factor productivity (TFP) growth in the
study. We use the Feasible Generalized Least Square
(FGLS) model to estimate the catching-up model.

The empirical results found evidence of convergence in
African agricultural total factor productivity levels over time.
The convergence is conditional on climatic factors such as
rainfall, capital, irrigation, and education (human capital), in-
dicating that they play an important role in the region’s con-
vergence process. The convergence speed ranges from about 1
to 2% per annum, which appears relatively slow in the region.
We also found rainfall to be an essential driver of agricultural
productivity growth, as the temperature has no significant ef-
fect on agricultural productivity growth in the region. The
analysis also shows that capital intensities capture by capital-
labor ratio, education (human capital), and arable land
equipped with irrigation are essential drivers of agricultural
productivity growth in Africa.

The existence of convergence and significant positive long-
run effect of rainfall have implications on agricultural and
food policy in the region. For instance, it is an indication that
the agricultural productivity gap between countries in the re-
gion has lessened. It also shows that countries further outside
the technological frontier will likely have more rapid agricul-
tural productivity growth in the future. The evidence of con-
vergence might be an indication of sustained technological
diffusion among farmers in the region. The low speed of con-
vergence can be attributed to many factors, such as lack of
efficient credit markets, weak extension services, and poor
transportation networks, known as agricultural development
problems in the region.
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In conclusion, continued elimination of institutional con-
straints highlighted above to the agricultural development is
highly recommended to promote intensification of agricultural

innovation diffusion and, thus, higher food production in the
region.

Appendix

Table 6 Correlation matrix of the variables

Variables TFPt-1 Rain Rain variability Temperature ΔCapital/
labor

ΔEducation Irrigation

TFPt-1 1.0000

Rain 0.0112 1.0000

Rain variability 0.0001 −0.0683 1.0000

Temperature −0.2998 −0.0617 −0.0265 1.0000

ΔCapital/labor 0.0009 0.0475 0.0758 0.0760 1.0000

ΔEducation 0.0171 −0.0451 0.0025 0.0251 −0.0305 1.0000

Irrigation 0.0180 −0.1288 −0.0869 0.0396 0.0178 −0.0333 1.0000

All variables are expressed in logarithm

Table 5 Descriptive statistics of
variables used in the regression Variables Description Mean Std. Dev.

TFP Total factor productivity index in percentage 103.9789 30.4460

Rain Annual average rainfall in Millimeter 88.0903 50.1904

Rain variability Rainfall variability over time 0.6052 0.0761

Temperature The annual average temperature in Celsius 24.2249 3.6318

Capital/labor Capital stock per labor capture capital intensities 3.0918 4.0338

Education Average years of education 5.2982 4.1341

Irrigation Total arable land equipped with irrigation in hectares (1000) 117.2331 271.7313

Table 7 IVF and condition index for the variables

TFPt-
1

Rain Rain variability Temperature ΔCapital/
labor

ΔEducation Irrigation

IVF 1.16 1.04 1.03 1.06 1.02 1.01 1.12

Condition index 1.00 1.12 1.00 1.16 1.29 1.23 1.49

All variables are expressed in logarithm

30043Environ Sci Pollut Res (2021) 28:30035–30045



Acknowledgements The authors thank the anonymous reviewer for the
helpful comments on the earlier version of the manuscript.

Author contribution The first author (K.O) retrieves and analyzes the
data and prepares the write up for the manuscript. The second author
(R.O) checks the results, proofread the document, and provides policy
guidance for the write up.

Data availability The data will be made available upon request from the
lead author.

Declarations

Ethics approval and consent to participate This study does not require
ethical approval.

Consent for publication We at this moment give the publisher the con-
sent to publish the paper in this journal.

Competing interests The authors declare no competing interests.

References

Abidoye BO, Odusola AF (2015) Climate change and economic growth
in Africa: an econometric analysis. J Afr Econ 24(2):277–301

Abraha K. G and H. L. Gårn (2014): The effect of climate change and
adaptation policy on agricultural production in Eastern Africa, IFRO
Working Paper, No. 2014/08, University of Copenhagen,
Department of Food and Resource Economics (IFRO),
Copenhagen.

Alene AD (2010) Productivity growth and the effects of R&D in African
agriculture. Agric Econ 41:223–238

Allen, S. L, and M. Qaim (2012). Agricultural productivity and public
expenditure in sub-Saharan Africa. IFPRI Discussion paper 01173
Washington DC.

Amare M, Jensen ND, Shiferaw B, Cisse JD (2018) Rainfall shocks and
agricultural productivity: implication for rural household consump-
tion. Agric Syst 166:79–89

Angulo AM, Gil JM, Gracia A (2001) Calorie intake and income elastic-
ities in E.U. countries: a convergence analysis using cointegration.
Pap Reg Sci 80(2):165–187

Awokuse TO, Xie R (2015) Does agriculture matter for economic growth
in developing countries? Can J Agric Econ 63:77–99

Ball VE, Bureau J-C, Butault J-P, Nehring R (2001) Levels of farm sector
productivity; an international comparison. J Prod Anal 15:5–29

Ball VE, San-Juan-Mesonada C, Ulloa CA (2014) State productivity
growth in agriculture: catching-up and the business cycle. J Prod
Anal 42:327–338

Baltagi B (2005) Econometric analyses of panel data, 3rd edn. IE Wiley,
England

Barath L, Ferto I (2017) Productivity and convergence in European
Agriculture. J Agric Econ 68(1):228–248

Barrios S, Outtara B, Strobl E (2008) The impact of climate change on
agricultural production: is it different for Africa? Food Policy 33:
287–298

Barrios S, Bertinelli L, Strobl E (2010) Trend in rainfall ad economic
growth in Africa: a neglected cause of the African growth tragedy.
Rev Econ Stat 92(2):287–298

Barro RJ, Lee JW (2013) A new dataset of educational attainment in the
Worlds, 1950-2010. J Dev Econ 104:184–198

Bassanini, A., Scarpetta, S. and Hemmings, P. (2001), "Economic
growth: the role of policies and institutions: panel data. Evidence

from OECD countries", OECD Economics Department Working
Paper No. 283, OECD Publishing, Paris, available at doi:https://
doi.org/10.1787/722675213381 (accessed February 8, 2015).

Benson C, Clay E (1998) The impact of drought on sub-Sharan
Economics, World Bank Technical Paper. No. World Bank,
Washington. D.C, p 401

Beugelsdik S, Klasing MJ, Milionis P (2018) Regional economic devel-
opment in Europe: the role of total factor productivity. Reg Stud
52(4):461–476

Block, S (2010). The decline and rise of agricultural productivity in sub-
Saharan Africa since 1961. NBERWorking paper series No. 16481.
http://www.nber.org/papers/w16481.

Borkowski B, Duke H, Szozesny W (2009) Food consumption conver-
gence within Europe: a panel data analysis. Pol J Environ Stud
18(5B):41–47

Cechura, L., A. Grau, H. Hochmann, I. Levkovych, and Z. Kroupova
(2014). Catching up or falling behind in Eastern European
Agriculture- the case of milk production. Paper presented at the
142nd EAAE Seminar Growing Success? Agriculture and Rural
Development in an Enlarged E.U. Corvinus University of
Budapest, Hungary.

Cong R-G, Brady M (2012) The interdependence between rainfall and
temperature: copula analyses. Sci World J 2012:405675. https://doi.
org/10.1100/2012/405675

CTA (2012). Technical Centre for Agriculture (CTA)’s Policy Brief.
Number 4 February 2012. Wageningen, The Netherlands

Exenberger, A., A. Pondorfer, and M. H. Wolters (2014). Estimating the
impact of climate change on agricultural production: accounting for
technology heterogeneity across countries. Kiel Working Paper No.
1920. Kiel Institute for the World Economy, Kiel Germany.

FAOSTAT (2018). Food and Agriculture Organization Corporate
Statistical Database. Available at: www.faostat.fao.org(accessed,
September 2018)

Fuglie KO (2012) Productivity growth and technology capital in the
global agricultural economy. In: Fuglie K, Wang SL, Ball VE
(eds) Productivity growth in agriculture: an international perspec-
tive. CAB International, Wallingford, pp 335–368

Fuglie K. O and N. E. Rada ( 2013). Resources, policies, and agricultural
productivity in sub-Saharan Africa. Economic Research Report No.
145, Washington, DC.

Fuglie, K, and S. L. Wang (2012). Productivity growth in global agricul-
ture shifting to developing countries. Choices, 4th Quarter 2794): 7
pages.

Fulginiti LE (2010) What comes first, agricultural growth or democracy?
Agric Econ 41:15–24

Gutierrez L (1999). Agricultural productivity growth and convergence
among countries. Cahiers d’economie et sociologie rurales, No.
537-25.

Hall RE, Jones CI (1999) Why countries produce so much more output
than others? Q J Econ qq4:83–116

Hausman. J. A (1978). Specification test in econometrics, Vol. 46(6):
1251-1271.

Headey D (2013) Developmental drivers of nutritional change: a cross-
country analysis. World Dev 42(2):76–88

IPPC (2007). Intergovernmental Panel on Climate Change reported tiled
“climate change 2001: impacts, adaption, and vulnerability-
contribution of working group II to the third assessment”.

Ito T, Kurosaki T (2009) Weather risk, wages in kind, and the off-farm
labor supply of agricultural households in a developing country. Am
J Agric Econ 91(3):697–710

Kotir JH (2011) Climate change and variability in sub-Saharan Africa: a
review of current and future trends and impacts on agriculture and
food security. Environ Dev Sustain 13(3):587–605

Lichtenberg FR (1994) Testing the convergence hypothesis. Rev Econ
Stat 76(3):576–782

30044 Environ Sci Pollut Res (2021) 28:30035–30045

https://doi.org/10.1787/722675213381
https://doi.org/10.1787/722675213381
http://www.nber.org/papers/w16481
https://doi.org/10.1100/2012/405675
https://doi.org/10.1100/2012/405675
http://www.faostat.fao.org


Liu Y, Shumway CR, Rosenman R, Ball VE (2011) Productivity growth
and convergence in U.S. Agriculture: new cointegration panel data
result. Appl Econ 43:91–102

Lusigi A, Thirtle C (1997) Total factor productivity and the effects of
R&D in African Agriculture. J Int Dev 9(4):529–538

Lusigi A, Piesse J, Thirtle C (1998) Convergence of per capita income
and agricultural productivity in Africa. J Int Dev 10(1):105–115

Martin W, Mitra D (2001) Productivity growth and convergence in agri-
culture versus manufacturing. Econ Dev Cult Chang 49:403–422

Mozumdar L (2012) Agricultural productivity and food security in the
developing world. Bangladesh J Agric Econ XXXV(1&2):53–69

Nicholson SE (2001) Climatic and environmental changes in Africa dur-
ing the last two centuries. Clim Res 17:123–144

Nin-Pratte A (2015). Inputs, productivity, and agricultural productivity in
Africa south of Saharan. IFPRI Discussion paper No. 01432,
Washington DC.

Nkamleu G (2004) Productivity growth, technical progress, and ef-
ficiency change in African agriculture. Afr Dev Rev 16(1):
203–222

Ochieng J, Kirimi L, Mathenge M (2016) Effects of climate variability
and change on agricultural production: the case of small-scale
farmers in Kenya. NJAS-Wageningen J Life Sci 77:71–78

Ogundari K (2014) The paradigm of agricultural efficiency and its impli-
cation on food security in Africa: what does meta-analysis reveal?
World Dev 64:690–702

Ogundari K, Aromolaran AB (2017) Nutrition and economic growth in
sub-Saharan African: a causality test using panel data. Int J Dev
Issues 6(2):174–189

Ogundari K, Ito S (2015) Convergence and determinants of change in
nutrient supply: evidence from sub-Saharan African countries. Br
Food J 117(12):2880–2898

Ortiz-Bobea A (2020) The role of nonfarm influences in Ricardian esti-
mates of climate change impact on U.S. Agriculture. Am J Agric
Econ 102(3):938–959

Ouyang Y, Shimeles A, Thorbecke E (2019) Revisiting cross-country
poverty convergence in the developing world with a special focus
on sub-Saharan Africa. World Dev 117:13–38

Paas, T., A. Kuusk, F. Schlitte, and A. Vork (2007), Econometric analysis
of income convergence in selected E.U. countries and their Nuts 3
level regions, The University of Tartu Faculty of Economics and
Business Administration Working Paper, 60.

Patrick S, Ward, Raymond J.G.M. Florax, and Alfonso Flores-Lagunes
(2011). Climate change and agricultural productivity in sub-Saharan
African: a spatial sample selection model. Working Paper # 11-4.
Dept. of Agricultural Economics at Purdue University.

Philips PCB, Sul D (2007) Transitionmodeling econometric convergence
tests. Econometrics 75(6):1771–1885

POSTnote (2006). Food security in developing countries. Published by
Parliamentary Office of Science and Technology, U.K., Issues No.
274.

Rada, N.E., S. Rosen, and J. Beckman (2013). Evaluating agricultural
productivity’s impact on food security. Selected paper prepared for
presentation at the International Agricultural Trade Research
Consortium’s (IATRC’s) 2013 symposium: productivity and its im-
pacts on global trade, June 2-4, 2013 Seville Spain

Ravallion M (2012) Why don’t we see poverty convergence? Am Econ
Rev 102(1):504–523

Reimers M, Klasen S (2013) Revisiting the role of education for agricul-
tural productivity. Am J Agric Econ 95(1):131–152

Rezek P, Cambell R, Rogers K (2011) Assessing total factor productivity
growth in sub-Saharan African agriculture. J Agric Econ 62:357–
374

Rezitis AN (2005) Agricultural productivity convergence across Europe
and the United States of America. Appl Econ Lett 12(7):443–446

Romer P (1986) Increasing returns and long-run growth. J Polit Econ 94:
1002–1037

Rosen, S., B. Meade, K. Fuglie, and N. Rada (2014). International food
security assessment, 2014-2024, GFA-25, U.S. Department of
Agriculture, Economic Research Service, June 2014.

Rosenzweig C, Parry M (1994) Potential impact of climate change on
World agriculture. Nature 367:133–138

Sala-i-Martin X (1996) The classical approach to convergence analysis.
Econ J 106(437):1019–1036

Schlenker W, Hanemann WM, Fisher AC (2005) Will U.S. agriculture
really benefit from global warming? Accounting for irrigation in the
hedonic approach. Am Econ Rev 95(1):395–406

Solow RM (1956) A contribution to the theory of economic growth. Q J
Econ 70(1):65–94

Thirstle C, Piessa J, Lusgi A, Suhariyanto K (2003) Multi-factor agricul-
tural productivity, efficiency, and convergence in Bostwana, 1981-
1996. J Dev Econ 71(2):605–624

Timmer MP, Inklaar R, O’Mahony M, Ark v B (2010) Economic growth
in Europe: a comparative industry perspective. Cambridge
University Press, New York

USDA-ERS (2018). International Agricultural Productivity. https://www.
ers.usda.gov/data-products/international-agricultural-productivity/

van der Veen A, Tagel G (2011) Effect of policy interventions on food
security in Tigray, northern Ethiopia. Ecol Soc 16(1):18. https://doi.
org/10.5751/ES-03895-160118

Wan GH (2005) Convergence in food consumption in rural China: evi-
dence from household survey data. China Econ Rev 16(1):90–102

WDI (2018). World Development Indicators’ Climate Change
Knowledge Portal. https://climateknowledgeportal.worldbank.org/
download-data

Wooldridge JM (2002) Econometric analysis of cross-section and panel
data. MIT Press, Cambridge

World Bank (2007). World Development reports in 2008. Agriculture for
development. Washington, DC: World Bank. Available @ DOI:
10.1596/978-0-8213.

Wouterse F (2016) Can human capital variables be technology changing?
An empirical test for rural households in Burkina Faso. J Prod Anal
45:157–172

Yu, B, and A. Nin-Pratt (2011). Agricultural productivity and policies in sub-
Saharan Africa. IFPRI Discussion paper No. 01150 Washington DC.

Zhan J, Tian X, Zhang Y, Yang X, Qu Z, Tan T (2017) The effects of
Agricultural R&D on Chinese agricultural productivity growth: new
evidence of convergence and implications for agricultural R& D
policy. Can J Agric Econ 65(3):453–475

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

30045Environ Sci Pollut Res (2021) 28:30035–30045

https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://www.ers.usda.gov/data-products/international-agricultural-productivity/
https://doi.org/10.5751/ES-03895-160118
https://doi.org/10.5751/ES-03895-160118
https://climateknowledgeportal.worldbank.org/download-data
https://climateknowledgeportal.worldbank.org/download-data

	The effects of climate change on African agricultural productivity growth revisited
	Abstract
	Introduction
	Data description and time-series property of the data
	Analytical framework
	Convergence hypothesis analysis in African agricultural TFP growth
	Ricardian model

	Results and discussion
	Panel data specific tests: unit root, Hausman tests, and serial correlation
	Convergence hypothesis test in African agricultural TFP growth
	Effects of climate change on African agricultural productivity growth
	Effect of other control variables on African agricultural productivity growth

	Concluding remarks
	Appendix
	References


