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Abstract
Agrochemicals can reach freshwater bodies by drift, leaching, or runoff, where they constitute complex mixtures. Given that
glyphosate and cypermethrin are within the most worldwide used pesticides, they are likely to co-occur in freshwater bodies. The
aim of this study was to analyze the interaction between glyphosate and cypermethrin formulations on the cladoceran
Ceriodaphnia dubia (Richard 1894) through an acute toxicity test and on a zooplankton assemblage through a mesocosm (30
L) experiment. The 24-h LC50 of both isolated pesticides and their equitoxic mixture was obtained for C. dubia. The mesocosm
was performed by exposing a zooplankton assemblage to both pesticides isolated and in combination. The acute toxicity of the
equitoxic mixture in C. dubia was 3 and 4 times higher than the isolated toxicity of glyphosate and cypermethrin, respectively.
The total toxic units of the mixture were 0.53, indicating a synergistic interaction. In the mesocosm experiment, both pesticides
also interacted causing a synergistic negative effect in Cladocera and Copepoda abundances. No interactions between pesticides
were found for Rotifera; therefore, the mixture effect was considered additive. It is suggested to continue analyzing pesticide
mixture effects on the basis of complementary scales of analysis to reach more environmentally relevant information.
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Introduction

In the last decades, agricultural practices have increased by ex-
pansion and intensification to satisfy growing humanpopulation

demands. This increase involves the use of high amounts of pes-
ticides associated with the production of genetically modified
crops (Matson et al. 1997; Bonny 2008). Agrochemicals can
reach freshwater bodies by drift, leaching, or runoff, affecting
nontarget organisms (Amorós et al. 2007; Sasal et al. 2015).
Their high toxicity resides in the fact that theyconstitute complex
mixtures, because theyeither are appliedasmixturesor converge
directly in the surface waters (Akan et al. 2015; Cruzeiro et al.
2015; Etchegoyen et al. 2017). Inmixtu`res, these pollutants can
interact synergistically (mixture effect higher than the sum of
individual effects) or antagonistically (mixture effect lower than
the sumof individual effects). If contaminants donot interact, the
mixture effect is additive (equal to the sum of their individual
effects) (Folt et al. 1999; Piggott et al. 2015). Although current
ecotoxicological regulations consider that toxicity tests should
include mixture bioassays because of their representativeness,
there is still poor information about the effects of pesticides in
mixture on nontarget species and communities (Relyea and
Hoverman 2006; Belden et al. 2007;Hasenbein et al. 2016).

Glyphosate [N-(phosphonomethyl)glycine], a broad-spectrum
postemergence herbicide, is the most globally used herbicide for
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weed control (Baylis 2000; Annett et al. 2014). Its wide use and
ubiquity in freshwater bodiesmake it a pseudo-persistent contam-
inant (Borggaard and Gimsing 2008; Primost et al. 2017).
Cypermethrin [alpha-cyano-3-phenoxybenzyl ester of 2,2-di-
methyl-3-(2,2-dichlorovinyl) cyclopropane carboxylic acid], a
non-systematic pyrethroid, is a widely used insecticide (Friberg-
Jensen et al. 2003). Thus both, glyphosate and cypermethrin, are
likely to co-occur in freshwater bodies (Marino and Ronco 2005;
Bonansea et al. 2013, 2017; Battaglin et al. 2014; Primost et al.
2017). The individual toxicity of glyphosate and cypermethrin to
nontarget freshwater organisms has been largely documented
(Friberg-Jensen et al. 2003; Kumar et al. 2010; Pérez et al. 2011;
Rico-Martinez et al. 2012; Annett et al. 2014; Arias et al. 2020;
Fantón et al. 2020). Nevertheless, few studies have focus on ana-
lyzing theirmixtureeffects,withsomecontroversies.For instance,
a synergistic interaction in acute toxicity of glyphosate and
cypermethrin was found in tadpoles (Rhinella arenarum)
(Brodeur et al. 2014),while anantagonistic interactionof the same
mixture was found in fish (Cnesterodon decemmaculatus)
(Brodeur et al. 2016). These findings show that the interactions
between pesticides may be different among the considered test
organism, which make it necessary to study different nontarget
organisms, in order to reach more complete information on how
pesticide can interact on the biota.

The impacts of pesticides are frequently assessed on single-
species bioassays, which provide valuable and comparable infor-
mation (e.g., APHA 1998; OECD 2004). Nevertheless, these
studies need to be complemented with toxicity tests covering as-
semblagesof species, since it hasbeenshownthatpesticideeffects
can differ between different organization levels, as interspecific
interactions and environmental factors might play an important
role (Brock et al. 2014; Hasenbein et al. 2016; Barmentlo et al.
2018; Gutierrez et al. 2020a). In this sense, zooplankton commu-
nity allows to easily work at different biological levels, since they
have small body sizes and short generation times, responding
quickly to environmental changes with high sensitivity
(DeLorenzo et al. 2001; Hanazato 2001; Resh 2008).

The aim of this study was to analyze the interaction be-
tween glyphosate and cypermethrin formulations on the cla-
doceran Ceriodaphnia dubia (Richard 1894) through an acute
toxicity test and on a zooplankton assemblage through a
mesocosm experiment. These both approaches were per-
formed on a complementary way in order to achieve a better
understanding of the effects of the pesticide mixture.

Materials and methods

Selection of pesticide formulations

Two commercial formulations were employed: glyphosate:
Atanor II® 43.8% w/v monopotassium salt (Atanor S.C.A.,
Argentina) and cypermethrin: Xiper 25® 25%w/v (40-50 cis)

mixture of cis-trans isomers of alphacyano-3-phenoxybenzyl
2,2 dimethyl-3 (2,2 dichlorovinyl) cyclopropane carboxylate
(UPL Argentina S.A.). The glyphosate concentrations are re-
ported as acid equivalent (a.e.) per liter, since Atanor II®
formulation presents glyphosate as monopotassium salt in or-
der to increase water solubility (Lanctôt et al. 2014).

Experimental design

Acute toxicity test

Acute toxicity of glyphosate and cypermethrin formulations
isolated and in combination was assessed in Ceriodaphnia
dubia following theAPHA (1998) protocol.Ceriodaphnia dubia
organisms were collected in a natural reserve located in the mid-
dle Paraná River floodplain (31° 38′ 15.1″ S 60° 40′ 23.3″ W),
and progressively adapted to laboratory culture conditions.

A stock culture ofC. dubiawas maintained in reconstituted
freshwater (APHA 1998: 120 mg L−1 SO4Mg and CaSO4

2H2O, 192 mg L−1 NaHCO3, 8 mg L−1 KCl). The culture
was settled in an incubation chamber at 22 ± 1 °C, with 16:8
light:dark regime, the culture media were weekly changed,
and organisms were fed three times a week with a
Scenedesmus obliquus culture.

The 24-h LC50 for each pesticide was estimated by expos-
ing C. dubia neonates (<24 h) to 5 concentrations of each
pesticide alone with the respective controls (without pesti-
cides) (Table 1). Based on the individual LC50, an equitoxic
mixture was made following Marking (1977) and 5 concen-
trations were tested (Table 1). A total of 4 replicates (5 neo-
nates each) per treatment were performed in 50-mL beakers.
Dissolved oxygen (DO) and pH were measured at the begin-
ning and at the end of the experiment. Their values varied
between 6 and 8 mg L−1 for DO and 7.5–8.15 for pH, being
within the limits established by APHA (1998).

For preparing the final selected concentrations, three stock
solutions were first prepared (glyphosate: 2580 mg L−1,
cypermethrin: 13.6 mg L−1, and equitoxic mixture:
13683 mg L−1 Gly plus 0.19 mg L−1 Cyp) in distillated water.

Table 1 Exposure concentrations of Gly: glyphosate (mg L−1) and Cyp:
cypermethrin (μg L−1) formulations in the acute toxicity tests with
Ceriodaphnia dubia

Isolated Mixture

Gly (mg L−1) Cyp (μg L−1) Gly (mg L−1) Cyp (μg L−1)

C1 4.7 0.04 0.7 0.01

C2 7.0 0.09 1.4 0.02

C3 10.5 0.17 2.7 0.04

C4 15.7 0.34 5.5 0.08

C5 23.6 0.68 10.9 0.15
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A subsample of each stock solutionwas conserved in darkness
at −4 °C for their analytical determination. Cypermethrin was
analyzed using a high-performance liquid chromatography
equipment (HPLC, SHIMADZU Prominence® 20-A Series)
with reverse-phase, RP18 column, and diode array detector,
following EPA Method 1660 (EPA 1993) (DL: 0.03 mg L−1,
QL: 0.1 mg L−1). Glyphosate was analyzed using an HPLC
equipment with a conductivity detector (Waters®). An Ion
Pack AG22 4 × 250 mm column, an Ion PackAS22 4 ×
240 mm column, and an ion regeneration suppressor (all
Dionex) were used. A mixture of sodium hydroxide (4 mM)
and sodium carbonate (9 mM) was used as the mobile phase.
The ion chromatography method with conductivity detection
was adapted from Zhu et al. (1999) (DL: 2.52 mg L−1, QL:
8.42 mg L−1).

Mesocosm experiment

A 30-L indoor experiment was set up exposing a zooplankton
assemblage to glyphosate and cypermethrin formulations iso-
lated and in combination. Three replicates were included per
treatment: control (Ctrl), glyphosate (Gly), cypermethrin
(Cyp), and a mixture of both pesticides using the same indi-
vidual concentrations (Mix). The exposure concentrations
were Gly: 6.4 mg L−1 (± 1.9), Cyp: 0.01 mg L−1 (± 0.002),
andMix: 6.9 mg L−1 (± 1.9) of glyphosate and 0.01 mg L−1 (±
0.001) of cypermethrin.

The pesticide concentrations were selected based on the
acute toxicity test preformed on C. dubia and published data
(Pérez et al. 2007; Vera et al. 2010; Akan et al. 2015;
Etchegoyen et al. 2017).

The zooplankton assemblage was collected in shallow lakes
of the middle Paraná River floodplain with a 20-μm net, to also
ensure the collection of phytoplankton as food resource. It was
left for 4 days in the laboratory for its acclimation and stabiliza-
tion. Laboratory conditions were 25 °C, natural photoperiod
(12 h light, approximately) and permanent aeration. The zoo-
plankton assemblage was inoculated in each plastic tank and left
in the same conditions during 1 day more for stabilization.
Afterward, the pesticides were carefully spiked and the experi-
ment lasted for 7 days in the same laboratory conditions. Samples
were taken at three sampling times: at days 1 (2 h after the
addition of pesticides), 4, and 7.

Physicochemical parameters as pH, temperature (°C), con-
ductivity (μS cm−1), and dissolved oxygen (mg L−1) were
measured every sampling time using Hanna portable probes.
Soluble reactive phosphorus, ammonium, nitrites, and nitrates
were analyzed according to APHA (1998). Glyphosate and
cypermethrin concentrations were also analyzed in each sam-
pling time. Glyphosate was determined using a SHIMADZU
Prominence 20A Series liquid chromatograph equippedwith a
f luorescence de tec tor (SHIMADZU RF-10AxL;
SHIMADZU Corporation, Kyoto, Japan) and a column

(Phenomenex Luna NH2 Part No. 00G-4378-Y0) (DL: 2 μg
L−1, QL: 6 μg L−1). Cypermethrin was measured through
matrix solid-phase dispersion (MSPD) validated by
Valenzuela-Quintanar et al. (2006) with modifications. A
gas chromatograph (Agilent 6890) with a micro capture elec-
tron detector (micro-ECD) was employed and a Chrompack
Capillay Column CP-Sil 5 CB (15 m, 0.53 mm, 1.5 μm) (DL:
2 μg L−1, QL: 6 μg L−1).

Quantitative zooplankton samples were taken by filtering
300 mL of water through a 45-μm net, fixed with formalde-
hyde 4% and colored with erythrosine. The individuals were
identified and quantified using specific taxonomic keys
(Ahlstrom 1940, 1943; Koste and Shiel 1989; Paggi 1995;
Segers 2002, 2007; FADA 2010; Kotov et al. 2013) in 1 mL
Sedgewick Rafter chamber under an optical microscope
(Nikon Eclipse E-200). The whole samples were quantified.

Data analysis

Acute toxicity bioassays

A probit analysis was performed to obtain the 24-h LC50
values (Finney 1971) of each isolated pesticide. Then, the
LC50 of the equitoxic mixture was calculated in order to as-
sess the interaction between both pesticides, following
Marking (1977):

UTmix ¼ LC50GlyMix

LC50Gly
þ LC50CypMix

LC50Cyp
ð1Þ

where UTmix = total toxic units of the mixture (UTmix > 1
antagonism, UTmix = 1 additive, UTmix < 1 synergism); Gly
= glyphosate; Cyp = cypermethrin; Mix = mixture.

Mesocosm experiment

A logarithmic transformation was applied to zooplankton
abundance to fit normal distribution of data. To analyze dif-
ferences in zooplankton (Cladocera, Copepoda, and Rotifera)
abundance between treatments, a one-way repeated measure
analysis of variance (RMANOVA) was performed with four
levels: Ctrl, Gly, Cyp, and Mix. To assess the empirical inter-
actions between pesticides, a one-way analysis of variance
(ANOVA) was performed with two independent factors:
glyphosate and cypermethrin; the factor levels for both were
presence and absence.

If a significant interaction between pesticides was found,
the type of interaction was determined by comparing the ad-
ditive expected effect of the mixture (Exp, Formula 2) with the
observed one (Obs, Formula 3). If the observed effect was
lower than the expected effect of the mixture, the pesticides
interacted antagonistically. If the observed and expected ef-
fects were equal, the pesticides did not interact and their
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combined effect was additive. If the observed effect was
higher than the expected effect of the mixture, the pesticides
interacted synergistically.

Exp ¼ Gly−Ctrlð Þ þ Cyp−Ctrlð Þ ð2Þ

Obs ¼ Mix−Ctrl ð3Þ

where Gly = abundance in glyphosate treatment; Ctrl =
abundance in control treatment; Cyp = abundance in
cypermethrin treatment; Mix = abundance in mixture
treatment.

Results

Acute toxicity test

The 24-h LC50 obtained for each pesticide and their mixture
are shown in Table 2 and the dose-response curves are shown
in Fig. 1. The toxicity of both pesticide formulations in mix-
ture was 3 and 4 times higher than their isolated toxicity, for
glyphosate and cypermethrin, respectively. The UTmix was
0.53, which, being lower than 1, indicates a synergistic inter-
action between both pesticides.

Mesocosm experiment

The environmental variables remained constant during the
experimental period: DO (7.17–7.81 mg L−1), conductivity
(233–246 μS cm−1), and pH (6.8–8) and did not vary signif-
icantly among treatments (ANOVA, p = 0.668, 0.397, and
0.461 respectively).

As regards nutrients, ammonium (0.008–0.5 mg L−1) and
nitrates (0.32–1.36 mg L−1) did not vary significantly among
treatments (ANOVA, p = 0.367 and 0.932, respectively),
while nitrites and phosphates were below the detection limit
(0.002 mg L−1 and 0.1 mg L−1, respectively).

The degradation rates for glyphosate were 0.096 and
0.076 mg L day−1 when it was alone or in mixture, respectively.
The degradation rates for cypermethrin were 0.0005 and
0.0009mgL day−1 when it was alone or inmixture, respectively.

At the beginning of the experiment, the zooplankton as-
semblage was composed by Rotifera (72%), Copepoda
(22%), and Cladocera (6%). The most representative

Rotifera taxa were Bdelloidea (57%) and Lecane hamata
(11%); for Copepoda, Cyclopoida (45%) and Calanoida
(41); and for Cladocera, Simocephalus vetulus (71%) and
Coronatella monocantha (7%).

Cladocera abundance decreased marginally significantly in
Cyp and Mix with respect to Ctrl and Gly, and no Cladocera
were observed in Mix at day 4 and in Cyp and Mix, at day 7
(MRANOVA, p = 0.07, F = 3.3).

Copepoda abundance decreased significantly in Cyp and Mix
with respect to Ctrl and Gly (MRANOVA, p < 0.001, F = 28.39).

Rotifera abundance did not vary significantly between
treatments or through time (MRANOVA, p = 0.13, F = 2.55).

Both pesticides interacted significantly in Cladocera abundance
at day 4 (ANOVA, p< 0.001,F= 66.76) (Fig. 2a). In this case, the
additive expected value (Exp = −0.84 ind L−1Log) was lower than
the observed value (Obs = −1.36 ind L−1Log) in absolute terms
(Fig. 3a). This indicates that glyphosate and cypermethrin have a
synergistic effect on Cladocera abundance. Although the individ-
ual effects of each pesticide were opposite (i.e., glyphosate in-
creases Cladocera abundance and cypermethrin decreases it), a
higher decrease was registered in the Mix (−1.36 ind L−1Log) than
that observed in the Cyp (−1.19 ind L−1Log).

A significant interaction was observed between glyphosate
and cypermethrin in the Copepoda abundance at day 7
(ANOVA, p < 0.001, F = 26.25) (Fig. 2b). In this case, the
additive expected value (Exp = −3.19 ind L−1Log) was lower
than the observed value (Obs = −3.84 ind L−1

Log) in absolute
terms (Fig. 3b). This indicates that glyphosate and
cypermethrin have a synergistic effect on Copepoda abun-
dance. As for Cladocera, although the individual effect of each
pesticide was opposite (i.e., glyphosate increases Copepoda
abundance and cypermethrin decreases it), the abundance de-
crease observed inMix (−3.84 ind L−1Log) was higher than the
decrease observed in Cyp (−3.62 ind L−1Log).

No interactions between pesticides were found for Rotifera
abundances (ANOVA, p > 0.05); thus, the mixture effect was
considered additive (Fig. 3c).

Discussion

Acute toxicity test

The LC50s of the individual pesticides for C. dubia are in
congruence with that recorded in the available bibliography.
In relation to glyphosate formulation (Atanor II), the 24-h
LC50 obtained (8.37mg L−1) was between the medium values
registered for C. dubia: 6 and 5.7 mg L−1 (Roundup 24 and 48
h, Tsui and Chu 2004); 4.84mg L−1 (Roundup Ultramax 48 h,
Reno et al. 2018); and 14.49 mg L−1 (Eskoba 48 h, Reno et al.
2015). Nevertheless, some extreme values ranged between
0.02 mg L−1 (Roundup 48 h, Ripley et al. 2002) and 415
and 707 mg L−1 (Rondeo 24 and 48 h, Tsui and Chu 2004).

Table 2 The 24-h LC50 for glyphosate (mg L−1) and cypermethrin (μg
L−1) formulations isolated and in mixture to Ceriodaphnia dubia

Isolated Mixture

Glyphosate (mg L−1) 8.37 (5.84-11.99) 2.54 (1.24-5.21)

Cypermethrin (μg L−1) 0.16 (0.06-0.44) 0.04 (0.02-0.07)
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This variation in glyphosate toxicity among formulations
shows that its toxicity may dependmore on the surfactant than
in the active ingredient (Tsui and Chu 2003; Reno et al. 2018).
With respect to the cypermethrin formulation used here (Xiper
25), the 24-h LC50 obtained (0.16 μg L−1) was similar to the
values already found for C. dubia: 0.23 μg L−1 (Pestanal 48 h,
Shen et al. 2012) and 0.89 μg L−1 (active ingredient 96 h, Liu
et al. 2004). In this work, it is observed that C. dubia is much
more sensitive to cypermethrin (insecticide) than glyphosate
(herbicide). Accordingly, several studies have shown that
aquatic arthropods are highly sensitive to pyrethroids, being
the 48-h LC50 for most of them less than 1 μg L−1 (Lutnicka
et al. 2014). Moreover, the LC50 of cypermethrin reported in
the present study (0.16 μg L−1) was lower than the maximum
concentration detected in several field studies (Jergentz et al.
2005; Marino and Ronco 2005; Akan et al. 2015; Cruzeiro
et al. 2015; Etchegoyen et al. 2017). Regarding glyphosate, al-
though the lethal concentrations founded for C. dubia (8.37 mg
L−1) are higher than those usually detected in field studies (e.g.,
Thompson et al. 2004; Peruzzo et al. 2008; Battaglin et al. 2009,
2014; Coupe et al. 2012; Bonansea et al. 2017), the environmental
concentrations are known to be highly variable depending on

application moment and dose, rainfalls, and different ways of di-
rect and diffuse contamination (Götz et al. 2010; Van Gestel et al.
2011; Stehle et al. 2013). Some authors have pointed that in a
worst-case scenario, the organisms can be exposed to similar con-
centrations than those reported in the present study (Pérez et al.
2007; Vera et al. 2010). Moreover, it should be considered that at
lower concentrations, sublethal effects could be observed (e.g.,
Cuhra et al. 2013; Garza-León et al. 2017; Reno et al. 2018).

The lethal toxicity of the glyphosate and cypermethrin mix-
ture on C. dubia suggested a synergistic interaction between
these pesticide formulations, since the UTmix (0.53) was lower
than 1 (Marking 1977). Brodeur et al. (2014) found the same
synergistic interaction effect when exposing tadpoles
(Rhinella arenarum) to mixtures of two pairs of formulations
of glyphosate and cypermethrin in lethal toxicity tests.
Nevertheless, Brodeur et al. (2016) also found an antagonistic
interaction effect when exposing a fish (Cnesterodon
decemmaculatus) to mixtures of the same pairs of pesticide
formulations. This indicates that glyphosate and cypermethrin
interaction depends on the studied organism, being this infor-
mation of great interest for regulatory agencies when deciding
the nontarget organisms for toxicity assessments.

Fig. 1 Dose-response curve for
acute toxicity test on
Ceriodaphnia dubia. a
Glyphosate: Gly: glyphosate
alone, Gly mix: glyphosate in
mixture. b Cypermethrin: Cyp:
cypermethrin alone, Cyp mix:
cypermethrin in mixture

Fig. 2 Profile graphs for a
Cladocera and b Copepoda
abundances in days 4 and 7,
respectively. Zero indicates
absence of the pesticide and 1,
presence
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Several studies concluded that only 5% of the mixtures show
a synergistic effect more than twofold greater than the hypothetic
additive effect (Deneer 2000; Warne 2003; Belden et al. 2007).
In this way, the synergistic effect found in the present study is of
great interest since the toxicity of both pesticide formulations in
mixture was 3 and 4 times higher than their isolated toxicity, for
glyphosate and cypermethrin, respectively.

Mesocosm experiment

Microcrustaceans, especially cladocerans, are known to be partic-
ularly sensitive to insecticides (Hanazato 1998; Van den Brink
et al. 2002; Sakamoto et al. 2006). Accordingly, in our study,
Cladocera as well as Copepoda showed high sensitivity in treat-
ments with cypermethrin (Cyp and Mix). In contrast, Rotifera
abundance increased in pesticide treatments, in accordance with
previous studies (Hanazato 1991;Wendt-Rasch et al. 2003; Chang
et al. 2005). Rotifers could have benefited by the decrease in
microcrustacean abundance, since they are less competitive for
food resources (Hanazato 2001). Moreover, rotifers have shorter
life cycles than microcrustaceans and a faster metabolic rate
(Wallace et al. 2006; Smirnov 2017), which could imply a faster
detoxification, all this contributing to a higher recovery rate when
facing environmental disturbances. Besides, the greater variability
of functional traits of rotifers compared tomicrocrustaceansmakes
them more successful and dominant on a wide range of environ-
mental conditions (Vogt et al. 2013; Obertegger and Flaim 2015).

As in the acute toxicity test with C. dubia, a synergistic
interaction was observed between glyphosate and
cypermethrin formulations for Cladocera and Copepoda
abundances in the mesocosm. Although in both cases
individual pesticide effects were opposite, cypermethrin
being negative and glyphosate positive, the combined effect
was synergistically negative. In this sense, Crain et al. (2008)
assumed that synergy occurs when the mixture effect is more
negative than the additive sum of the opposing individual
effects. Nevertheless, this assumption could overestimate syn-
ergy when the mixture effect is less negative than the individ-
ual negative effect (Piggott et al. 2015). In the present study,

the negative effect of the mixture in Cladocera and Copepoda
abundances was higher than the individual negative effect of
cypermethrin formulation. This indicates that there was a neg-
ative synergistic interaction between glyphosate and
cypermethrin formulations.

Surfactants, solvents, or emulsifiers of the formulation may
also interfere on pesticide interactions. In this sense, Brodeur
et al. (2014) found differences in the magnitude of synergism
between two different pairs of pesticide formulations of
glyphosate and cypermethrin. This information is of great en-
vironmental concern as commercial formulations are mixtures
of chemical compounds, making it difficult to predict the mag-
nitude of their interactions.

These results are of great interest as mesocosm experiments
allow to establish cause-effect relationships between contam-
inants and biologic responses (Brock et al. 2014), and the
analyses of mixture effects on a community assemblage con-
stitute a more ecologically relevant approach. There are sev-
eral field studies analyzing zooplankton community in rela-
tion to agricultural practices (e.g., Dodson et al. 2007; Albert
et al. 2010; Frau et al. 2021). Nevertheless, this community
responds to several environmental factors, e.g., nutrients and
conductivity (Jafari et al. 2011; Gutierrez et al. 2020b), which
makes it difficult to relate their responses with pesticide con-
tamination on the field. Therefore, it is necessary to comple-
ment these studies with medium scale analysis as mesocosms.

Conclusion

In the present study, synergistic interactions between
glyphosate and cypermethrin formulations were found in
both the single-specie toxicity test (C. dubia) and the
mesocosm experiment with a zooplankton assemblage. It
is suggested to continue analyzing pesticide mixture ef-
fects, particularly encompassing complementary scales of
analysis to reach more environmentally relevant ecotoxi-
cological information.

Fig. 3 Mean expected (Exp: (Gly
−Ctrl)+(Cyp−Ctrl)) and observed
(Obs: Mix−Ctrl) effects values on
a Cladocera, b Copepoda, and c
Rotifera abundances (log ind L−1)
and standard deviation. Zero
indicates no difference between
Ctrl and pesticide treatments,
positive values indicate higher
abundance in treatments than Ctrl,
and negative values indicate
lower abundance in treatments
than Ctrl. *Significant interaction
between pesticides
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