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Abstract
Improving the ecological efficiency of farmland use (EEFU) has become an important part of ensuring food security and solving
environmental pollution problems. At present, the Chinese government is actively promoting large-scale farmland transfer to
reduce the level of farmer-/plot-scale farmland fragmentation (FF), so it is crucial to clarify the effect of landscape-scale FF on
EEFU. This study applies the non-dynamic panel and threshold models in an empirical study of the municipal administrative
regions along the Yangtze River Economic Belt (2000, 2005, 2010, and 2015). The results reveal that there is a single threshold
for the effects of area, shape, and distance fragmentation on EEFU with farmland area per capita (FAPC) as the threshold
variable. The threshold values are 1.548, 1.373, and 1.542, respectively. The effects of area and distance fragmentation on
EEFU are initially promoted and then suppressed; however, shape fragmentation always has an inhibitory effect on EEFU.
These findings suggest that ignoring the condition of FAPC of different regions and promoting large-scale farmland transfer
blindly will give rise to the decline of EFFU. These results are conducive to the sustainable utilization of farmland and the
formulation of related policies.

Keywords Farmland fragmentation . Ecological efficiency of farmland use . Econometric model . Farmland area per capita . The
Yangtze River Economic Belt

Introduction

As the most populous nation, farmland is under great pressure
for supporting social economic development and ensuring food
security in China (Deng et al. 2015; Liu 2018). On the one hand,

China underwent rapid urbanization in the past 40 years. The
conversion of farmland to construction land has not only be-
come an important guarantee for local government finances
(Zhong et al. 2019), but also provides space for urban expan-
sion, especially for high-quality farmland around the city (Wu
et al. 2017). On the other hand, farmland is still the main means
of production for about 5.516 million China’s farmers
(Population Investigation Division, National Bureau of
Statistics of China 2020). Efficient use of cultivated land re-
sources is an important route for farmers to achieve income
growth. Therefore, the Chinese center government always at-
taches great importance on the utilization and protection of
farmland resources (Lu et al. 2018a; Zhang et al. 2019; Jin
et al. 2019) and has launched many principal campaigns to
maintain the quantity and quality of farmland, e.g., the dynamic
balance system of farmland quantity and the basic farmland
protection system (Wu et al. 2017). Also, in order to ensure food
security and raise farmers’ income for rural poverty reduction,
the Chinese center government has also implemented a number
of agricultural subsidy policies to encourage farmers to actively
engage in agricultural production (Huang et al. 2013).
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In recent years, benefited from the large amount of chem-
ical fertilizer input (Yu 2016), China’s grain production has
shown a sustained growth trend, and the current outputs
equaled about one fifth of world corresponding supplies (Liu
et al. 2020). From the perspective of farmland use practices,
focusing only on economic benefits while ignoring the asso-
ciated ecological (environmental) problems of farmland use
will inevitably cause land degradation and environmental pol-
lution (Balota et al. 2014), such as heavy metal pollution
(Zhang et al. 2020), soil compaction (Prokop et al. 2018),
greenhouse gas emissions (Lu et al. 2018a), and nonpoint
source pollution (Dalu et al. 2018; Ruan et al. 2020).
Relevant researches have also pointed out that one-third of
the world’s farmland is polluted and damaged due to unrea-
sonable utilization (Verheijen et al. 2009; Cao et al. 2020).
Thus, balancing the benefits between economic and ecologi-
cal plays a key role in realizing the sustainable utilization of
farmland resources (Hou et al. 2019a).

Ecological efficiency (eco-efficiency), the achievement of
the highest possible economic benefits with the least possible
input of resources and damage to the environment, has been
widely studied by scholars and governments (Schaltegger and
Sturm 1990). Eco-efficiency has been applied to urbanization
(Bai et al. 2018), agricultural production (Bonfiglio et al.
2017), and energy consumption (Yang et al. 2018).
Similarly, in order to quantify the sustainability of farmland
use, many scholars have examined and discussed EEFU (Lu
et al. 2018a; Ren et al. 2019; Hou et al. 2019a). For example,
on the basis of the comprehensive consideration of economic
output, nonpoint source pollution, and carbon emissions, Feng
et al. (2015) point out that China’s EEFU showed a significant
downward trend from 1993 to 2013. Sabiha et al. (2017) com-
puted the eco-efficiency of high-yielding farmland in
Bangladesh and found that undesirable output or on-farm en-
vironmental damage induces an efficiency loss of 20%. In
addition, Hou et al. (2019a) focused on the impact of urbani-
zation on EEFU.

At present, the Chinese government is actively promoting
large-scale farmland transfer to reduce the level of FF (Xie and
Lu 2017). Thus, the impact of FF on farmland use has been a
topic of interest for researchers. One view is that FF is the
main obstacle to improving agricultural productivity and real-
izing agricultural modernization (Ali and Deininger 2014;
Latruffe and Piet 2014; Sklenicka 2016; Sklenicka et al.
2017; Lu et al. 2018b). In contrast, many studies suggest that
FF can enrich the agricultural production structure (Bellon and
Taylor 1993), spread the working time of agricultural produc-
tion across different seasons (Bellon 1996), reduce land
ownership-related conflicts (Ntihinyurwa et al. 2019), and in-
crease biodiversity (Thenail and Baudry 2004; Thenail et al.
2009). However, the above research focuses more on farmer-/
plot-scale FF and less on the effects of FF on the utilization of
farmland at the landscape scale.

In fact, due to the large population and limited farmland
resources in rural areas, the tense human-land relationship is
the main factor for the farmer-/plot-scale FF in the rural areas
of China, which has also been confirmed by many scholars
(Liu et al. 2017; Xie and Lu 2017). In recent years, the rapid
development of the social economy has significantly changed
the relationship between humans and land in China’s rural
areas, thus increasing FAPC and promoting the transfer of
farmland (Long 2014). With the expansion of the farmland
management size for farmers, farmer-/plot-scale FF have
gradually evolved into landscape-scale FF. Consequently,
the effect of landscape-scale FF on the EEFU is also worthy
of attention, especially for relevant policy design and decision
making in the future (Del Corral et al. 2011; Latruffe and Piet
2014). More importantly, farmland transfer policy implies a
hypothesis that landscape-scale FF is beneficial to EEFU.
Unfortunately, the effects of landscape-scale FF on EEFU
remains unclear. Additionally, the variation of FAPC is a
dominant factor for the different type transformation of FF
from farmer-/plot-scale to landscape-scale, but few studies
have explored the effects of landscape-scale FF on EEFU in
combination with changes in FAPC.

In this study, we selected Fragstats 4.2 software and the
slack-based measure (SBM) undesirable model to calculate
the landscape-scale FF and the EEFU, respectively. Further,
according to the threshold model proposed by Hansen (1999),
we constructed an analysis model with FAPC as the threshold
variable to analyze the impact of FF on EEFU. Prior to this
analysis, we used the non-dynamic panel model to perform a
comparative analysis to provide a useful reference for relevant
policy formulation. Accordingly, the specific contents of this
study are as follows: “Literature review” systematically sum-
marizes the relationship of different scales of fragmentation
and the effect of FF on farmland use. “Data sources” describes
how landscape-scale FF and EEFU are calculated and ex-
plains the construction of threshold and non-dynamic panel
models. “Methodology” introduces the study area situation
and the related data acquisition methods and process.
“Results and discussion” presents the findings of the empirical
analysis and discussion. “Conclusions” details research
conclusions.

Literature review

FF definitions and their interrelationship

Many scholars have defined the concept of FF from different
perspectives. For example, Mcpherson (1982) pointed out that
FF means that a household’s farmland resources are divided
into several spatially separated plots. The same or similar con-
cepts have been used in many relevant studies, such as the plot
size of each household/farm (Carter and Yao 2002), the
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number of plots owned by the household/farm (Xie and Lu
2017), and the average plot size of the household/farm
(Niroula and Thapa 2005). In contrast, to measure FF, most
studies use the plot size of each household/farm rather than the
number of plots operated by the household and the farm’s
average plot size. Since farmland plot is a basic operational
unit, Niroula and Thapa (2007) consider it meaningful to an-
alyze the impact of FF on farmland utilization. Consequently,
plot size, shape (single plot or multiple plots), and distance
(between the plot and the farm, as well as among the plots),
which usually influence the cost of farmland utilization and
abnegation of modern technologies, are the most commonly
used variables to represent the level of FF (Del Corral et al.
2011; Kawasaki 2010). It can be seen that the FF concepts
mentioned above are defined from the perspective of whether
the use of farmland is beneficial for farmers, so they are often
referred to as farmer-/plot-scale FF. In contrast, some scholars
have also proposed some FF indicators at the landscape scale,
such as the number, size, and shape of plots; distance of the
plots from the farmer’s residence; and distance between the
plots, which was calculated at the municipality level (Jia and
Petrick 2014; Latruffe and Piet 2014).

As we all know, only land suitable for agricultural produc-
tion can be developed or converted into farmland. Hence,
farmland patches have different sizes, shapes, and locations
at the landscape scale, which determine the basic conditions of
farmland use, as represented by labels (1), (2), and (3) in Fig.
1. However, since China has a large population but not
enough farmland, farmers often own several widely dispersed
plots of different quality in order to achieve a fair distribution
of farmland, as denoted by labels A-1, A-2, and A-3 in Fig. 1
(Tan et al. 2006; Lu et al. 2018b). One patch is usually divided
into many plots for different farmers (Sklenicka 2016).
Currently, landscape-scale farmland patches could lead to
the separation of farmland plots from the border, shape, and
spatial distance perspective to some extent, but due to the
decentralized farmlandmanagement of farmers, the FF caused
by the division of farmland patches is more serious (Latruffe
and Piet 2014; Guo et al. 2019; Carter and Yao 2002;
Ntihinyurwa et al. 2019). With improvements at the social
and economic levels, many members of rural populations
have moved to cities. The increase in FAPC in rural areas
brings the possibility of farmland transfer. Since farmers with
high labor productivity have high marginal output, in general,
they are always motivated to expand the area of their farmland
by leasing or exchanging farmlandmanagement rights1 (Janus
et al. 2018). At this time, farmers are more inclined to transfer
adjacent farmland to reduce costs and increase income (Guo
et al. 2019). For example, in order to expand the farmland
area, farmer A exchanged the plot A-2 with the plot C-1 from

farmer C at stage 2 and rented the plot B-1 from farmer B at
stage 3 (Fig. 1) In this context, patches (1) will be managed
independently by farmer A at stage 3, and thus the condition
of farmland patches (1) which will have a direct impact on
farmland use activities, i.e., at stages 3 and 4 in Fig. 1. With
the increase rate of rural population loss, the area owned by
each farmer expanded. However, if the income of some
farmland patches is less than the opportunity cost or the
operating costs, these farmlands will be marginalized or
even abandoned by farmers, as shown in stage 4 in Fig.
1 (Strijker 2005). Li and Li (2019) have also confirmed
that a large number of farmlands have been abandoned
in mountainous areas where the farmland landscape is
very fragmented.

The FF has attracted widespread attentions since it plays an
important role in the utilization of farmland. It is important to
note that landscape-scale FF can always affect farmland use
activities, but the degree of effect varies with the change in the
FAPC (Di Falco et al. 2010; Kawasaki 2010; Latruffe and Piet
2014; Xie and Lu 2017). In addition, to facilitate an under-
standing of fragmentation, this study uses the term “plot”,
rather than “patch”, in the following sections.

Effect of FF on farmland utilization

Most studies have considered FF to be an obstacle to farmland
utilization (Di Falco et al. 2010; Latruffe and Piet 2014). For
example, Kawasaki (2010) investigated the costs and benefits
of FF by using panel data obtained from Japanese rice farms
and revealed that FF increases production costs and offsets
economies of size. Further, FF also increases the time and fuel
required to travel between plots and reduce the size of land
through the loss or wastage of some areas at their boundaries
(Carter and Yao 2002; Ntihinyurwa et al. 2019). Moreover,
based on household survey data collected from the Jiangsu
province in China, Lu et al. (2018b) confirmed that an in-
crease in the Simpson index per unit resulted in an average
increase in costs by 39%, whereas an increase in plot size
resulted in an average decrease in costs by 8%. In addition,
relevant studies have shown that farmers are not enthusiastic
about adopting modern technology and investments in farm-
land construction when plots are very small or irregularly
shaped (Di Falco et al. 2010; Tan et al. 2010). In addition,
some scholars reveal that FF will increase the cost of water
transportation (Kawasaki 2010; Tan et al. 2010). With the
increase in agricultural production costs, FF has become the
main cause for a reduction in agricultural labor productivity
(Jia and Petrick 2014), agricultural land circulation (Xie and
Lu 2017), and the abandonment of farmland (Lu et al. 2018b).

However, some scholars clarify that FF also has many pos-
itive effects. On the one hand, FF has undeniably played an
important role in agricultural development (Lin 1992). For
instance, the Household Responsibility System in China has

1 In China, farmlands are under the ownership of village collectives, and this
ownership cannot be sold to others.
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significantly promoted the development of agriculture and
guaranteed a high demand for agricultural products in the
development of the national economy (Xu et al. 2019).
Following the implementation of land reforms in 1991, the
transformation of large farms to highly intensive small-scale
farms promoted the rapid development of Bulgarian agricul-
ture (Buckwell and Davidova 1993) and a similar phenome-
non also occurred in Central and Eastern European countries
(Dijk 2002). As clarified by Di Falco et al. (2010), FF plays an
important role in ensuring food security; hence, policy makers
should not despise small farmers and consider them burden-
some. On the other hand, some scholars have found that FF
can enrich the agricultural production structure (Bellon and
Taylor 1993), offset labor insufficiency during busy seasons
and surplus labor during slack seasons (Bellon 1996), and
reduce land ownership-related conflicts (Ntihinyurwa et al.
2019). Moreover, FF reduces agricultural production risks
arising from the occurrence of disease, hail, droughts, floods,
and other natural disasters and, thereby, ensures food security
(Del Corral et al. 2011).

Overall, FF affect many aspects of farmland use activities,
especially the relationship between input and output of farm-
land. It is important to note that the above concept of FF
highlights the influence of farmer-scale or plot-scale FF on
the input-output of farmland utilization. As EEFU represents
the combination relationship of input and output; however,
few researches examine how FF affects the EEFU at land-
scape scale. As noted in “FF definitions and their

interrelationship”, farmland use activities can also be influ-
enced by landscape-scale FF, which will inevitably affect
the EEFU. However, previous studies have not provided con-
clusive evidence on the effect of landscape-scale FF on EEFU.
In addition, with the change in the FAPC, the impact of the
landscape-scale FF on the EEFU is complex. Therefore, it is
likely that there is not a linear relationship between FF and
EEFU.

Data sources

Study area

The Yangtze River Economic Belt (YREB), which is the area
where the main river and the tributaries of the Yangtze flow,
encompasses eight provinces and two municipalities (Fig. 2).
It has a total area of 2.05 million km2 and accounts for more
than 40% of the country’s population and GDP (Hou et al.
2019a). As one of the country’s three major grain-producing
areas, the YREB contributes to China’s food security.
Therefore, the rational and complete utilization of all farmland
is the basic condition for food security in the YREB.
However, in recent years, due to the increase in the cost of
land utilization brought about by fragmentation, the phenom-
enon of abandonment and idle farmland is more serious along
the YREB. Moreover, fertilizer, pesticide use, and nonpoint
source pollution have increased in the region (Wang et al.
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2018; Jin et al. 2018). Therefore, the analysis of FF’s impact
on the EEFU in the YREB has immense practical significance.

Data sources and processing

We obtained the data on the region’s farmland (with spatial
resolution of 30 × 30 m2 taken by the US Landsat TM/ETM
satellite) from the land-use database provided by the
Resources and Environment Scientific Data Centre (http://
www.resdc.cn) (Deng et al. 2015). Using the geographic in-
formation system technology, we calculated each municipal
district’s farmland area, which is the basic unit of analysis in
this study. This study covers 4 years: 2000, 2005, 2010, and
2015. Social and economic statistics (e.g., data on machinery,
fertilizers, length of highways, GDP, and the primary industry
labor force) were obtained from theChina Regional Economic
Statistical Yearbook (2000, 2005, and 2010). In addition, the
number of people engaged in units of the primary industry
(guidance department on agricultural technology) was provid-
ed by the China City Statistical Yearbook (2000, 2005, 2010,
and 2015). Since the China Regional Economic Statistical
Yearbook lacks the relevant data for 2015, this study consulted
the statistical yearbooks of each province to obtain the re-
quired index data. Regarding the EEFU, we selected labor
force, agricultural machinery, and use of fertilizers as the input
vector; the loss of nitrogen and phosphorus from fertilizers as
undesirable production; and the primary industry’s output val-
ue as desirable production. Further, to achieve interregional
comparability, we used the input and output per unit area to
calculate the EEFU. The formula for the calculation is as fol-
lows: Zi = Fi/Ai, where Zi is the average input or output of
farmland use, Fiis the input of production factors or output

of products, Ai is the farmland area in the municipal adminis-
trative jurisdiction, and the subscript i represents a municipal
administrative district. Moreover, we used the loss coefficient
and fertilizer input to calculate the undesirable outputs of
farmland use. The concrete calculation formula is wastage =
input number of fertilizers × loss coefficients (Zhao et al.
2016). To achieve comparable values in different periods,
we adjusted the price-related variables to a unified price.

Methodology

Calculation of the farmland fragmentation

FF can be described from three perspectives: size, shape, and
distance fragmentation of plots (Lu et al. 2018b). As a result,
this study selects the following three indicators to reflect the
landscape-scale FF, and Fragstats 4.2 software is used to cal-
culate the corresponding index value.

Plot size coefficient of variance

The plot size coefficient of variance (PScov) reflects the het-
erogeneity of a region’s farmland area (Zhang et al. 2015).
The larger the PScov value, the higher the dispersion degree
of the region’s farmland plot area. Further, with an increase in
FAPC, the PScov value of plot area can better reflect the
influence of plot area on farmland use than the average plot
area.

MPS ¼ 1

n
∑n

i¼1ai ð1Þ

Fig. 2 Location and elevation of the YREB
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PScov ¼ PSSD
MPS

ð3Þ

where n is the number of farmland plots in the region, ai is the
area (m2) of the farmland plot i, MPS is the mean plot area
(m2), and PSSD represents the plot size standard deviation.

Area-weighted mean shape index

Many studies have pointed out that the shape of farmland plots
can affect mechanical input and marginal income, such as
Latruffe and Piet (2014), because the irregular shape of farm-
land not only increases the difficulty of farming but also re-
duces the utilization efficiency of agricultural machinery.
However, by increasing the plot area of farmland, the negative
impact of irregular shape will be weakened. Therefore, we
selected the area-weighted mean shape index (AWMSI) to
reflect the farmland’s shape fragmentation level. The larger
the AWMSI, the more complex and irregular the plot shape.
The specific formula is as follows:

AWMSI ¼ ∑
n

i¼1

0:25Pi
ffiffiffiffi

ai
p

� �

ai
A

� �

� �

ð4Þ

where n is the number of farmland plots in the region; Pi and ai
are the perimeter (m) and area (m2) of farmland plot i, respec-
tively; and A is the total area of farmland plots in a region.

Mean nearest neighbor distance

In general, the distance between farmland plots results in an
increase in transportation costs and a reduction in the efficien-
cy of fixed assets (Carter and Yao 2002; Zhou et al. 2019).
The mean nearest neighbor (MNN) is the main index used to
measure landscape-level plot proximity (Riitters and Costanza
2019). In general, the larger the MNN, the larger the distance
between farmland plots. Conversely, the plots of farmland
were close to each other and distributed in aggregation. The
specific formula is as follows:

MNN ¼ ∑n
j¼1dminij

n
ð5Þ

where dminij is the closest distance between plots i and j and n
denotes the number of plots in the region.

Calculation of the eco-efficiency of farmland use

Over the years, the Data Envelopment Analysis (DEA) model
has become a popular model to measure efficiency (Charles
et al. 2019). However, traditional DEAmodels (e.g., CCR and

BBC models) ignore the input-output slack. Hence, Tone
(2002) constructed an SBM of the DEA model .
Subsequently, by introducing undesirable outputs into the
SBM model, the SBM-undesirable model for eco-efficiency
evaluation was constructed (Cooper et al. 2007). The specific
operating principles of SBM-undesirable are as follows: the
input vector can be expressed as x ∈ Rm and the two output
vectors as yg ∈ Ra and yk ∈ Rb. According to the actual process
of farmland use, all kinds of input and output are greater than
or equal to zero, that is, X ≥ 0, Yg ≥ 0, and Yk ≥ 0. Therefore,
we can define the production possible set as p = {(x, yg, yk)|
x ≥ Xλ, yg ≥ Yg, yk ≥ YKλ}, λ ∈ Rn, λ ≥ 0. Based on this, The
SBM-undesirable model for calculating EEFU can be shown
as follows:

minρ ¼
1−

1

m
∑
m

i¼1
D−

i =xi0

1þ 1

aþ b
∑
a

r¼1
Dg

r =yr0 þ ∑
b

h¼1
Dk

h=yh0

� �

s:t:x0 ¼ Xλþ D−; yg0 ¼ Y gλþ Dg; yk0 ¼ Y kλþ Dk

D− ≥0;Dg≥0; Dk≥0; λ≥0

ð6Þ

whereD−,Dg, andDk are the relaxed variables; λ is the weight
vector; when ρ is less than 1, it means that at least one of D−,
Dg, and Dk is not zero, and there is room for improvement of
EEFU.

Selection of other variables

Besides FF, many factors can affect the process of farmland
use and thereby EEFU. Specifically, the proportions of the
rural labor force and farmland area determine the allocation
of farmland in rural regions, as well as determining the input-
output relationship in the process of farmland use (Lin 1992).
Many studies suggest that the presence of surplus rural labor
force restricts the input of agricultural machinery and, thereby,
limits economic benefits (Xie and Lu 2017).Moreover, a large
labor force will also inhibit farmland transfer, and further ag-
gravate the degree of farmland fragmentation (Latruffe and
Piet 2014; Lu et al. 2018b). Contrarily, industrial development
promotes the transfer of the agricultural labor force, and the
contribution of the tertiary industry to the gross domestic
product (GDP) often indicates the level of industrial develop-
ment (Cai 2008). Additionally, the acquisition of sufficient
market and technological information can promote acquisition
of more advanced production technologies and optimization
of the input-output relationship for farmland use, whereas the
business volume of postal services can reflect the regional
level of information communication (Chen et al. 2009).
According to location theory, the provision of adequate high-
way transportation measures can reduce production costs and,
thereby, improve the economic benefits of farmland use (Xiao
et al. 2015). Furthermore, to improve the output of farmland
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use, the Chinese government has established a Special
Guidance Department on Agricultural Technology to provide
technical guidance on the use of farmland, and the number of
people working in this department usually indicates the level
of governmental investment (Wang and Li 2014). Since 2006,
a series of policies that support and benefit agricultural devel-
opment has been promulgated in China, including the abol-
ishment of agricultural taxes and provision of an increase in
agricultural subsidies. Such policies cannot only solve the
issue of insufficient funds in agricultural production but also
improve the economic revenues of farmland use (Wang et al.
2018). Hence, in this study, the aforementioned indicators are
the control variables, as shown in Table 1.

Model establishment and estimation

Non-dynamic panel model

Model establishment According to the “Literature review”,
the EEFU is the result of comprehensive influence of external
factors on farmland use. The Stochastic Impacts by
Regression on Population, Affluence and Technology
(STIRPAT) model is classically used to analyze the impact
of external factors and human activities on the environment
(Ehrlich and Holdren 1971). Therefore, the STIRPAT model
can be used as a basic model to analyze the FF’s impact on the
EEFU. The specific forms of the STIRPAT model are
as follows:

I ¼ aPbAcTde ð7Þ
where I denotes the environment pressure; P is the
number of people; A denotes the per capita affluence;
T represents the technology level; e is the error term; a
denotes the model’s fit coefficient; and b, c, and d de-
note the elastic coefficients of P, A, and T, respectively.

To eliminate heteroscedasticity, this model usually uses
natural logarithmic transformation:

lnI ¼ lnaþ blnP þ clnAþ dlnT þ lne ð8Þ

Since panel data may have individual effects in large-scale
studies, the removal of individual-specific means—a tra-
ditional method—is usually required to eliminate indi-
vidual effects. Along with obtaining the index selection
result, we expanded Equation (8) to incorporate the in-
fluence factors of the EEFU to examine FF’s impact on
the EEFU. The non-dynamic panel model is defined as
follows:

lnEEFU i;t ¼ β0 þ β1lnPScovi;t þ β2lnAWMSI i;t

þ β3lnMNN i;t þ φX i;t þ εi;t ð9Þ

where X denotes the control variables, including
lnFAPC, lnLID, lnLHR, lnBVPS, lnPEPI, and FAP; β
is the regression coefficient; ε is the scalar value as-
sumed to be identical and independent; and i and t
denote the individual and time, respectively.

Estimation and test According to the empirical analysis prac-
tice, unit root tests and cointegration test should be performed
on panel data to avoid spurious issues (Hou et al. 2019b).
However, short panel data usually cannot reflect the
time trend and the stationary nature of the sequence;
hence, Baltagi (2008) suggests that the non-stationarity
of short panel data be ignored. In addition, fixed-effect,
random-effect, and mixed-effect models are used to es-
timate panel data; therefore, F test (Baltagi et al. 2007;
Wooldridge 2005), Hausman test (Hausman 1978), and
LM test (Breusch and Pagan 1980) were used to deter-
mine which estimation model we should select. Further,
the cross-section correlation, heteroscedasticity, and se-
quence correlation in the panel data would render inef-
fective the traditional estimation method based on stan-
dard deviation statistical inference (Driscoll and Kraay
1998). Based on this issue, Hoechle (2007) proposed a
regression method called the “Driscoll-Kraay standard
error” which effectively overcomes the shortcomings of
cross-section correlation, heteroscedasticity, and se-
quence correlation in panel data.

Table 1 Results of the selection of some variables and their calculation methods

Variable Interpretation of variable Calculation method (unit)

FAPC Farmland area per capita FAPC = farmland area (km2×10−1)/the number of people
employed in the primary industry (10,000 people)

LID Levels of industrial development LID = the production value of the tertiary industry
(100 million yuan (CNY¥))/gross domestic product
(100 million yuan)

LHR Length of highways in a region No calculation method (km)

BVPS Business volume of postal services No calculation method (100 million yuan)

PEPI People engaged in units of the primary industry
(guidance department on agricultural technology )

No calculation method (10,000 people)

FAP Favorable agriculture policy No calculation method (dummy variable)
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Threshold model

According to the method by Hansen (1999), we constructed a
threshold model to analyze FF’s impact on the EEFU. There
may be multiple thresholds; however, multiple thresholds and
a single threshold are set in the same manner. Therefore, we
used a single-threshold model to explain the model establish-
ment process. This single-threshold model is defined as
follows:

lnEEFU i;t ¼ β0 þ β1tdv•I lnFAPC≤θð Þ
þ β2tdv•I lnFAPC > θð Þ þ φX i;t þ εi;t ð10Þ

where I(·) is the indicator function which usually takes
a value of 0 or 1; tdv represents the threshold dependent
variable and denotes lnPScovi, t, lnAWMSIi, t, and
lnMNNi, t, respectively; lnFAPC is the threshold vari-
able; θ is the threshold value that should be estimated;
and εi, t is assumed to be independent and identical.
The other variables have the same concepts as those
defined in Equation (9). When one among lnPScovi, t,
lnAWMSIi, t, and lnMNNi, t is selected as the threshold
dependent variable, the remaining variables will be
added to the control variables. Moreover, single, double,
and triple thresholds are, in turn, identified by a self-
sampling process. For threshold effect test and signifi-
cance test of threshold value, refer to the study by
Hansen (1999).

Results and discussion

Analysis of the regression results of non-dynamic
panel data

In Table 2, (1), (2), and (3) represent the estimation results of
the mixed-, fixed-, and random-effect models, respectively.
Further, the F test result rejected the original hypothesis H0 :
all ui = 0, indicating that the fixed-effect model is superior to
the mixed-effect model. Simultaneously, according to the
Hausman test results, p < 0.01. Accordingly, we rejected the
original hypothesis that there is no difference between the
random- and fixed-effect models. The fixed-effect model is
more suitable than the random-effect model for estimating
FF’s impact on the EEFU. However, the Pesaran test
(Pesaran et al. 2004), Wooldridge test (Wooldridge
2005), and modified Wald tests (Greene 2000) revealed
that the corresponding p values were less than 0.01,
indicating that panel data could not exclude the possi-
bility of cross-section correlation, heteroscedasticity, and
sequence correlation. Therefore, we used the fixed-effect
Driscoll-Kraay model’s standard error to estimate the

regression coefficient, and Table 3 depicts the results
of this estimate.

Among the control variables, lnFAPC, lnLHR, lnLID, and
FAP have a significant effect on the lnEEFU. Conversely,
lnBVPS and lnPEPI have a significant negative effect on
lnEEFU. It can thus be concluded that continuing to reduce
the rural population, improve rural traffic conditions, and in-
crease favorable agriculture policy will play an important role
in improving the EEFU. This is similar to the results of other
studies (Xie and Lu 2017; Hou et al. 2019a). Specifically,
rural population transfer and favorable agriculture policy pro-
mote the substitution of agricultural machinery for rural labor,
thus reducing the cost of farmland use. The improvement of
traffic conditions is conducive to the cultivation of cash crops,
thus raising incomes. In contrast, the effect of the development
of the tertiary industry on the EEFU is quite constrained, as
industrial development has caused a large number of young
laborers to leave the countryside, leaving behind the elderly.
Contrary to expectations, lnBVPS has a negative effect on
lnEEFU. This could be because farmers pay more attention
to economic benefits and ignore the negative environmental
benefits brought by farmland use, which is also the root cause
of a large number of chemical fertilizers and pesticides lost in
the process of farmland use in China. In addition, according to
the negative effects of lnPEPI on lnEEFU, although it is only
at 10% significance, we speculate that guidance department
on agricultural technology still focuses on the economic rather
than ecological benefits of farmland use. Further, three types
of FF were observed to have no significant impact on the
EEFU, for which there may be two reasons: first, landscape-
level FF does not affect farmland use activities; hence, FF’s
impact on the EEFU is not significant. Second, there is a
nonlinear relationship between the FF and the EEFU. So, it
is necessary to use threshold model to test the impact of
landscape-scale FF on the EEFU.

Analysis of the threshold regression result

Table 3 reports that the p statistic of the F test is less than 0.01;
accordingly, we rejected the original hypothesis that there is
no threshold effect. According to the F statistics and 95%
confidence interval, there is a single threshold for the impacts
of the three types of FF (size, shape, and distance) on the
EEFU. In this case, we used a single-threshold model for the
regression analysis.

Table 4 reports the regression results with lnPScov,
lnAWMSI, and lnMNN as the threshold-dependent variables,
respectively. We found that lnPScov and lnMNN have similar
effects on lnEEFU. When lnFAPC does not exceed the thresh-
old value (1.548 and 1.542), size and distance fragmentation
promote EEFU improvement. On the contrary, they will in-
hibit EEFU improvement. Specifically, when lnFAPC is low-
er than threshold value, spatially dispersed and different-scale
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farmland plot can satisfy the requirements of farmers’ agricul-
tural production activities. In fact, landscape-scale FF does not
have a direct impact on the EEFU at this time. On the contrary,
landscape-scale FF creates conditions for the farmer-/plot-
scale FF’s positive effect on EEFU. For example, a small plot
reduces fertilizer input and its undesirable output and may also
reduce the cost of farmland use because there is no need to
manage different space of the plot (as stages 1 or 2 in Fig. 1)

(Sklenicka 2016). However, in the context of social economy
development, the increase of FAPC also increases the
plot size managed by farmers, thus increasing the effect
of landscape-FF on farmers’ farmland use activities (as stages
3 or 4 in Fig. 1).

Unlike the two aforementioned types of FF, lnAWMSI has
a negative effect on lnEEFU, irrespective of whether the
lnFAPC crosses the threshold value (1.373). The possible

Table 2 Results of non-dynamic panel regression

Variables (1) (2) (3) (4)
OLS robust FE robust RE robust Driscoll–Kraay

lnPScov −0.0260 (0.1001) 0.5492 (0.2713) −0.0473 (0.1213) 0.5492 (0.1629)

lnAWMSI 0.1031 (0.1175) 0.1079 (0.1573) 0.1489 (0.1319) 0.1079 (0.1435)

lnMNN 0.6552*** (0.1752) 0.2847 (0.2097) 0.6302*** (0. 2064) 0.2847 (0.1591)

lnFAPC 0.3192*** (0.0847) 0.4122** (0.0901) 0.3342*** (0.1020) 0.4122** (0.0848)

lnLID −0.2030 (0.2037) 0.1543* (0.1420) −0.1166 (0.1986) 0.1543* (0.1372)

lnLHR −0.0668 (0.0756) 0.5337*** (0.0158) 0.0003 (0.0627) 0.5337*** (0.0126)

lnBVPS 0.0853 (0.0590) −0.4564** (0.0280) 0.0305 (0.0737) −0.4564** (0.0284)
lnPEPI −0.0442 (0.0340) −0.0218* (0.0452) −0.0437 (0.0378) −0.0218* (0.0452)
FAP 0.3694*** (0.0738) 0.5842** (0.0277) 0.3868*** (0.0659) 0.5842*** (0.0245)

cons −5.1048*** (1.3256) −10.6038*** (2.6321) −5.3146*** (1.3649) −10.6038*** (1.8467)
F test F(125, 369) = 1.84

Prob > F = 0.0000
—— ——

Hausman test —— Chi2(9) = 63.64
Prob>Chi2 = 0.0000

——

Pesaran test Pesaran’s test of cross-sectional independence = 38.457, Pr = 0.0000 ——

Wooldridge test F(1, 125) = 28.162, Prob > F = 0.0000 ——

Modified Wald test Chi2 (126) = 421.31
Prob > Chi2 = 0.0000

——

Note: ***, **, and * indicate that variables are statistically significant at 1%, 5%, and 10%, respectively. The values in parentheses reflect the standard
error in columns (1), (2), and (3) and the Driscoll-Kraay standard error in (4)

Table 3 Testing for the threshold
effects and threshold value
estimation

Threshold-dependent
variable

Number of thresholds F-statistics Threshold values 95% confidence interval

lnPScov Single threshold 6.976*** 1.548 [−0.261, 0.983]
Double threshold 10.647 1.018 [0.667, 1.519]

0.490 [0.281, 0.748]

Triple threshold 0.000 0.758 [0.662, 0.868]

lnAWMSI Single threshold 5.346** 1.373 [−1.261, 1.983]
Double threshold 4.689* 1.549 [1.274, 1.983]

0.834 [0.153, 1.196]

Triple threshold 0.000 1.128 [1.016, 1.288]

lnMNN Single threshold 6.215** 1.542 [−0.317, 1.983]
Double threshold 8.422 1.121 [0.587, 1.697]

0.483 [−0.504, 0.748]
Triple threshold 0.000 0.758 [0.667, 0.868]

Note: ***, **, and * indicate that variables are statistically significant at 1%, 5%, and 10%, respectively. Each
bootstrap sample was repeated 300 times, and the minimum sample estimate is 50 samples
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reason is shape fragmentation restricts the input of agricultural
machinery, increases the cost, and reduces the economic ben-
efits of farmland use. Comparing the regression coefficient,
we find that when the lnFAPC does not exceed the threshold
value, the regression coefficient of shape fragmentation is on-
ly −0.0677. In contrast, the regression coefficient becomes
−0.4501. In addition, the significance level of regression co-
efficient also changed greatly, from 5 to 10%. It is also con-
firmed that with the increase of FAPC, the effect of landscape-
scale FF on farmland use is increasingly prominent.

The regression coefficients of other control variables were
only mildly altered compared with the regression outcomes of
the non-dynamic panel and threshold models; however, the
significance level did not change, which demonstrates that
the threshold model’s assessment findings are robust
(Hansen 1999). Thus, we have reason to believe that the re-
sults of panel threshold model are more credible. This con-
firms our initial hypothesis that there is a nonlinear relation-
ship between landscape-scale FF and EEFU. The above re-
search results have strong policy implications regarding the
economic and ecological benefits of farmland use. When
farmers only consider economic benefits, the promotion of
large-scale farmland transfer is not conducive to solving the
ecological and environmental problems of farmland use. In
response, in regions that exceed the threshold value, the local
government should not only actively promote large-scale
farmland transfer, it should also give play to the positive ef-
fects of policies such as improved traffic conditions, labor
transfer, and agricultural subsidies so as to offset the negative
effects of landscape-scale FF on the EEFU. On the contrary,
for regions in which FAPC is lower than the threshold value,
the transfer of farmland should not be promoted on a large
scale, but should properly guide farmers’ chemical fertilizer
reduction actions so as to solve the ecological and

environmental problems of cultivated land use in combination
with the positive role of other policies.

Conclusions

With the rapid development of the social economy, ecological
(environmental) problems caused by farmland use are becom-
ing increasingly prominent. Therefore, promoting a balance
between economic and ecological benefits is key to realizing
the sustainable utilization of farmland. At present, in the con-
text of the promotion of large-scale farmland transfer to re-
duce the level of farmer-/plot-scale FF, the impact of
landscape-scale FF on the EEFU remains unclear. Therefore,
in this study, non-dynamic panel and threshold effect models
were applied to conduct an empirical analysis based on panel
datasets of the YREB’s municipal administrative regions in
the years 2000, 2005, 2010, and 2015.

The study concludes that there is a nonlinear relationship
between landscape-scale FF and EEFU under the constraint of
lnFAPC, in which the threshold values of area, shape, and
distance fragmentation are 1.548, 1.373, and 1.542, respec-
tively. Landscape-scale FF is not always conducive to the
balance of economic and ecological benefits of farmland
use. Promoting large-scale farmland transfer blindly will
cause the intensification of eco-environmental problems in
the utilization of farmland. In contrast, combining the FAPC
of different regions, the implementation of farmland transfer
policy in some areas alone becomes a feasible measure to
alleviate the eco-environmental impacts of farmland use. At
the same time, exerting the positive effect of the shrinking
rural population, improving rural traffic conditions, and in-
creasing favorable agriculture policy have remarkable effects
on improving EEFU.

Table 4 Regression results of the
threshold model Threshold-dependent variable lnPScov lnAWMSI lnMNN

lnPScov —— 0.2545 (0.41) 0.4829 (0.81)

lnAWMSI 0.1415 (0.21) —— 0.1397 (0.21)

lnMNN 0.1055 (0.14) 0.3254 (0.43) ——

lnFAPC 0.4286** (2.03) 0.3370** (1.58) 0.4226** (2.01)

lnLID 0.1553* (0.88) 0.1254* (0.71) 0.1511* (0.85)

lnLHR 0.5343*** (1.30) 0.5229*** (4.21) 0.5306*** (4.27)

lnBVPS −0.4257*** (−4.20) −0.4692*** (−4.67) −0.4208*** (−4.13)
lnPEPI −0.0278* (−0.40) 0.0085* (0.12) −0.0284* (−0.41)
FAP 0.5473*** (4.32) 0.5117*** (3.54) 0.5522*** (4.35)

β1 0.4975** (0.83) −0.0677** (−1.37) 0.1183** (0.15)

β2 −0.0260** (−1.18) −0.4501* (0.65) −0.0352*** (−1.27)
con −9.3980** (−1.86) −9.5710** (−1.89) −9.3475** (−1.86)

Notes: ***, **, and * indicate that variables are statistically significant at 1%, 5%, and 10%, respectively. The
values in the parentheses denote that the corresponding Z statistic and β1 and β2 are the regression coefficients of
the threshold-dependent variable and threshold variable cross terms
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Undeniably, using artificial measures to change the
landscape-scale FF is also a measure to reduce the negative
effect of landscape-scale FF on EEFU. However, the reclama-
tion of farmland usually leads to the reduction and fragmen-
tation of other types of landscapes (e.g., forest and grass),
while the withdrawal of farmland from agricultural production
may not be conducive to food security. Therefore, we do not
recommend that the impact of landscape-scale FF on EEFU be
reduced by changing the landscape characteristics of
farmland.
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