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Abstract
The present study was conceptualized to develop the Enhanced River Pollution Index (ERPI) model. The ERPI model was used
to evaluate the river water quality (RWQ) for its beneficial usage, i.e., drinking with (DCD) and without (DD) conventional
treatment, outdoor-bathing (OB), wildlife and fisheries (WF), and industrial and irrigation (IIW). The adequacy of multiple linear
regression (MLR) and support vector regression (SVR) models was also investigated to predict the ERPI for estimating the
RWQ. The accuracy of the MLR and SVR models was tested by using the statistical parameters, i.e., root mean squared error
(RMSE), coefficient of determination (R2), and mean absolute error (MAE). The results revealed that theMLRmodels performed
well (RMSE = 0.004 ± 0.0043, R2 = 0.998 ± 0.001, and MAE = 0.002 ± 0.003) for the DD, DCD, and OB. However, the SVR
models estimated the RWQ more accurately (RMSE = 0.041 ± 0.001, R2 = 0.962 ± 0.010, and MAE = 0.026 ± 0.002) than the
MLRmodels for WF and IIW. Moreover, this study disclosed that the RWQwas not excellent for DD, OB, and DCD. However,
the RWQ was categorized from excellent to poor classes for WF, while it was suitable for IIW.

Keywords River water quality . Enhanced river pollution index . Multiple linear regression . Support vector regression . Kernel
function .Monitoring .Modelling

Introduction

River water quality (RWQ) is an extremely delicate and funda-
mental issue in numerous nations. Likewise, it is a great need to
evaluate and describe the expanded comprehension of the con-
sequentiality of RWQ for the purport of drinking, bathing, wild-
life, fisheries, irrigation, and industrial usage. The investigation
includes water quality (WQ) data to demonstrate the absolute
impact of natural factors on surface water, which gives the infor-
mation of its quality (Ewaid et al. 2018; Sotomayor et al. 2018;
Bhatti et al. 2019). The river water is as yet utilized for domestic

and industrial purposes (Fathi et al. 2018). The water nature of
the river under mundane conditions is affected by sundry vari-
ables, i.e., geography, topography, atmosphere, populace, and
anthropogenic elements. Other human impedances are the devel-
opment of dams and repositories, channelization, industrializa-
tion, urban spread, and land use advancements all through the
river basin (Wang et al. 2013; Zhang et al. 2019). Anthropogenic
activities and natural procedures destruct river water and impede
their utilization for agribusiness, drinking, regalement, and other
different purposes (Mukate et al. 2019; Verma et al. 2019).

So, the WQ observing system is a fundamental req-
uisite to water assets. The water quality index (WQI)
approach has been applied for assessing the WQ of
the surface as well as the ground water sources in the
worldwide since the last few decades (Effendi 2016;
Bhutiani et al. 2016; Bora and Goswami 2017; Ewaid
et al. 2018; Verma et al. 2019). The principle motiva-
tion behind building up a WQI is to change an intricate
arrangement of WQ data into clear and usable informa-
tion by which a layperson can identify the status of the
water source (Abbasi and Abbasi 2012; Şener et al.
2017; Ewaid et al. 2018; Verma et al. 2019). WQI aims
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to minimize the vast datasets to a great extent (Effendi
2016) and simplifies the interpretation of WQ for sev-
eral purposes like drinking, irrigation, and aquaculture
(Abbasi and Abbasi 2012).

The WQI is still utilizable to exhibit the quality of the river
basin for low-cost water quality management (Wu et al. 2018;
Tian et al. 2019; Tripathi and Singal 2019; Banda and
Kumarasamy 2020). Several indices and modelling ap-
proaches were introduced to evaluate the status of RWQ in
recent years (Sahoo and Jha 2013; Effendi et al. 2015; Effendi
2016; Bora and Goswami 2017; Şener et al. 2017; Ewaid et al.
2018; Kadam et al. 2019; Nayak et al. 2020). Effendi (2016)
applied the pollution index and WQI to evaluate the WQ of
the river Ciambulawung. Goher et al. (2014) used the weight-
ed arithmetic method based WQI to evaluate the WQ of the
Ismailia Canal for drinking, irrigation, and aquatic life. Şener
et al. (2017) assessed theWQ of the river Aksu, Turkey, using
the WQI and GIS methods. Verma et al. (2019) developed
some simplified WQIs for the assessment of spatial and
temporal variations in WQ of the river Damodar, India.
Chen et al. (2019) employed the monthly river pollution index
distributions on the highly urbanized Danshui River basin for
sustainable and recreational management.

Due to some difficulties in dealing with the complexities
involved in the WQI approach, a strong need for a more
straightforward and precise modelling procedure for
predicting the RWQ (Li et al. 2016; Rajaee et al. 2018;
Leong et al. 2019). Therefore, some researchers used modest
and upfront statistical and soft computing approaches, i.e.,
regression models for establishing a strong relationship be-
tween the dependent and independent variables. In recent
years, regression models were effectively employed in the
domain of water resources for modelling a wide range of hy-
drological processes, e.g., ground water level (Sahoo et al.
2015; Kommineni et al. 2020), water temperature (Rehana
2019); stream flows (Adnan et al. 2017, 2020), evapotranspi-
ration (Tabari et al. 2012; Kundu et al. 2017), flood prediction
(Mosavi et al. 2018; Bafitlhile and Li 2019), and rainfall-
runoff (Granata et al. 2016; Sedighi et al. 2016).

The anterior studies were mainly focused on the develop-
ment of the WQI for drinking purpose only (Şener et al. 2017;
Barakat et al. 2018; Ewaid et al. 2018; Tang et al. 2019).
These studies enumerated the suitability of the river water
without considering the aptness of the river stretches for other
beneficial purposes, i.e., OB, WF and IIW. Moreover, the
river pollution indices proposed in previous studies (Wang
et al. 2013; Hoseinzadeh et al. 2015; Alphayo and Sharma
2018) considered very few river water quality parameters
(RWQPs), i.e., ammonia nitrogen (NH3-N), dissolved oxygen
(DO), biochemical oxygen demand (BOD5), and suspended
solids (SS). But looking into the wide spectrum of its utiliza-
tion, there was a need to reconsider the RWQ classification in
the light of other essential WQPs correlating their potential

cause of river pollution complications and concerns. The high
concentration of fluoride (F−), nitrate (NO3

−), sulfate (SO4
−2),

total coliform (TC), and heavy metals are harmful to both
humans and wildlife (Tchounwou et al. 2012). While chloride
(Cl−), electrical conductivity (EC), total dissolved solids
(TDS), sodium absorption ratio (SAR), and pH are the critical
parameters for irrigation and industrial usage (Zahedi 2017)
and high concentrations corrode metals and affect the taste of
food products. For wildlife and fisheries; pH, EC, free ammo-
nia (FA), and DO also play a very significant role. High con-
centration of pH, EC, and FA kills fishes and decreases the
species diversity. However, the high concentration of DO is
desirable for healthy survival of aquatic life and indicates a
good health of the river (EPA 2012). In view of a specific
parameter importance and the limitations of the previous stud-
ies, the present study incorporated the above mentioned criti-
cal RWQPs while deciding the suitability of RWQ for differ-
ent purposes, i.e., DD, OB, DCD, WF, and IIW, because the
criteria of the RWQPs vary for different practices
(Leong et al. 2019). Moreover, a strong need of a
straightforward and precise modelling procedure was
observed for predicting the RWQ (Li et al. 2016;
Rajaee et al. 2018; Leong et al. 2019). Therefore, the
MLR and SVR modelling techniques were also
employed to simplify the complex calculations involved
in the ERPI models.

The purpose of this study was to develop cost-effective
rapid models to evaluate RWQ by considering the specific
RWQPs. The principal targets of this study were (i) to develop
and evaluate the ERPI model to investigate the RWQ, (ii) to
classify the RWQ for different usage, (iii) to develop MLR
and SVR models against the ERPI models as reference for the
RWQ modelling, and (iv) to compare the performance of the
MLR and SVR models.

Methodology

Study area

In this study area encompasses the river Damodar, situated in
the Damodar river basin (DRB), India (Fig. 1). The river orig-
inates from the Khamerpet hill and flows from Jharkhand and
meets with the river Hoogli in West Bengal. This is a shallow,
wide, and flashy rain-fed river. The full stretch and the catch-
ment area of this river are approximately 541 km and 23,170
sq. km, respectively. It traverses through the steep slope of the
pat region in its upper reaches to descend on the gneissic flat
plain of Chandwa, and flow of the river becomes sluggish
over the flattop surface. Themean discharge and annual runoff
were observed as 296 m3/s and 486 mm/year at Rhondia sta-
tion. The physiography of upper catchment of DRB is quite
different from the lower part as the different rock types, i.e.,
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igneous, sedimentary, and metamorphic rocks were found in
different geological time scale. DRB is gifted with mineral
resources of coal. It falls within dry and subhumid climatic
zones and usually experiences a very hot and dry summer. The
average temperature is of 30 °C, and it rises to 48 °C during
the months of May–July. Winter is cold with temperature as
low as 2 °C. The average annual precipitation of around 1350
mm. More than 80% of the total rainfall ensues during mon-
soon season between June and September months.

This river is not only the source of drinking water but
also accomplishes the water necessity of irrigation and
industrial activities at the region. The industrial activities
consist of six steel power stations, four thermal power
plants, and three hydroelectric power stations (Kumar
et al. 2019; Verma et al. 2019). These industries influence
the hydrological regime of the river by withdrawing a lot
of water for their accompanying activities. These indus-
tries also discharge the substantial amount of effluent con-
taining pollutants, e.g., heavy metals, fly ash, coal dust,
and suspended solids, directly into the river, which dete-
riorate the RWQ. Besides industrial activities, urbaniza-
tion and heavy encroachment at the bank of the river
affect the RWQ and quantity (Mukherjee et al. 2012;
Haldar et al. 2014; Verma et al. 2019).

River water sampling

The sampling was performed for the period of 2017–2019
during premonsoon, monsoon, and postmonsoon seasons at
the selected monitoring locations on the river stretch. Three
numbers of samples were collected from a single location
thrice in a season, and the average of the same was reported.
Twenty monitoring locations in the river Damodar stretch
were carefully selected with consideration of the guidelines
for water quality monitoring given by Central Pollution
Control Board (CPCB), India (CPCB 2007). All water sam-
ples were stored in an insulated cool box together with cold
packs and sent to the laboratory. At laboratory, water samples
were immediately transferred to the refrigerator for further
analysis.

Analytical methods

Fourteen RWQPs, i.e., pH, EC, BOD5, DO, TDS, Cl
−, TC,

SAR, NO3
−, SO4

2−, F−, FA, Fe, and Pb were analyzed by
considering the standard methods prescribed in the guidelines,
published by American Public Health Association (Baird et al.
2017). pH and EC were recorded in-situ using a pH meter
(Hanna® HI98107) and conductivity meter (HACH®

Fig. 1 Geographical location of the study area
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HQ40D multiparameter), respectively. BOD5 was assayed by
using the 5-day BOD test. DO was determined using the
Winkler method. Estimation of TDS was done by gravimetric
analysis. Cl− was measured using the argentometric method.
TC was examined by the multiple tube fermentation method.
Sodium and calcium were estimated using the flame photom-
eter (Systronics Flame Photometer 128), while magnesium
was evaluated by EDTA titrimetric method to calculate the
SAR. NO3

−, SO4
2−, F−, FA, Fe, and Pb were estimated by

using an ultraviolet spectrophotometer (MOTRAS Scientific
UV-Visible spectrophotometer).

Analytical quality assurance and quality control

As the natural variability is a fundamental feature of a river
and cannot be controlled, to quantify this variability triplicate
river water samples were collected during the sampling. The
analytical data quality and accuracy were ensured through
careful standardization by preparing and analyzing the refer-
ence water sample for determining the presence of any inter-
ference. For the precision of measurement, analysis of the
river water sample was performed in triplicate and considered
the average as the final value. The instrument was recalibrated
when the relative percent difference (RPD) between the two
river water samples transcend to ± 5%. Moreover, the analyt-
ical grade chemical reagents were used in the whole analysis
procedure of RWQPs. The representativeness of the samples
was controlled by selecting the appropriate locations and time
for river water sampling.

Data processing

For regression models, the dataset of dependent and indepen-
dent variables was normalized within a fixed range between 0
and 1, to transform all variables on a uniform scale. Moreover,
the dataset was split into the training and testing set as, 70%
for the training phase, and 30% for the testing phase (Bozorg-
Haddad et al., 2017). The models were developed using train-
ing set and then validated by the testing set. The performance
of the models was evaluated using the statistical metrics, i.e.,
RMSE, R2, and MAE. The program codes were written in R
language using RStudio Desktop version 1.3 software.

Enhanced river pollution index model

The enhanced river pollution index model (ERPI) model was
developed and evaluated for the monitoring and management
of the RWQ for the specific usage of the river water, i.e., DD,
OB, DCD, WF, and IIW, as categorized and described by the
CPCB, India (CPCB 1979, 2007; BIS 1982). The ERPI model
included the four essential steps. The first step was the selec-
tion of crucial RWQPs according to the particular use of the
river water. The second step was to determine the relative

weights for the selected RWQPs (Olasoji et al. 2019). The
third step was to calculate the subindex for each selected
RWQPs. In the fourth step, all of the subindices were aggre-
gated to evaluate the final value of the ERPI model. The ERPI
model was described in Eq. (1).

ERPI ¼ ∑m
j¼1SI j=∑

m
j¼1W j ð1Þ

where, SIj is the subindex and Wj is the relative weight for j
th

(1, 2, 3...…, m) parameter of the river water. The calculation
involved in the ERPI model was described in Eqs. (2–5)

SI j ¼ Qj �W j ð2Þ
Qj ¼ EV j−IV j

�� ��� �
= SPV j−IV j
� �� �� 100 ð3Þ

W j ¼ k=SPV j ð4Þ
k ¼ 1=∑m

j¼1 1=SPVj

� � ð5Þ

where, Qj is the quality rating, EVj is the estimated value of
parameter in river water sample, IVj is the ideal value of pa-
rameter in pure water, SPVj is the standard permissible value
for RWQPs, and k is the constant of proportionality. The dif-
ferent categories for the values of ERPI model with respective
RWQ were classified in Table 1 (Tyagi et al. 2013; Bora and
Goswami 2017; Hussein and Ali 2017; Trikoilidou and
Samiotis 2017; Ustaoğlu et al. 2020).

Multiple linear regression

Multiple linear regression (MLR) is a quantitative tool used
for modelling by establishing linear relationship between two
or more independent variables and a dependent variable
(Tabari et al. 2012; Kadam et al. 2019) and is expressed in
the form of Eq. (6).

y ¼ α0 þ α1x1 þ α2x2 þ…αmxm þ ε ð6Þ
where, y is the dependent variable, αo is the intercept, α1–αm

is the regression coefficients, x1–xm is the independent vari-
ables, m is the number of independent variables, and ε is the
random error. In this study, outcomes of the ERPI models and
their corresponding RWQPs were used as dependent and in-
dependent variables, respectively, to determine the RWQ by
estimating the ERPI for different purposes.

Table 1 Categories for
the values of ERPI
model

Range RWQ

0–25 Excellent

26–50 Good

51–75 Fair

76–100 Poor

> 100 Unfit
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Support vector regression

Support vector machine (SVM) is a method educed from sta-
tistical learning theory and can be used both for classification
and regression problems (Tabari et al. 2012; Ji et al. 2017).
SVR imprints a linear model to separate the sample dataset
from the input vectors through some nonlinear mapping tech-
niques. In SVR, a nonlinear function is erudite a kernel in-
duced feature space by a linear learning machine. The SVR
model is trained on dataset d = {xi, yi; i = 1, 2,……, n} with n-
dimensional input vectors xi and associated target yi. SVR
aims to discover a function f(x) with at most error tolerance
ε deviation from the target y for all the training datasets (Liu
and Lu 2014; Raghavendra and Deka 2014). SVR deliberates
the following estimation function, as shown in Eq. (7), to fulfil
the aim.

f xð Þ ¼ ω φ xð Þ þ b ð7Þ
whereω ϵ d, d is the input space and b is the bias and φ(x) is
the high dimensional feature space. These coefficients can be
estimated by the regularized risk function (R(f)) minimizing
technique using Eqs. (8–9).

R fð Þ ¼ C∑n
i−1Lε

�
yi− f xið Þ þ ωk k2=2 ð8Þ

Lε yi; f xið Þð Þ ¼ yi− f xið Þj j−ε yi− f xið Þj j≥ε
0 otherwise

�
ð9Þ

where, C is the cost function measuring empirical risk,
Lε(f(xi)-yi) is the ε-insensitive loss function, ‖ω2‖/2 is the
Euclidean norm, ε is the difference between actual values,
and n is the number of variables. Hence, the regression prob-
lem can be defined in the form of convex optimization prob-
lem and solved using Lagrange function (Raghavendra and
Deka 2014). Hence, the regression function is shown in Eq.
(10).

f xð Þ ¼ ∑n
i; j¼1 δi−δ*i

� �
xi; x j
� �þ b ð10Þ

where, (δi- δi
*) is the Lagrange multiplier. The kernel function

is involved to solve the nonlinear problems in the SVR
models. This function maps the data into higher dimension
feature space. The SVR model in the feature space can be
expressed using K (xi, xj) instead of (xi, xj), then the SVR
model can be expressed as Eq. (11).

f xð Þ ¼ ∑m
i; j¼1 δi−δ*i

� �
K xi; x j
� �þ b ð11Þ

where, K (xi, xj) is the kernel function. From Eq. (11), the
nonzero Lagrange multiplier data (support vector) is involved
in the final SVR model. Finally, the SVR model can be
expressed as the regression function given in Eq. (12).

f xð Þ ¼ ∑m
k¼1 δk−δ*k

� �
K xk ; xð Þ þ b ð12Þ

where, xk is the support vector and m: number of support
vectors. The SVR model can be epitomized as a two-layer
network architecture (Fig. 2) in which the weights are nonlin-
ear in the first layer and linear in the second layer.

Performance analysis

In this study, root mean square error (RMSE), coefficient of
determination (R2), and mean absolute error (MAE) were used
to compare the performance of the developed models in the
estimation of RWQ. These were calculated using Eqs. (13–
15), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Ypi–Yoi

� �2
=n

q
ð13Þ

R2 ¼ 1− ∑n
i¼1 Ypi–Yoi

� �2
=∑n

i¼1 Yoi–Y
� 
2

� �
ð14Þ

MAE ¼ 1=nð Þ∑n
i¼1 Ypi–Yoi

� ��� �� ð15Þ

where, n is the number of observations, Yo is the observed
value, Yp is the predicted value, Yo is the mean observed
value, and Yp is the mean predicted value of respective
ERPI model.

Results and discussion

Characteristics of the river

The overall analytical results of RWQPs were epitomized in
Table 2. The results deliberated the alkaline nature of the river
Damodar. The increment in the pH was due to industrial ef-
fluent and agricultural runoff (Haldar et al. 2014; Verma et al.
2019). The concentration level of DO was found to be suffi-
cient except for a few locations for various physiological ac-
tivities because of the geological conditions, which increased
the level due to high aeration (Mukherjee et al. 2012). TDS
value was high in the sites near the small and large industries.
The locations had a high concentration of BOD5 and Cl−,

Fig. 2 Network architecture of SVR model
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where the river received the urban waste. The higher BOD5

level determined the presence of a greater amount of organic
matter for the microorganisms due to wastewater discharge on
the river stretch (Mukherjee et al. 2012; Tripathi and Singal
2019; Verma et al. 2019). The main contributors of sulfates
were mine wastes, sewage treatment plants, industrial dis-
charges, and runoff from agricultural lands (Verma et al.
2019). The maximum concentration of Pb and Fe was found
at the locations near the discharge point of the thermal power
station and metal industries. The value of TC was found
higher than the prescribed limit (BIS 1982) at most of the sites.

As most of the RWQPs were not normally distributed,
Spearman’s correlation matrix was used to analyze the corre-
lation between the RWQPs as shown in Table 3. The results
obtained from Table 3 represented a very strong positive cor-
relation between EC and TDS which indicated the presence of
high level of inorganic salts and organic substances in the river
water which may be attributed to the domestic, industrial, and
agricultural pollutions. Moreover, a negative correlation be-
tween DO and BOD5 was found, as high concentration of
BOD5 depleted the DO level of the river water. A positive
correlation between BOD5 and TC indicated the presence of
domestic sources of pollution. This phenomenon designated
that the overall RWQ was strongly affected by the domestic
wastewater sources and effluents of the coal industries, steel
plants, and thermal power stations situated at the Damodar
River basin (Mukherjee et al. 2012; Verma et al. 2019).

Evaluation of the RWQ using ERPI model

In this study,WQ of the river Damodar was evaluated for DD,
OB, DCD, WF, and IIW purposes. The analysis results of all
twenty sampling locations were used for RWQ estimation. To
assess RWQ for purposes as mentioned earlier, five ERPI
models, i.e., ERPIDD, ERPIOB, ERPIDCD, ERPIWF, and
ERPIIIW, were developed with different combinations
(CPCB 1979; BIS 1982) of the RWQPs (Table 4).

To calculate the ERPI model values at each sampling loca-
tion, the relative weights (Wi) for each RWQP, were computed
according to their relative importance in the overall RWQ for
different purposes (Table 5).

Table 2 Statistical summary of the RWQPs

RWQPs Minimum Maximum Mean Standard deviation

pH 6.10 9.10 7.67 0.59

BOD5 (mg/L) 1.10 17.50 4.82 3.02

DO (mg/L) 3.80 8.80 6.86 0.99

TDS (mg/L) 108 1445 312.28 259.24

Cl− (mg/L) 7.32 58.90 27.16 10.43

NO3
− (mg/L) 0.22 26.60 11.98 6.33

SO4
2− (mg/L) 10.20 144.20 56.21 36.92

TC (MPN/100 ml) 35 1112 381.24 303.28

F− (mg/L) 0.23 1.14 0.90 0.07

Fe (mg/L) 0.14 1.10 0.54 0.21

Pb (mg/L) 0.001 0.07 0.02 0.01

EC (μS/cm) 180 2390 497.28 415.68

FA (mg/L) 0.10 1.00 0.31 0.18

SAR 2.05 7.82 5.03 1.30

Table 3 Spearman's correlation matrix of RWQPs

pH BOD DO TDS Cl− NO3
− SO4

2- TC F− Fe Pb EC SAR FA

pH 1

BOD5 0.094 1

DO 0.218** − 0.371** 1

TDS − 0.163** 0.250** − .161** 1

Cl− 0.192** 0.270** − 0.159** − 0.218** 1

NO3
- 0.028 0.317** − 0.334** 0.139* 0.473** 1

SO4
2- − 0.157** 0.292** − 0.513** 0.411** 0.291** 0.429** 1

TC − 0.022 0.379** − 0.082 0.273** 0.343** 0.148* 0.249** 1

F− 0.265** 0.223** 0.048 0.090 0.194** 0.151** − 0.028 0.307** 1

Fe − 0.191** − 0.067 0.079 0.147* − 0.087 − 0.167** − 0.158** − 0.085 0.002 1

Pb 0.206** 0.240** − 0.207** − 0.057 0.354** 0.241** 0.323** − 0.045 0.095 0.050 1

EC − 0.142* 0.261** − 0.176** 0.983** − 0.171** 0.204** 0.449** 0.279** 0.102 0.130* − 0.010 1

SAR 0.044 0.058 − 0.154** 0.284** − 0.131* 0.021 − .049 0.090 0.099 0.094 − 0.121* 0.261** 1

FA − 0.030 0.200** − 0.311** 0.539** − 0.115* 0.199** 0.365** 0.151** 0.133* − 0.091 − 0.025 0.533** 0.199** 1

*Correlation is significant at the 0.05 level (2-tailed)

**Correlation is significant at the 0.01 level (2-tailed)
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The ERPIDD model included eleven RWQPs to estimate
the suitability of the river water for DD. The values of the
ERPIDD model lied between 55.252 and 122.590. The
ERPIDCD model also encompassed eleven RWQPs. The re-
sults determined that the values of ERPIDCD model varied
from 28.583 to 87.711. The ERPIOB model contained five
RWQPs to evaluate the fitness of the river water for OB.
The results deliberated that the values of the ERPIOB model
were found between 51.814 and 111.047. The ERPIWF model
comprised four RWQPs to evaluate the aptness of the RWQ
for WF. Values of the ERPIWF model ranged between 17.038
and 82.014. The ERPIIIW model involved five RWQPs
in estimating the suitability of the river water for IIW.
Outcomes of the ERPIIIW were estimated between
10.010 and 68.956. Figure 3 showed the RWQ classifi-
cation, based on evaluation of the ERPI models for a
particular use of the river water.

Overall, the ERPI was the most delicate model for different
usage of the river water over the previously reported river
pollution indices (Sahoo et al. 2015; Alphayo and Sharma
2018), which were focused only on drinking purpose by con-
sidering fewer RWQPs. ERPI method reflected the capability
to overcome the limitations (e.g., parameter restriction and
redundancy, lack of portability, and the inability to represent
specific uses) of the hitherto approaches. The ERPI model
assimilated only necessary RWQPs, i.e., eleven for ERPIDD,
five for ERPIOB, eleven for ERPIDCD, four for ERPIWF, and
five for ERPIIIW. The approach of selecting the more specific
and essential RWQPs reduced the time and cost involved in
the analytical procedures of the RWQPs. The developed
models integrated the composite influence of different
RWQPs for explicit purposes for communicating the global
RWQ information to the general person as well as the deci-
sion-makers. According to the critical observation of the re-
sults for ERPI models shown in Fig. 3, ERPIDD revealed that
no stretch of the river had fallen under the excellent or good
categories (Mukherjee et al. 2012; Singh et al. 2019) and
fibbed only between fair to unfit classes for DD. But it could
be improved after performing conventional treatments confer-
ring to ERPIDCD. ERPIOB deliberated that most of the river
stretch was falling under the fair class for OB, while 33% of
the river stretch lied between poor to unfit. In the view ofWF,
ERPIWF classified 16% of the river stretch in poor class. It was
due to the discharge of municipal wastes and effluent from
coal washeries, steel plants, and thermal power stations, situ-
ated near to the river bank (Mukherjee et al. 2012; Singh et al.
2019; Verma et al. 2019). However, ERPIIIW categorized the
whole stretch of the river within excellent to good classes for
IIW purposes.

Results of MLR model

In the MLR models for DD (MLRDD), OB (MLROB), DCD
(MLRDCD), WF (MLRWF), and IIW (MLRIIW), the ERPIDD,
ERPIOB, ERPIDCD, ERPIWF, and ERPIIIW variables were de-
fined as the dependent variables.Moreover, the corresponding
RWQPs, as described in Table 4, were assumed as indepen-
dent variables for respective models. The reduction in the
number of independent variables on the premise of less

Table 4 Description of categorical ERPI with respective parameters

ERPI Purpose Mathematical expression Input RWQPs

ERPIDD Drinking after disinfection ∑11
j¼1SI j=∑

11
j¼1W j DO, BOD5, Cl

−, F−, SO4
−2, NO3

−, pH, TDS, TC, Fe, Pb

ERPIOB Outdoor bathing ∑5
j¼1SI j=∑

5
j¼1W j DO, BOD5, F

−, pH, TC

ERPIDCD Drinking after conventional treatment and disinfection ∑11
j¼1SI j=∑

11
j¼1W j DO, BOD5, Cl

−, F−, SO4
−2, NO3

−, pH, TDS, TC, Fe, Pb

ERPIWF Wildlife & Fisheries ∑4
j¼1SI j=∑

4
j¼1W j DO, FA, pH, EC

ERPIIIW Industrial & irrigation ∑6
j¼1SI j=∑

6
j¼1W j SAR, Cl−, SO4

−2, pH, EC, TDS

Table 5 Relative weight of each input parameter for different ERPI
models

RWQPsa Wj

ERPIDD ERPIOB ERPIDDC ERPIWF ERPIIIW

DO 0.01121 0.15156 0.01867 0.20799 -

BOD5 0.03364 0.25259 0.02489 - -

TC 0.00135 0.00152 0.00001 - -

TDS 0.00013 - 0.00005 - 0.00298

Cl− 0.00027 - 0.00012 - 0.01044

F− 0.04485 0.50519 0.04978 - -

SO4
2− 0.00017 - 0.00019 - 0.00626

NO3
− 0.00336 - 0.00149 - -

pH 0.00792 0.08915 0.00878 0.09788 0.73669

Fe 0.22427 - 0.14934 - -

Pb 0.67282 - 0.74668 - -

EC - - - 0.00083 0.00278

FA - - - 0.69330 -

SAR - - - - 0.24084

aRWQPs, not contributed as input parameters were marked “-“for partic-
ular ERPI
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influence on the accuracy of the MLR models was comprised
to minimize the workload and the information overlapping.
The best suited model was derived by testing the numerous
blends of independent variables with respective dependent
variable. The MLR models were developed using training
dataset and then validated by the testing dataset using ‘lm’
function with ‘qr’ method, available in RStudio software.
The statistical summary of the derived MLR models was
abridged in Table 6.

As the results showed, the MLRDD, MLROB, and
MLRDCD models had the best performance. In contrast, the
MLRWF and MLRIIW models gave the poor RWQ estimates
having low R2 with high RMSE and MAE. The RWQ for the
respective water usage, estimated by the MLR models and
RWQ computed using the ERPI models as benchmark were

shown in Fig. 4. The comparative analysis between ERPI and
the respectiveMLRmodels suggested that the multiple regres-
sion techniques can be an excellent way to deal with foresees
ERPI for RWQ.Moreover, this sort of approach requires long
haul physicochemical information to determine the parame-
ters of the regression model, which are site and season reliant.

Results of SVR models

In the present study, four SVR models with different kernel
functions, i.e., linear (LK), polynomial (PK), radial basis
(RK), and sigmoid (SK), were developed for each usage of
the river water. Overall, twenty SVR models were established
as; LK-SVRDD, PK-SVRDD, RK-SVRDD, and SK-SVRDD for
DD, LK-SVROB, PK-SVROB, RK-SVROB , and SK-SVROB

44%

39%

17%

(a) ERPIDD

67%

28%

5%

Excellent Good Fair Poor Unfit

(b) ERPIOB

33%

48%

19%

Excellent Good Fair Poor Unfit

Excellent Good Fair Poor Unfit

(c) ERPIDCD

22%

24%
38%

16%

Excellent Good Fair Poor Unfit

(d) ERPIWF

28%

50%

22%

Excellent Good Fair Poor Unfit

(e) ERPIIIW

Fig. 3 River classification based
on ERPI model. (a) ERPIDD,
(b) ERPIOB, (c) ERPIDCD,
(d) ERPIWF, (e) ERPIIIW

Table 6 Statistical summary of MLR models

Model RMSE R2 MAE Equation

MLRDD 0.001 0.999 0.001 ERPIDD = – 0.134 + 0.011pH + 0.297BOD5 – 0.006DO + 0.002TDS + 0.005NO3
− + 0.029TC + 0.027F− + 0.629Fe + 0.514Pb

MLROB 0.009 0.997 0.006 ERPIOB = – 0.120 + 0.078pH + 0.927BOD5 – 0.049DO – 0.006TC + 0.190F−

MLRDCD 0.002 0.999 0.001 ERPIDCD = – 0.146 + 0.017pH + 0.199BOD5 – 0.012DO + 0.002TDS + 0.001NO3
− – 0.002TC + 0.041F− + 0.340 Fe + 0.774Pb

MLRWF 0.092 0.757 0.061 ERPIWF = 0.279 + 0.713pH – 0.496DO + 0.079FA
MLRIIW 0.127 0.695 0.085 ERPIIIW = – 0.110 + 1.028pH – 0.077SO4

2- + 0.168EC – 0.175SAR
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Fig. 4 RWQ estimated by the ERPI models and the MLR models in the testing phase for a DD; b OB; c DCD; d WF, and e IIW
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for OB, LK-SVRDCD, PK-SVRDCD, RK-SVRDCD , and SK-
SVRDCD for DCD, LK-SVRWF, PK-SVRWF, RK-SVRWF,
and SK-SVRWF for WF and LK-SVRIIW, PK-SVRIIW, RK-
SVRIIW, and SK-SVRIIW for IIW. The input combinations of
variables with respective outputs for the SVRmodels were the
same as that of used for the MLR models. Table 7 represented
the results of the SVR models for RWQ estimation. It merely
elaborated the performance of the developed SVR models
with different kernel functions.

As shown, the SVR models were sensitive to the choice
of kernel functions (Tabari et al. 2012; Raghavendra and
Deka 2014). An appropriate selection of the kernel function
allowed the nonseparable RWQ data in the original input
space to become separable in the new feature space
(Raghavendra and Deka 2014). The comparison of the
RWQ values calculated by ERPI models and RWQ values
predicted by the four different SVR models was shown in
Fig. 5. It was seen from Fig. 5 that the LK-SVRDD model
closely followed the ERPIDD model values of RWQ. The
same pattern was attained by LK-SVROB and LK-SVRDCD

models for ERPIOB and ERPIDCD values of RWQ, respec-
tively. However, the RK-SVRWF and RK-SVRIIW models
were evidenced as the best models for the RWQ estimation
for WF and IIW, respectively. Moreover, the PK and RK
functions were also found significant for SVRDD, SVROB,
and SVRDCD models. It confirmed the RMSE and MAE
statistics given in Table 7.

Comparison of the MLR and SVR models

Table 8 represented the comparative study between the per-
formance of MLR and SVR models for the testing phase. The
vigorous MLR and SVR models were selected and ranked
according to the RMSE values, for estimating the RWQ for
respective usage. The results described that theMLRDDmodel
with RMSE of 0.001 could be designated as the best model for
RWQ valuation for DD in the study area. The LK-SVRDD

model attained the rank second with the RMSE of 0.012.
The RK-SVRDDmodel with RMSE of 0.028 could be consid-
ered as the next best model, successively followed by the PK-
SVRDD (RMSE = 0.058) and SK-SVRDD (RMSE = 1.031).
Same pattern was found for OB (MLROB > LK-SVROB > RK-
SVROB > PK-SVROB > SK-SVROB) and DCD (MLRDCD >
LK-SVRDCD > RK-SVRDCD > PK-SVRDCD > SK-SVRDCD).
The RK-SVRWF, MLRWF, LK-SVRWF, PK-SVRWF and SK-
SVRWF models ranked 1st place to 5th, respectively, for
RWQ estimation for WF. For IIW, the models followed a
similar ranking (RK-SVRIIW > MLRIIW > LK-SVRIIW >
PK-SVRIIW > SK-SVRIIW) as used for WF.

The MLR models were found beneficial to realize the
association between dependent ERPI variables and re-
spective independent RWQPs. However, the MLR
models are not flexible enough to seize the complex
associations and poorly perform with nonlinear relation-
ships (Tabari et al. 2012; Rajaee et al. 2018; Keshtegar
et al. 2019). In contrast, the SVR models have the
adaptability and capacity to demonstrate the same.
Moreover, the training process of the SVR models con-
sistently looks for a globally optimized solution which
avoids the problem of over-fitting. The SVR method
can select the support vectors (key vectors) and expel
the nonsupport vectors (nonkey vectors) consequently
from the models. This approach increases the model
flexibility into noisy conditions. The SVR models
achieve high accuracy because of simultaneous minimi-
zation of prediction error and model complexity. The
critical limitation of the SVR technique is that it is a
black-box data-driven technique without any physical
basis (Bozorg-Haddad et al., 2017; Liu and Lu 2014;
Raghavendra and Deka 2014). Moreover, the SVR
models can only be used when the training datasets
are available (Ji et al. 2017). Overall, it was found that
the MLR and SVR (except SK-based SVR) models
afforded good agreement with the ERPI models to eval-
uate the RWQ. The comprehensive ranking of the de-
veloped models was shown in Table 9.

Table 7 Performance of the SVR models for the testing phase

Model Kernel RMSE R2 MAE

LK-SVRDD LK 0.012 0.999 0.010

PK-SVRDD PK 0.058 0.932 0.042

RK-SVRDD RK 0.029 0.985 0.021

SK-SVRDD SK 1.030 0.071 0.472

LK-SVROB LK 0.010 0.997 0.008

PK-SVROB PK 0.102 0.853 0.061

RK-SVROB RK 0.072 0.912 0.030

SK-SVROB SK 0.804 0.312 0.457

LK-SVRDCD LK 0.013 0.999 0.011

PK-SVRDCD PK 0.053 0.944 0.039

RK-SVRDCD RK 0.033 0.981 0.023

SK-SVRDCD SK 1.010 0.064 0.455

LK-SVRWF LK 0.116 0.720 0.047

PK-SVRWF PK 0.129 0.529 0.098

RK-SVRWF RK 0.032 0.977 0.021

SK-SVRWF SK 0.861 0.061 0.504

LK-SVRIIW LK 0.157 0.688 0.067

PK-SVRIIW PK 0.145 0.599 0.108

RK-SVRIIW RK 0.029 0.984 0.020

SK-SVRIIW SK 1.301 0.042 0.682

�Fig. 5 RWQ values evaluated by the ERPI and SVR models with
different kernel functions in the testing phase for a DD; b OB; c DCD;
d WF, and e IIW
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Conclusion

In this study, the ERPI model was proposed to determine the
RWQ of different stretches of the river, not only for DD but also
for OB, DCD, WF, and IIW. Assessment of the various moni-
toring locations determined that the river stretch was not excel-
lent for DD, OB, and DCD. Less than 50% of the river stretch
was classified in excellent and good classes for WF. However,
the whole river stretch was found suitable for IIW. The ERPIMLR

and ERPISVR models developed here can be implanted for esti-
mating the RWQ to simplify the interpretation of the ERPI
models. MLRDD, MLROB, MLRDCD, RK-SVRWF, and RK-
SVRIIWmodels performed well to evaluate the RWQ for respec-
tive usage. The verdicts of this case study offered a rudimentary
direction to the water resource managers, irrigation engineers,
aqua-culturists, and the general public. Further research is needed
to test the developed models for more RWQPs to evaluate their
potentiality in RWQ determination.
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Table 8 Performance comparison
of MLR and SVR models for the
testing phase

MLR models RMSE R2 MAE SVR models RMSE R2 MAE

MLRDD 0.001 0.999 0.001 LK-SVRDD 0.012 0.999 0.010

PK-SVRDD 0.058 0.932 0.042

RK-SVRDD 0.029 0.985 0.021

SK-SVRDD 1.030 0.071 0.472

MLROB 0.009 0.997 0.006 LK-SVROB 0.010 0.997 0.008

PK-SVROB 0.102 0.853 0.061

RK-SVROB 0.072 0.912 0.030

SK-SVROB 0.804 0.312 0.457

MLRDCD 0.002 0.999 0.001 LK-SVRDCD 0.013 0.999 0.011

PK-SVRDCD 0.053 0.944 0.039

RK-SVRDCD 0.033 0.981 0.023

SK-SVRDCD 1.010 0.064 0.455

MLRWF 0.092 0.757 0.061 LK-SVRWF 0.116 0.720 0.047

PK-SVRWF 0.129 0.529 0.098

RK-SVRWF 0.032 0.977 0.021

SK-SVRWF 0.861 0.061 0.504

MLRIIW 0.127 0.695 0.085 LK-SVRIIW 0.157 0.688 0.067

PK-SVRIIW 0.145 0.599 0.108

RK-SVRIIW 0.029 0.984 0.020

SK-SVRIIW 1.301 0.042 0.682

Table 9 Summary of the
ranking for the
developed models

Purpose Model Rank

DD MLRDD 1

LK-SVRDD 2

PK-SVRDD 4

RK-SVRDD 3

SK-SVRDD 5

OB MLROB 1

LK-SVROB 2

PK-SVROB 4

RK-SVROB 3

SK-SVROB 5

DCD MLRDCD 1

LK-SVRDCD 2

PK-SVRDCD 4

RK-SVRDCD 3

SK-SVRDCD 5

WF MLRWF 2

LK-SVRWF 3

PK-SVRWF 4

RK-SVRWF 1

SK-SVRWF 5

IIW MLRIIW 2

LK-SVRIIW 4

PK-SVRIIW 3

RK-SVRIIW 1

SK-SVRIIW 5
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