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Abstract
To reach a practical landfill gas management system and to diminish the negative environmental impacts from landfills, accurate
methane (CH4) prediction is essential. In this study, the preprocessing steps includingminimizingmulticollinearity, removal of outliers,
and errors with missing data imputation are applied to enhance the data quality. This study is the first at employing periodic parameters
in the two-stage non-linear auto-regressive model with exogenous inputs (NARX) with the aim of providing a convenient and precise
approach to predict the daily CH4 collection rate from amunicipal landfill in Regina, SK, Canada. Using a stepwise procedure, various
volumes of training data were assessed, and concluded that employing the 3-year training data reduced the mean absolute percentage
error (MAPE) of the CH4 prediction model by 26.97% at the testing stage. The favorable artificial neural network model performance
was obtained using the day of the year (DOY) as a sole input of the time series model with MAPE of 2.12% showing its acceptable
ability in CH4 prediction. Using an only DOY-based model is especially remarkable because of its simplicity and high accuracy
showing a convenient and effective approach in time landfill gas modeling, particularly for the landfills with no reliable climatic data.
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Introduction

North America’s solid waste generation and disposal rate is
one of the highest in the world. Landfilling is a main solid
waste management treatment in Saskatchewan, a Canadian
province with a cold semi-arid climate with a disposal rate
of about 86% higher than that of national (Statistics Canada
2010). Generation of greenhouse gas (GHG) and leachate are
the major concerns with landfills. There are a number of stud-
ies on landfill gas (LFG) and leachate modeling due to the
importance of GHG emission and groundwater pollution (Li
et al. 2011; Abushammala et al. 2014; Mohsen et al. 2019;
Fallah et al. 2019). In Canada, due to the high disposal rates,

GHG emissions from the waste management systems in-
creased by 15.2% from 1990 to 2006 and more than 90% of
total Canadian GHG within the waste management sectors
were generated from landfills (Environment Canada 2015).

Landfill gas modeling

Methane (CH4) (60%) and carbon dioxide (CO2) (40%) are
the major landfill gases generated from the anerobic decom-
position of the degradable solid waste. CH4 emission to the
atmosphere with 25 times the potential damage imposed by
CO2 has been a major concern in global warming over the past
hundred-year period (IPCC 2007). LFG collection systems, as
the most common method in North America, are applied to
reduce global warming potentials to the environments as well
as to mitigate gas emissions from landfills by utilizing CH4 for
heating or electricity production through LFG flaring
(Tolaymat et al. 2010; Rajaram et al. 2011; Sanchez 2016).
Using flare systems, collected CH4 is converted to CO2 with
less potential of global warming. Due to the contributions of
GHG emissions and the explosive risk of methane gas, quan-
tification of CH4 collection rate from landfills is of high im-
portance (Perera et al. 2002). Accurate CH4 collection
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forecasts are needed for studying the feasibility of LFG man-
agement system design and operation and to warrant environ-
mental assessment. An accurate prediction model helps the
energy recovery to be done at the proper time, therefore help-
ing to lower CH4 environmental impacts (Ozkaya et al. 2007).
In LFG management, numerical models have been developed
for LFG predictions since direct measurements at the surface
of the landfills are more costly. Numerical studies on LFG
prediction are commonly reported in the literature (Ozkaya
et al. 2007; Scozzari 2008; Thompson et al. 2009; Li et al.
2011; Amini et al. 2013; Mohsen et al. 2019) due to their
practical importance.

ANN modeling in in predicting methane

Recently, artificial neural network (ANN) models have been
widely used in air pollution modeling to predict GHG concen-
trations in various atmospheric science studies (Gardner and
Dorling 1999; Li et al. 2011; Abushammala et al. 2014;
Arhami et al. 2013; Radojević et al. 2018). The main advantage
of the neural networks is their ability to learn and identify the
complex relationship between inputs and outputs directly from
training data (Kukkonen et al. 2003; Jiang et al. 2004). Owing to
ANN models’ generalization ability and computational efficien-
cy, many GHG studies confirmed that ANN-based models pro-
vide more precise alternatives than the conventional statistical
methods such as multilinear regression (Chelani et al. 2002;
Sahin et al. 2005) especially, when the relationship of data is
highly non-linear (Shi 2002; Karacan 2008).

Multilayer perceptron (MLP) neural network models have
been adapted in various LFG studies. In predicting the CH4

fraction of LFG in a bioreactor landfill in Turkey, Ozkaya
et al. (2007) applied a back propagation MLP neural network
model with one hidden layer. Scozzari (2008) applied an
ANN model with meteorological input parameters to identify
the biogas flux generated from the municipal solid waste land-
fill. In southern California, USA, Li et al. (2011) presented a
back propagationMLP neural network model to predict meth-
ane, carbon dioxide, oxygen concentrations, and temperature
in a landfill. In a study by Abushammala et al. (2014), the
feedforward back-propagation MLP neural network was pro-
posed to predict CH4 oxidation fraction from the bottom of
landfill cover soil in Malaysia. Air temperature was one of the
effective input parameters in their prediction model.
Possessing the ability to train time-variable relationships,
time-series prediction is of special interest in GHG studies
(Sergeev et al. 2018; Mohebbi et al. 2018). In a study by
Mohebbi et al. (2018), the neural network auto-regressive
model with exogenous inputs (NARX), a dynamic ANNmod-
el, was compared with MLP, a statistic neural network model,
for predicting air carbon monoxide (CO) concentration in
Shiraz, Iran. They concluded that the NARXmodel performed
better than the MLP model. Sergeev et al. (2018) investigated

the prediction ability of three neural network models of Elman
neural network, MLP, and NARX to study the atmospheric
CH4 content in Arctic regions and confirmed the higher accu-
racy of the NARX model in their study. The NARX model
was also reported to outperform other neural network and
autoregression techniques in prediction of CH4 concentrations
in an atmospheric study in Russia (Buevich et al. 2020). In
their study, Levenberg-Marquardt (LM) was applied for all
types of ANNs as a training algorithm. In the year 2020,
Fallah et al. studied the application of the multistage NARX
model with LM algorithm using the climatic input parameters
for CH4 rate prediction from an urban landfill, in Regina,
Canada. They reported the effectiveness and precision of the
proposed technique in CH4 gas modeling; however, the appli-
cation of the periodic parameters was not assessed in their
study.

Meteorological input parameters in methane
prediction

Being a data-driven method, ANN performance strongly de-
pends on input variables (Wang et al. 2015). Meteorological
input parameters such as air temperature, relative humidity, air
pressure, wind speed, and the effectiveness of their combina-
tion have been investigated in recent LFG modeling studies
(Scozzari 2008; Li et al. 2011; Uyanik et al. 2012;
Abushammala et al. 2014; Kumar et al. 2016; Xin et al.
2016). Having said that, none of these studies examined the
impact of using periodic parameters and effective length of
training dataset in ANN LFG prediction models.

Periodic parameter

Proper selection of input parameters with their effective com-
bination is a major key point in ANN modeling (Arhami et al.
2013). However, applying a large number of input parameters
in ANN models increases the size of the network (Maier and
Dandy 2000), which lowers the processing speed and limits
the network efficiency (Lachtermacher and Fuller 1994).
Therefore, one can refer to the selection of the input parame-
ters with the highest effect on model performance as the main
step in ANN model development for GHG prediction studies.
Using some meteorological data as inputs causes ANN
models to be not much practicable for GHG forecasting since
some of them are not predictable by conventional weather
forecast models. In addition, climatic data are prone to sto-
chastic fluctuations while periodic parameters are not prone to
inherent variability and uncertainty (Arhami et al. 2013).
Periodic parameters such as month of the year (MOY) and
day of the year (DOY) have recently been used as inputs for
some ANN models in atmospheric studies (Arhami et al.
2013; Khorasanizadeh et al. 2014; Gani et al. 2016;
Radojević et al. 2019). Arhami et al. (2013) investigated the
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efficient length of training dataset and combination of climatic
and periodic input variables in predicting hourly air pollutant
(GHG) levels in Tehran, Iran. In their study, a stepwise pro-
cedure of eliminating the input parameter was performed to
analyze the sensitivity of the prediction model to each input
parameter. Khorasanizadeh et al. (2014) compared the climat-
ic and DOY-based ANN models and reported a better perfor-
mance by the DOY-based atmospheric prediction model in
Birjand, Iran. In another atmospheric prediction study (global
solar radiation) conducted by Gani et al. (2016), a higher ac-
curacy of a DOY-based NARXmodel was reported compared
to the adaptive neuro-fuzzy inference system (ANFIS) model.
They also declared that using only the DOY as an input in the
NARX model was a convenient approach to daily atmospher-
ic predictions. However, in their study, finding the most effi-
cient length of training data and forming a complete dataset
was not conducted, and the interpolation method was only
applied for the months with less than 5 days of missing or
inaccurate values. Radojević et al. (2019) examined the use-
fulness of different forms of periodic parameters in combina-
tion with meteorological variables in daily ANN air pollutant
predictionmodels in an urban area in Serbia. In their study, the
significance of periodic input parameters was also evaluated
using Analysis of variance (ANOVA). They reported the
MOY-based ANN model proved superior to the models with-
out MOY.

Objectives

In this study, after reducing the model uncertainty by remov-
ing the outliers and unreliable measurements and generating a
complete dataset for time series ANN model, the efficient
length of training input dataset was investigated to improve
the LFG prediction model performance. The main goal is to
provide a convenient and precise way for the daily CH4 col-
lection prediction by using periodic parameters as the only
input of the two-stage NARX neural network without apply-
ing climatic-based variables. Periodic parameters are not
prone to inherent variability and uncertainty while climatic
input parameters are prone to stochastic fluctuations
(Arhami et al. 2013). This study is the first to employ the
periodic parameters in the NARX neural network for CH4

prediction modeling and the objectives are as follows: (i) to
assess the most efficient length of training dataset in the meth-
ane prediction model based on coefficient of determination
(R2), mean square error (MSE), and mean absolute percentage
error (MAPE); (ii) to examine and compare the accuracy of
the two-stage NARX model using periodic parameters along
with independent and significant selected climatic input vari-
ables; and (iii) to evaluate the accuracy of a single periodic
input model in methane prediction from the landfill to check if
the periodic parameter can be used as the sole input in NARX
landfill gas modeling.

Material and methods

Landfill of Regina

Regina landfill is located in the province of Saskatchewan,
Canada. The climate of Regina is categorized as “Dfb” based
on the Koppen-Geiger classification system, representing a
cold climate and a warm summer (Peel et al. 2007) with a
mean temperature of 3.1°C (Canada Climate Normal 2016).
The landfill started its operation in 1961 and is the only mu-
nicipal landfill in the city of Regina (Conestoga-Rovers &
Associates 2006) with Latitude and longitude coordinates of
50° 26′ N and 104° 37′ W, respectively (Fallah et al. 2020a).
LFG collection with flaring system at the landfill was
stablished in July 2008, consisting of 27 vertical gas wells,
and the final cover with a 1-m compacted clay layer and a
0.15-m topsoil, which was constructed in 2007 at the LFG
collection area (Conestoga-Rovers & Associates 2006).

Data description

Methane collection rate

Real-time LFG data was collected at Regina landfill from
August 2008 to December 2014 (Conestoga-Rovers &
Associates 2008). Supervisory Control and Data Acquisition
(SCADA) system measured per minute CH4 flow using
Hitech sensors, which employed wavelength infrared tech-
niques (Conestoga-Rovers & Associates 2008). The collected
LFGwas composed of 44%CH4, 37%CO2, and 19% residual
gas with the average daily CH4 flow rate of 6100m3/day (4.23
m3/min) during the period of study. A total of 1932 daily data
points was measured, containing outliers and unreliable mea-
surements among them. The methodology of the study is
graphically represented in Fig. 1.

Climatic variables

Twelve climatic variables including the maximum, average
and minimum daily temperature (T), dew point (DP), maxi-
mum and minimum daily relative humidity (H), air pressure
(P), and wind speed (W) were collected over the study period
at the Regina station (elevation 0, 50.43° N, 104.67° W) from
theWeather Underground (WU, 2018). These climatic param-
eters were also applied in the LFG prediction studies by
Scozzari (2008), Li et al. (2011), Uyanik et al. (2012),
Abushammala et al. (2014), Kumar et al. (2016), and Xin
et al. (2016).

Periodic parameters

Prediction of daily CH4 data by applying the periodic input
parameter as an only input would not only be appealing and
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Fig. 1 Methodology flowchart
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beneficial due to its simplicity and fast application but also
eliminates the need for any other climatic input data and pre-
calculation analysis for the climatic input. Besides the climatic
parameters, time variables such as the MOY and the DOY,
that indicate various frequencies in the observed data, can be
employed to optimize the model outcomes. Having said that,
the periodic parameters are not liable to uncertainty and sub-
stantial variations unlike some climatic parameters (Arhami
et al. 2013). In this study, since the prediction of daily CH4

collection data is the target in the ANN modeling, MOY and
DOY are applied as periodic variables to represent the varia-
tion of CH4 through the years. These periodic parameters were
smoothed by applying the MOY and DOY variables through
using the following equations (Arhami et al. 2013; Gani et al.
2016):

DOY ¼ cos
2πd
365

� �
ð1Þ

MOY ¼ cos
2πm
12

� �
ð2Þ

where d is day of a year, ranging from 1 to 365, and m is
month of a year, ranging from 1 to 12.

Applying such types of periodic variables prevent the sud-
den changes in the values of day and month as input param-
eters, and accordingly, reduces the sudden variations in the
model results and improves the model performance (Arhami
et al. 2013).

Data preprocessing and missing data estimation

The existence of LFG missing data can probably be attributed
to the high possibility of the frozen well heads in Regina with
semi-arid cold climate, equipment failure, sensor, or mainte-
nance problems (Fallah et al. 2020b). The CH4 data prepro-
cessing was performed by utilizing the collinearity analysis,
filtering the outliers and missing data imputation. Pearson’s
correlation analysis was adapted to select the independent and
significant climatic input parameters to reduce the impact of
multi-collinearity by excluding the input variables that have
correlation coefficients higher than 0.8 (Hamilton 1991;
Adamović et al. 2018a, b; Fallah et al. 2020b) with other
inputs. Fallah et al. (2020b) concluded that selection of the
input variables which have no or weak correlation coefficient
with other inputs reduced the errors of the CH4 prediction
models in the testing stage at the Regina landfill. Moreover,
they reported that removing outliers could increase the ANN
model performance at both testing and training stages. The
outliers and missing data were possibly caused by system
shutdowns, instruments’ malfunction, maintenance work,
and frozen well heads at the Regina landfill (Fallah et al.
2020b). Inter-quartile range (IQR) filtering was adapted for
removing the outliers from the dataset (Kannangara et al.

2018; Fallah et al. 2020b). The data located outside of upper
level =Q3 + IQR × 1.5 and ower level =Q1 − IQR × 1.5 were
considered outliers and were excluded from the dataset (Q1

and Q3are the first and third quartiles of the dataset,
respectively).

In this study, missing daily CH4 collection data (m3/
day) was estimated by using the feed forward back
propagation MLP model (Fallah et al. 2020b) with LM
as the most commonly used training algorithm in ANN
predict ion studies (Moghaddamnia et al . 2009;
Taherdangkoo et al. 2020; Buevich et al. 2020; Fallah
et al. 2020b) and a default of 10 number of neurons in
the hidden layer (Ozcan et al. 2006). MLP with a single
hidden layer was applied by Junninen et al. (2004) for
missing data estimation in the air quality datasets. The
MLP with a single hidden layer has been widely ap-
p l i ed in the a i r po l lu t an t p r ed i c t i on s tud i e s
(Elangasinghe et al. 2014; Ozkaya et al. 2007; Feng
et al. 2015) and missing data estimation (Junninen
et al. 2004; Dastorani et al. 2010). In this study, ANN
modeling is developed in MATLAB (version 2017b). A
single hidden layer was utilized to avoid overfitting
problems (Kannangara et al. 2018; Singh and Satija
2018) with a sigmoid transform function and an output
layer with a linear transform function. An 85:15
train:test ratio was used on the available dataset (Feng
et al. 2015; Abbasi and El Hanandeh 2016; Singh and
Satija 2018; Fallah et al. 2020b). One indicator of
overfitting is when the model is well-fitted during the
training while poorly fitted in the testing stage. In the
present study, early stopping is applied to reduce the
overfitting problems (Sarle 1996). Therefore, the inputs
were divided into training (70%), validation (15%), and
testing (15%) in all trails. In addition, over 40 trails
were conducted with selected climatic and periodic pa-
rameters to assess the model accuracy and to define the
model with the minimum MSE. The result from this
step is the complete time series dataset (2344 daily da-
ta) in the study period (August 2008–December 2014).
More details on the missing daily CH4 data prediction is
reported by Fallah et al. (2020b) and to avoid duplica-
tion has not been repeated here. Similar to Fallah
et al.’s (2020) study, in this study, only the climatic
input parameters have been applied for missing CH4

data estimation.

NARX model in daily methane prediction

In the present study, to predict the daily CH4 collection rate, a
non-linear autoregressive neural network model with an ex-
ternal input (NARX) was employed by using the complete
time series dataset produced from missing data estimation
process. The standard NARX model is a two-layer network
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with sigmoidal and linear function in the hidden and output
layers, respectively and the equations are as follows:

φ ¼ 1

1þ ⅇ−y
ð3Þ

φ ¼ y ð4Þ

The complete dataset consists of 2344 time series data
points for each input-output parameter during the study period
(August 2008-December 2014). In NARX models, 1992 data
points (85%) were used for training and 352 data points (15%)
were applied at the testing stage (Feng et al. 2015; Abbasi and
El Hanandeh 2016; Singh and Satija 2018; Fallah et al. 2020b)
in the time series order. Similar to the MLP model for gener-
ating the complete dataset, in the NARX models, the daily
methane collection rate (m3/day) is the target variable. In the
NARX models, in addition to the climatic input parameters,
the periodic parameters were also employed for model opti-
mization assessment.

In this study, the LM training algorithm was applied in all
NARXmodels as the most commonly used algorithm in GHG
prediction studies (Fallah et al. 2020b; Buevich et al. 2020).
The LM is a type of back propagation algorithm and has been
applied in various ANN prediction models (Moghaddamnia
et al. 2009; Taherdangkoo et al. 2020; Buevich et al. 2020;
Fallah et al. 2020b) owing to the fast convergence speed
(Marquardt 1963; Hagan and Menhaj 1994; Taherdangkoo
et al. 2020). In LM algorithm, the weights and bias are up-
dated based on the least-square technique (Buevich et al.
2020). The LM is a modification of the Gauss-Newton tech-
nique which consisted of consecutive approximation of the
Hessian matrix to find the local optimum and optimizes the
solution (Sahoo and Jha 2013; Taherdangkoo et al. 2020)
using the following equation (Bishop 1995):

Δw ¼ JT wð Þ J wð Þ þ λI
� �−1

JT wð Þe wð Þ ð5Þ

where w is the weight, J represents the Jacobian matrix,
JT represents the transpose matrix of J, JTJ is the
Hessian matrix, and I is the learning matrix. e is vector
of network error and λ represents the step size and is
automatically updated to secure the convergence accord-
ing to the error at each iteration. To initiate the iteration
for weight optimization in LM algorithm, the random
value of λ was used in this study.

Prior to developing the ANN models, correlation
analysis is usually applied to select the effective and
independent inputs (Shahin et al. 2008; Fallah et al.
2020b). At this time, after calculating the periodic var-
iables for the complete dataset, a correlation matrix was
performed to identify the climatic and periodic input
variables, which are statistically significant (P value <
0.05) and independent.

Stepwise procedure for the best training length

Generally, a model will be more accurate with a larger training
dataset. However, the level and trend of the daily CH4 collec-
tion rate may change over the period of time. The changes in
daily CH4 rate may be related to changes in decomposition
speed of biodegradable buried waste, operational and climatic
conditions in landfills. Therefore, more recent data may con-
tribute to a better performance of the prediction model. In this
study, after employing the correlation matrix, a stepwise pro-
cedure was applied to obtain the most effective length of input
dataset for training the ANNmodels using R2 value, the MSE,
and the MAPE, between the measured and predicted daily
CH4 collection rate at the testing stage. Initially, the most
recent one year of daily methane collection data were applied
at the training stage and then, the temporal length of training
dataset was increased gradually (6 months) until reaching the
complete dataset (August 2008 to December 2014) with a
training:test ratio of 85:15. Starting with the one-year-length
data for training has the benefit of taking into account the full
coverage of seasonal variations in CH4 levels and climatic
variables in the trained model. After identifying the most ef-
ficient length of the training dataset, a new correlation matrix
was provided for comparing the coefficients of inputs in the
selected lengths of training and those from considering the full
dataset.

ANN models development

All independent and significant climatic and periodic param-
eters were applied as inputs in a NARX neural network model
(first and benchmark model as shown in Fig. 1). In the second
NARX group, to evaluate the sensitivity of the NARXmodels
to each input variable, a stepwise procedure of deleting the
input parameter one-at-a-time was performed and the NARX
models were generated using the remaining input parameters.
Moreover, in the third NARX group, single-input-based
models were developed by using the only one climatic and a
periodic input parameter with the highest correlation coeffi-
cient with the target variable (daily CH4 rate). In the last
NARX model, a combination of the two independent and
significant climatic and periodic variables with the highest
correlation coefficient with CH4 data was constructed. The
main aim of the study is to provide a precise and convenient
means for predicting the daily CH4 collection rate without
applying any climatic inputs in the NARX model.

Models performance assessment

To examine the accuracy of the developed models for daily
methane predictions, three statistical metrics were defined as:
R2 value, the MSE, and the MAPE. These metrics were cal-
culated by applying the model predictions of the daily CH4
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rate and the corresponding measured data. The equations for
these statistical parameters are as follows (Hastie et al. 2009):

R2 ¼ 1−
∑
n

i¼1
Oi−Pið Þ2

∑
n

i¼1
Oi−O

� �2 ð6Þ

MSE ¼ 1

n
∑
n

i¼1
Pi−Oið Þ2 ð7Þ

MAPE ¼ 1

n
∑
n

i¼1

Oi−Pi

Oi

����
����� 100 ð8Þ

where Oi and Pi are the observed and predicted daily CH4

collection values, respectively. In i = 1, 2, ..., n days, Ō is
the mean of the observed times series daily CH4 collection
rate (m3/day), and n is the total number of observations.

Result and discussion

Data analysis and screening

Before any preprocessing is done, 1932 time-series data points
on the daily CH4 collection rate were available (August 2008–
December 2014). The fluctuations in the CH4 collection rates
and the characteristics of the daily dataset are observed in Fig.
2a and Table 1, respectively. The average daily CH4 collection
rate was 6286.87 m3/day and close to the median (6235.77
m3/day), which represents the normal distribution of target
dataset. However, the median is higher than the average for
some climatic parameters (T, DP, and H), which indicates the
data to be skewed. The most fluctuated parameters are T and
DP (Max, Avg, and Min) with coefficients of variation higher
than 1 (1.43, 3.21, −6.76, 4.41, −11.80, and −2.70). This may
be related to the extreme cold winters in the study area. A
close-to-one coefficient of variation (0.94) for the minimum
wind speed shows the considerable variations of this input
parameter. The coefficient of variation of the air pressure is
close to zero (0.01) in the study period.

Preprocessing for missing data imputation

Collinearity analysis

The preprocessing and missing data estimation procedure is
similar to the study conducted by Fallah et al. (2020b), this
time for CH4 collection rate prediction at the Regina landfill.
In this study, the correlation analysis indicates that Tavg has the
greatest correlation coefficient (R = 0.29) with the daily CH4

collection rate. High correlation coefficients, ranging from
0.92 to 0.99, are observed between T (Max, Avg, and Min)
and DP (Max, Avg and Min). WMax and WMin; PMax and PMin

are also correlated to each other with R values of 0.85 and
0.83, respectively, which are above the 0.8 cut-off value
(Hamilton 1991; Adamović et al. 2018a, b). Therefore, to
avoid multicollinearity that may result in confusion in ANN
modeling, and to increase the accuracy of the MLP missing
data estimation model (Fallah et al. 2020b), the combination
of the average air temperature (Tavg), maximum pressure
(PMax), minimum humidity (HMin), maximum wind speed
(WMax), and maximum humidity (HMax) with correlation co-
efficients of 0.29, −0.15, −0.11, −0.06, and −0.05, respective-
ly, have been applied as independent and significant (P value
< 0.05) input variables in the ANN modeling.

Removal of outliers

Among 1932 CH4 observed data points, errors, and outliers
are removed using the inter-quartile range (IQR = 1007 m3/
day, Q1 = 5760 m3/day, and Q3 = 6768 m3/day). The CH4

collection rate data smaller than lower level = 4250 and higher
than upper level = 8278 were excluded from the dataset. In the
dataset, 2.5 % of CH4 data were below the lower level while
no data was higher than the upper level. After performing
correlation analysis and the removal of outliers, the remaining
1883 data points were applied in the MLP neural network
model described in section 2.3 to estimate the missing daily
CH4 collection rate.

Missing data estimation

To form a complete time series dataset, 2344 daily CH4 data
points are expected in the study period (from August 2008 to
December 2014) while only 1883 data points are available
after the outlier removal. Therefore, 19.7% of CH4 collection
data are missing, and are predicted through the back propaga-
tion MLP neural network model. In this model, the available
data points (1883) were divided into two groups of 85% and
15%, in which the 85% were used at the training and the
remaining 15% were employed at the testing stage to predict
the missing data. Therefore, a train: test ratio of 65:35 was
applied to the incomplete dataset (85:15 to the available
dataset) and the missing daily CH4 rate data were predicted
in the testing stage using theMLPmodel. Themodel shows an
acceptable performance with the averageMAPE of 7.97% and
9.15% at the training and testing stages, respectively. The 461
daily CH4 rate predicted data were generated from the testing
stage of theMLPmodel led to obtaining a complete dataset (as
illustrated in Fig. 2b) consisting of 2344 data points in the
study period (from August 2008 to December 2014). In con-
struction of the complete dataset, to minimize the effect of the
MLP prediction model errors, only the missing data were re-
placed by the testing stage outcomes (constructed data) while
the observed data were not replaced by the predicted ones.
The complete dataset was employed in the NARX neural
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network model developments in which, 1992 data points
(85%) were used at training whereas 352 data points (15%)
were applied at the testing stage in time series order.

Preprocessing for NARX models developments

Correlation analysis for complete dataset

Effective selection of input variables, reducing the uncertainty
of model inputs, and improving the prediction model perfor-
mance are essential to the practical use of prediction models
(Arhami et al. 2013). As described in the methodology, in
developing the NARX neural network models, periodic vari-
ables are also applied in addition to the climatic parameters.
The results from the correlation analysis to find the most ef-
fective and independent input parameters in the NARX pre-
diction models are tabulated in Table 2.

Similar to the correlation analysis for the missing data es-
timation, in a complete dataset, TAvg showed the highest cor-
relation (0.312) with the daily CH4 collection rate. The input
parameters with correlation coefficients less than |0.099| were
not used as input in ANN modeling due to their minimal
impacts on daily CH4 rate. Multicollinearity is observed be-
tween T and DP (Max, Avg, and Min) with high correlation
coefficients ranging from 0.928 to 0.987. PMin is correlated
with PMax with the R value of 0.827 higher than the cut off
value (0.8) (Hamilton 1991; Adamović et al. 2018a, b). As

discussed in the methodology section, the periodic input pa-
rameters including MOY and DOY were considered in the
analysis to evaluate the effectiveness of the periodic parame-
ters on CH4 rate prediction models. Based on the correlation
matrix, MOY and DOY variables are highly correlated to each
other (R = 0.954) and collinearity is also observed between
DOY and T (Max, Avg, and Min) with the absolute R value
ranging from 0.837 to 0.853. Therefore, to decrease the col-
linearity problems that may cause confusion in the ANN
modeling, the combination of the average air temperature
(TAvg), maximum pressure (PMax), minimum humidity
(HMin), and only MOY was employed as the independent
and significant (P value < 0.05) input variables in ANNmodel
developments. However, DOY was applied in a single-input-
variable ANN model, to check the effectiveness of the peri-
odic parameters on the accuracy of CH4 prediction models.
Information on different ANN CH4 prediction models is pro-
vided in the Result and discussion section.

Stepwise procedure for the best training length

As described in the methodology section, initially, the most
recent 1 year of measured data was utilized for training. Then,
the temporal length of training data was gradually increased
by 6 months at each step until reaching the complete dataset in
which the daily CH4 rate data from 01 Aug 2008 to 13
Jan 2014 and from 14 Jan 2014 to 30 Dec 2014 were applied

Table 1 Statistics of the daily
dataset (August 2008 to
December 2014)

Max Mean Median Min St.
deviation

St. deviation/
mean

(Output variable)a

CH4 collection rate
(m3/day)

7910.87 6286.87 6235.77 4299.41 619.99 0.10

(Input variable)b

TMax (°C) 35 9.8 11.67 −28.89 14.01 1.43

TMean (°C) 26.67 4.04 6.67 −32.78 13 3.21

TMin (°C) 21.67 −1.83 0.56 −40 12.37 −6.76
DPMax (°C) 25 2.52 3.89 −33.89 11.1 4.41

DPMean (°C) 22.78 −1 0 −37.78 11.76 −11.8
DPMin (°C) 20 −4.72 −2.78 −45 12.73 −2.7
HMax (%) 100 89.15 93 54 8.66 0.1

HMin (%) 93 52.4 53 7 18.95 0.36

WMax (km/h) 74.03 32.23 32.19 9.66 11.05 0.34

WMin (km/h) 37.01 6.36 6.44 0 5.97 0.94

PMax (inHg) 31.07 30.12 30.1 29.3 0.25 0.01

PMin (inHg) 30.8 29.88 29.88 29.08 0.25 0.01

T, air temperature; DP, dew point; H, humidity; W, wind speed; P, sea-level pressure
a Output variable: the source for CH4 collection rate (m

3 /day) is Conestoga-Rovers and Associates (2008)
b Input variable source is WU 2019. Weather data for Regina, Saskatchewan (Station information: Elevation 0,
50.43° N, 104.67° W). (https://www.wunderground.com/history/monthly/ca/regina/CYQR/date/2019-4?cm_
ven=localwx_history)
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Fig. 2 Missing data estimation usingMLP neural network; ameasured CH4 data in the study period; b constructedmissing data to form a complete daily
CH4 dataset
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at the training and testing stages, respectively. Performance
metrics (R2 value, MSE, and MAPE) for predicted and avail-
able CH4 levels with various volumes of training data are
illustrated in Fig. 3. The best fit with the highest average R2

value of 0.8 and the lowest average MSE and MAPE of
47,698.30 m3/day and 2.26% at the testing stage, respectively,
was achieved by applying the most recent 3 years of available
data (from 10 Jul 2011 to 23 Jun 2014) for training (data from
24 Jun 2014 to 31 Dec 2014 were used for testing). In com-
parison to the full-length dataset, the average R2 value in-
creased from 0.72 to 0.80 and MSE and MAPE decreased
from 97,918.39 to 47,698.30 and from 3.10 to 2.26%, respec-
tively, during the testing stage. This result may possibly be
attributed to the fluctuations of daily CH4 rate data over the
past years and the date 22 Jun 2011 with the peak CH4 rate of
7852.945 m3/day.

As previously described, after identifying the most ef-
ficient length of training dataset, a comparative analysis
was performed to see the changes in the coefficients of
the effective inputs between 3-year length training dataset
and those of in the trained model with the full dataset.
The coefficients of inputs for 3-year length data and the
full dataset is tabulated in Table 3. The result shows that
by applying the 3-year length data in training, the coeffi-
cients of TAvg and PMax and HMin increased by 10.56%,
18.24%, and 2.83%, respectively, and TAvg is still the
highest correlated (R = 0.345) input among other input
parameters.

NARX models performance assessment

A total of nine time series ANN prediction models were de-
veloped using the most recent 3 years of data for training. The
first ANN model was constructed with the combination of 4
inputs (T-P-H-MOY), and four ANN models were developed
through sensitivity analysis using the stepwise procedure of
omitting one input at the time (without T, without P, without
H, without MOY). Moreover, single-input models were gen-
erated by using T (with highest correlation coefficient with
target variable), MOY, DOY (the two periodic parameters),
and the last model (T-MOY) performed by a combination of
the climatic and periodic inputs with highest coefficient with
target variable. The comparative evaluation of these nine time-
series ANN model performances is presented in Fig. 4.

MSE is scale dependent; therefore, the R2 value andMAPE
at the testing step are used to compare the relative performance
of the time series ANN models. The MAPE of the nine CH4

prediction models compared favorably to other solid waste
energy recovery ANN models, in which MAPE ranged from
0.3 to 12.6% (Ogwueleka and Ogwueleka 2010; Nabavi-
Pelesaraei et al. 2017; Adamović et al. 2018a, b; Fallah et al.
2020b) as shown in Appendix Table 4.

The model with all four independent and significant inputs
performed well with an average R2 value of 0.829 and the
average MSE and MAPE of 40,839.68 m3/day and 2.05%,
respectively, at the testing stage. Among the ANN groups
generated by sensitivity analysis, the model with three inputs

Table 2 Correlation matrix of daily CH4 collection rate and input variables (August 2008 to December 2014)

CH4

collection
rate
(m3/day)

TMax

(°C)
TAvg
(°C)

TMin

(°C)
DPMax

(°C)
DPAvg
(°C)

DPMin

(°C)
HMax

(%)
HMin

(%)
WMax

(kph)
WMin

(kph)
PMax

(inHg)
PMin

(inHg)
MOY DOY

CH4 collection
rate (m3/day)

1.000

TMax (°C) 0.307 1.000

TAvg (°C) 0.312 0.987 1.000

TMin (°C) 0.310 0.942 0.984 1.000

DPMax (°C) 0.299 0.952 0.969 0.958 1.000

DPAvg (°C) 0.306 0.944 0.976 0.980 0.987 1.000

DPMin (°C) 0.306 0.928 0.970 0.987 0.964 0.990 1.000

HMax (%) −0.043 0.208 0.245 0.277 0.400 0.396 0.374 1.000

HMin (%) −0.140 −0.635 −0.564 −0.468 −0.413 −0.397 −0.392 0.308 1.000

WMax (kph) −0.052 0.007 0.026 0.041 0.044 0.017 0.005 −0.045 0.016 1.000

WMin (kph) −0.052 −0.081 −0.049 −0.013 −0.065 −0.055 −0.038 −0.145 0.088 0.463 1.000

PMax (inHg) −0.162 −0.529 −0.561 −0.580 −0.583 −0.587 −0.581 −0.242 0.129 −0.151 −0.009 1.000

PMin (inHg) −0.124 −0.371 −0.387 −0.391 −0.443 −0.417 −0.390 −0.206 0.019 −0.377 −0.108 0.827 1.000

MOY −0.099 −0.724 −0.739 −0.735 −0.707 −0.714 −0.712 −0.126 0.485 −0.002 0.055 0.339 0.150 1.000

DOY −0.185 −0.837 −0.853 −0.845 −0.819 −0.828 −0.827 −0.174 0.549 0.020 0.073 0.373 0.171 0.954 1.000
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Fig. 3 Performance metrics (R2

value, MSE, and MAPE) for
predicted and measured CH4

levels, with various volume of
training dataset

Table 3 Comparison of inputs
coefficients; full dataset (from 01
Aug 2008 to 31 Dec 2014) and 3-
year length training dataset (from
10 Jul 2011 to 31 Dec 2014)

CH4 collection rate (m
3/day) TAvg (°C) PMax (inHg) HMin (%)

Full dataset (from 01 Aug 2008 to 31 Dec 2014)
CH4 collection rate (m

3/day) 1
TAvg (°C) 0.312 1
PMax (inHg) −0.162 −0.561 1
HMin (%) −0.140 −0.564 0.129 1
3-year length training dataset (from 10 Jul 2011 to 31 Dec 2014)
CH4 Collection rate (m

3/day) 1
TAvg (°C) 0.345 1
PMax (inHg) −0.191 −0.541 1
HMin (%) −0.144 −0.586 0.131 1
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(withoutH) showed the lowest averageMSE of 38,171.21m3/
day and MAPE of 2.06% with the R2 value of 0.793. The
results, however, highlight the importance of periodic param-
eters on the accuracy of CH4 collection prediction models. Of
these four models with three inputs as shown in Fig. 4,
Without MOY model had the poorest estimates with a MSE
of 47,698.30 m3/day and a MAPE of 2.26%. It also implies
that MOY is an acceptable indicator for CH4 rate prediction
models. The second poorest model was without T model with
a MSE of 47,037.12 m3/day and MAPE of 2.21% but with

lower R2 value of 0.775 than that of the without MOY model
(0.803). Among all the three single-input variable models, the
DOY-based model had the highest R2 value of 0.801 and the
lowest MSE of 38,579.24 m3/day. The MAPE in T and DOY
models are both 2.12%, and negligibly lower than that of the
MOY-based model (2.19%). The last model (T-MOY) did not
show a high performance in comparison to the other eight
ANN models, with the highest MSE and MAPE of
48,033.75 and 2.34%, respectively. Therefore, the combina-
tion of these two climatic and periodic parameters is not

Fig. 4 Comparative evaluation of the nine-time series daily CH4 prediction models using performance indices
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recommended in this study. Comparison of the two single
periodic input variable models shows the higher performance
of DOY than that of the MOY model with respect to all three
performance indices: R2, MSE, andMAPE of the DOYmodel
are 2.37%, 8.69%, and 3.17% better than those in the MOY
model, respectively. The DOY model even performed better

than the T model with 7.95% lower MSE, which represents
the benefit of considering DOY as the only input in CH4 rate
prediction models from the landfill.

The R2 value and MAPE of the DOY model (0.80 and
2.12%, respectively) at the testing stage are compared favor-
ably to other published ANN models (Ozcan et al. 2006;

Fig. 5 Performance of the day of the year (DOY)-based CH4 prediction model; a training stage from 10 Jul 2011 to 23 Jun 2014; b testing stage from 24
Jun 2014 to 31 Dec 2014
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Ozkaya et al. 2007; Karacan 2008; Ogwueleka and
Ogwueleka 2010; Nabavi-Pelesaraei et al. 2017; Adamović
et al. 2018a, b), in which the R2 value andMAPE ranged from
0.66 to 0.0.99 and 0.3 to 12.6%, respectively (Appendix
Table 4). It is observed that the performance of the DOY-
based model with MAPE of 2.12% is obviously higher than
those reported in Ogwueleka and Ogwueleka (2010) and
Adamović et al. (2018a, b) studies in which the MAPE ranged
from 9.05 to 12.6%. The results from the present study sug-
gest that applying DOY as a single input of time-series ANN
models can be a convenient and rapid approach for daily CH4

rate prediction from landfills, particularly for the landfills with
no reliable climatic data.

Using the DOY model, the measured and predicted daily
CH4 collection data are graphically compared in Fig. 5 at both
training and testing stages. Figure 5a shows the DOYmodel in
training period from 10 Jul 2011 to 23 Jun 2014. The DOY
model well captured the daily CH4 collection data particularly
the day with average and peak values. Figure 5b represents the
DOY model in the testing stage from 24 Jun 2014 to 31
Dec 2014. This model again accurately captured the real
CH4 collection data at the testing period. The model, however,
is less useful in the prediction of the CH4 data with values
lower than the daily average CH4 collection rate.

Conclusion

Accurate and precise LFG prediction models are not only essen-
tial for mitigating the GHG environmental impacts but also help-
ful in the efficient LFG management systems in landfills. The
preprocessing steps, including minimizing multicollinearity
problems, filtering the outliers and erroneousness, and construct-
ing missing data to form a complete dataset, were employed on
the raw daily CH4 collection data. Missing data estimation using
the MLP neural network model represented an acceptable per-
formance at both training (MAPE = 7.97%) and testing (MAPE
= 9.15%) stages. In this study, the CH4 rate prediction model
performance was improved by selecting the most recent 3-year
length dataset for training through the stepwise procedure. It is
found that using the most recent 3-year length training dataset,
the R2 value increased by 10.86% while the MSE and MAPE
decreased by 51.29% and 26.97%, respectively, at testing stages.

Proper selection of input parameters and model architecture is
a key item in ANN model developments. In the present study, a
fast and convenient approach for the methane rate prediction
model was investigated based on periodic parameters as a sole
input. In all nine NARX daily CH4 models developed in this
study, theR2 value,MSE, andMAPE of themodels are in ranges
of 0.775–0.829, 38,171.21–48,033.75 m3/day, and 2.05–2.34%,
respectively. Among all nine ANN models, the T-P-H-MOY
model with all independent and significant climatic and periodic
inputs represented the highest performance with R2 value and

MAPE of 0.829 and 2.05%, respectively, with an MSE of
40,839.68 m3/day at the testing stage. The sensitivity analysis
showed that MOY plays an important role in daily CH4 rate
prediction models since by eliminating MOY, the model’s accu-
racy R2, MSE, and MAPE dropped by 3.07%, 16.79%, and
10.25%, respectively (at testing stage). A favorable precision is
achieved by the DOY model with an R2 value of 0.80, MSE of
38,579.24 m3/day, and MAPE of 2.12%, respectively. The re-
sults suggest that the highest accuracy is achieved by the model
with all four independent and significant climatic and periodic
inputs. However, application of the DOY as the only input in the
NARX CH4 prediction models has minimum impacts on the
prediction accuracy of the model with four climatic and periodic
inputs by reducing the R2 value by 3.41% and increasingMAPE
by 3.07%.

The results illustrate utilizing both MOY and DOY as sole
inputs in the daily CH4 rate predictionmodels would be highly
practical owing to the precise performance of the time series
ANN models. In this study, the DOY-based model outper-
forms the MOY-based model, probably due to the greater
absolute coefficient of DOY (|R| = 0.185) than that of MOY
(|R| = 0.099) with the daily CH4 collection rate data in the
correlation matrix. The main advantage of the DOY-based
NARX model application is its simplicity and no need for
meteorological input elements. The results suggest that the
DOY-based model can be applied as proper substitutes for
climatic-based NARX CH4 prediction models owing to their
close and precise prediction. Therefore, the proposed method
can be applied as an effective and convenient LFG modeling
tool, particularly in landfills with no climatic data.

Table 4 Comparison of the DOY-based ANNmodel performance with
other municipal solid waste energy recovery ANN models at the testing
stage

Studies R2 MAPE (%)

Ozcan et al. (2006) 0.66 NR*

Ozkaya et al. (2007) 0.92 NR

Karacan (2008) 0.85 NR

Qdais et al. (2010) 0.86 NR

Ogwueleka and Ogwueleka (2010) 0.96 9.6

Abushammala et al. (2014) 0.88 NR

Nabavi-Pelesaraei et al. (2017) 0.86–0.96 2.1–0.3

Adamovic et al. (2018a) 0.99 7.76

Adamovic et al. (2018b) 0.92–0.98 9.05–12.6

The present study 0.80 2.12

NR, not reported

Appendix 1
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Abbreviations ANN, Artificial neural network; CH4, Methane; CO2,
Carbon dioxide; DOY, Day of the year; DPMax, Maximum dew point;
DPMean, Mean dew point; DPMin, Minimum dew point; GHG,
Greenhouse gas; HMax, Maximum relative humidity; HMin, Minimum
relative humidity; IA, Index of agreement; IQR, Inter-quartile range;
LFG, Landfill gas; LM, Levenberg-Marquardt; MAPE, Mean absolute
percentage error; MLP, Multilayer perceptrons; MOY, Month of the year;
MSE, Mean square error; NARX, Non-linear auto-regressive model with
exogenous inputs; PMax, Maximum air pressure; PMin, Minimum air
pressure; Q1, First quartiles; Q3, Third quartiles; R, Correlation
coefficient; R2, Coefficient of determination; RMSE, Root mean square
error; SCADA, Supervisory Control and Data Acquisition; TMax,
Maximum temperature; TMean, Mean temperature; TMin, Minimum
temperature; WMax, Maximum wind speed;WMin, Minimum wind speed
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