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in metal mining areas of Southern Jharkhand, India
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Abstract
The present study was intended to investigate the metal concentrations in the leafy vegetables, irrigation water, soil, and
atmospheric dust deposition in the iron and copper mining areas of Southern Jharkhand, India. The study aimed to develop a
multivariate linear regression (MVLR) model to predict the concentration of metals in leafy vegetables from the metals in
associated environmental factors and assessment of the risk to the local population through the consumption of leafy vegetables
and other allied pathways. The developed species-specific MVLR models were well fitted to predict the concentration of metals
in the leafy vegetables. The coefficient of determination values (R2) was greater than 0.8 for all the species-specific models. Risk
assessment was carried out considering multiple pathways of ingestion, inhalation, and dermal contact of vegetables, soil, water,
and free-fall dust. Consumption of leafy vegetables was the major route of metal exposure to the local population in both the
metal mining areas. The average hazard index (HI) value considering all the metals and pathways was calculated to be 5.13 and
12.1, respectively for iron and copper mining areas suggesting considerable risk to the local residents. Fe, As, and Cu were the
major contributors to non-carcinogenic risk in the Iron mining areas while in the case of copper mining areas, the main
contributors were Co, As, and Cu.
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Introduction

A significant quantity of tailings and wastewater is produced
during the mining exploitation and ore smelting processes
which results in severe metal pollution in the surface water,
groundwater, soils, and food crops (Amoakwah et al. 2020;
Rodríguez-Estival et al. 2019). The metals in the mining en-
vironment pose a health risk to the population in the vicinity
through different pathways like ingestion, dermal contact, or
inhalation of dust and soil; ingestion and dermal contact of

water; and consumption of food crops grown in contaminated
soils or irrigated with polluted water (Doabi et al. 2018; Park
and Choi 2013; Wu et al. 2015).

Consumption of metal-contaminated crops, particularly
vegetables, from a mining dominated area form a major expo-
sure pathway for the local consumers. Metal concentrations in
plants grown in mine contaminated soils are considerably el-
evated compared to the reference soils (Cao et al. 2016).
Nevertheless, in addition to soil, irrigation water and atmo-
spheric deposition are impending sources of heavy metals in
the vegetables (Bi et al. 2018; El-Radaideh and Al-Taani
2018; Li et al. 2012). However, in a similar environment,
concentrations of metals in the vegetables are also dependent
on plant categories and species.

Leafy vegetables accrue elevated metal concentrations
compared to rootstalk and fruiting vegetables. Foliar deposi-
tion of metals through atmospheric dust emitted from anthro-
pogenic sources form the governing pathway of metal uptake
for the leafy vegetables (Luo et al. 2011; Noh and Jeong 2019;
Xu et al. 2015). Also, the leafy vegetables have higher trans-
portation rates of metals compared to other vegetable types
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(Hu et al. 2017). Crop-specific prediction models have been
used by many researchers to estimate the uptake and accumu-
lation of metals by the crops and thus to predict the dietary
hazards of metals (Eid et al. 2018, 2020; Kumar et al. 2019;
Legind and Trapp 2010). The empirical models can also be
used for practical applications like soil remediation and health
risk assessment (Kumar et al. 2020; Wang et al. 2015).

Singhbhum craton and shear zones are the highly mineral-
ized areas of India harboring one of the biggest sources of
high-grade iron ore and copper, respectively. These areas are
under immense load of metal mining activities and subse-
quently their processing industries which together pave the
way for metal contamination of the environs and consequently
the food chains. There are a number of research works on
metals in soil-vegetable systems but not many deals with the
multifaceted system comprising of soil, dust, water, and leafy
vegetables in a mining environment. In this complex system,
human health risk needs to be quantified considering all the
applicable pathways. Since there were multiple pathways of
metals exposure, accounting for all of them is mandatory for
the overall risk assessment for the populace in the vicinity of
mining areas. In addition, a stepwise multivariate linear re-
gression (MVLR) model to evaluate the concentration of
metals in the leafy vegetables from metals in soil, irrigation
water, and atmospheric dust was also imperative. The species-
specific MVLR models need to be versatile such that they can
be applicable in diverse mining areas. The MVLR model can
establish the sources of the metals in the leafy vegetables also.
In view of these facts, the present study was carried out to
examine the metal concentrations in the locally growing leafy
vegetables in iron and copper mining areas along with soil,
irrigating water, and atmospheric dust.

The objectives of the study envisaged to (1) investigate the
metal contamination in the intricate system of soils, irrigating
water, atmospheric dust, and leafy vegetables in two metal
mining environment; (2) determine the contribution of the
different matrices, i.e., soil, water, and dust on the concentra-
tion of metals in the leafy vegetables using stepwise multivar-
iate linear regression (MVLR); (3) to predict the concentration
of metals in the leafy vegetables using MVLR; and (4) quan-
tify the health risk to the local populace considering the multi
pathways of metal exposure, i.e., ingestion, dermal contact, or
inhalation of dust and soil; ingestion and dermal contact of
water; and consumption of leafy vegetables.

Materials and method

Study area

The study was taken up in the ironmining areas of Singhbhum
craton and copper mining areas of Singhbhum Shear Zone
known for their high-grade ores of iron and copper. Both the

study areas are situated in the Southern Jharkhand of Eastern
India (Fig. 1) and form the India’s most mineralized and in-
dustrialized zones.

The Singhbhum craton consists of Precambrian rocks that
are circumscribed by the arcuate Singhbhum Shear Zone in
the north and Sukinda thrust in the south. The craton is a part
of volcano-sedimentary Archean Iron ore group (IOG) that
harbors one of the largest iron and manganese deposits of
India (Upadhyay et al. 2010). A number of phases of
Mesoarchean granitic entities, i.e., Singhbhum granite and
Bonai granite are found within the craton. The Singhbhum
granite is the most widespread unit and includes synformal
keels of banded iron formations (BIF)–bearing greenstone
belts (Saha 1994). The minerals that are found in the area
consist of hematite, magnetite, goethite, chromites,
romanechite, cryptomelane, pyrolusite, gibbsite, kaolinite,
and quartz.

The Singhbhum shear zone forms an arcuate vastly de-
formed linear zone in the Singhbhum crustal province and is
known to be one of the most potential sulfide-bearing stretch
of India. The copper mineralization along Singhbhum copper
belt is located along the Dhanjori group of rocks at south of
shear zone and Singhbhum group of rocks at north of shear
zone. The main rock types of the region are soda granite,
Dhanjori lavas, and epidiorite-schist. The sulfide minerals of
the zone consists predominantly of chalcopyrite, followed by
pyrite and pyrrhotite, accompanied by magnetite and minor
pentlandite, millerite, violarite, sphalerite, and molybdenite
(Dunn and Dey 1942; Mukherjee 1968).

Collection of samples and processing for metal
analysis

Locally grown leafy vegetables (31 samples) that are com-
monly consumed by the local population were collected com-
prising of 4 varieties (Red amaranthus, Spinach, Drumstick
leaves, and Mustard leaves) from six villages each from both
the study areas. Supplementary Table 1 displays the local,
English, and scientific names and the collection sites for each.
For each leafy vegetable, multiple picks were collected and
then composited to one sample. The leaves were washed
many times with the tap water to remove the dust adhered
on to the leaf surfaces. Final wash was done with the ultrapure
water, and then, the samples were air-dried followed by drying
in an oven at 80 °C to a constant weight. 0.5 g of the grinded
and homogenized leaves were subjected to acid digestion in a
microwave digestion system (model: Anton Paar Multiwave
3000) using concentrated HNO3 and 30% H2O2.

Composite soil samples were prepared for each site. About
1 kg soil sample was collected from the plough layer (0–15
cm) from various points from where the vegetables were col-
lected. These soil samples were mixed together, air-dried at
room temperature (25–30 °C), and sieved through 2 mm
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screen to separate out the pebbles. The fraction that passed
through the 2 mm screen was further quarter coned to reduce
the size to 100 g which was oven-dried at 110 °C for 24 h and
crushed and the whole quantity was passed through a 200
mesh screen. 0.25 g of the sieved soil samples was digested
in a microwave digestion system using a digestion solution of
HNO3 (4.5 ml), HF (2 ml), HCl (1 ml), and H2O2 (0.5 ml)
using the EPA 3052 method (USEPA 1996).

Atmospheric dust samples were also collected from the
selected sites using the gravity technique (BIS 2006).
Dustfall sampling devices were assembled with high-density
plastic buckets mounted on an iron tripod stand 1.2 m above
the sampling floor to avoid the collection of dust picked up by
wind eddies. It was exposed to the atmosphere for a month
with a bird-shield. After the collection, the samples were
oven-dried at 110 °C for 24 h and crushed, and the whole
quantity was passed through a 200 mesh screen. The digestion
procedure was the same as the soil samples.

From each site, the water used for irrigating the vegetable
crops was collected, filtered, and preserved at pH < 2 by
adding suprapure HNO3 for heavy metal analyses
(Radojevic and Bashkin 1999).

Heavy metal analyses

As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined
in the processed vegetable, soil, dust, and water samples using
inductively coupled plasma mass spectrometer (ICP-MS,
Model: Perkin Elmer Elan DRC-e). The stability of the cali-
bration curve was checked and confirmed after every 15th

sample using calibration blank and a standard not used in
the calibration.

Quality assurance

Spinach leaves standard reference material (NIST SRM
1570a) was used for validation of the analytical proce-
dure. The analytical results for water were validated
using standard reference material of natural water
(NIST-1640a) while for soil and dust, estuarine sedi-
ment (NIST-1646a) was used. The % recovery of the
metals for NIST-1570a, NIST-1640a, and NIST-1646a
varied from 95.6 to 105.9, 97.1 to 104.0, and 90.9 to
108.8, respectively (Supp. Table 2).

Fig. 1 Map of the study area with sampling locations (modified from Giri et al. 2020)
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Non-carcinogenic risk assessment

There are multiple pathways of metal exposure to the local
population. The pathways which are considered in the study
are as follows:

i. Ingestion pathway for the leafy vegetables
ii. Ingestion and dermal pathways for water
iii. Ingestion, dermal, and inhalation pathways for soil
iv. Ingestion, dermal, and inhalation pathways for dust

Non-carcinogenic risk posed by each metal present in dif-
ferent matrices (vegetable, water, soil, and dust) was typified
by a hazard quotient (HQ) which is the ratio of average daily
dose (ADD) to the reference doses for ingestion, dermal, or
inhalation pathways (RfDing or RfDderm or RfCi) (Eq. 1)

HQ ¼ ADD=RfDing or RfDderm or RfCi ð1Þ

Expressions for calculating HQ for different pathways have
been listed in Table 1. Reference doses for the ingestion path-
way (RfDing in mg/kg/day), dermal pathway (RfDderm in
mg/kg/day), and inhalation pathway (RfC in mg/m3) are ob-
tained from USEPA (2011). These represent the safe doses
with reference to a particular metal that a human body can
bear without any probable adverse health effects. The input
parameters for calculating HQ are provided in Supp. Table 3.
All the input values originated from USEPA (USEPA 2002,
2004, 2011, 2017) except for IRveg, IRwater, and BW which

were taken in Indian context from NSSO 2014; Dang et al.
(1994); and NFI 2010, respectively.

ADD and RfD of different metals are different in different
pathways; thus, corresponding HQ(s) should also be different.
Thus, total hazard index (HI) considering multiple metals and
multiple pathways of exposure comprising “n” number
of pathways and “m” number of metals may be
expressed as Eq. 2,

HI ¼ ∑n
j¼1∑

m
k¼1HQ

k
j ð2Þ

Thus, if we consider the water matrix, comprising of four
heavy metals, namely, Fe, Mn, Zn, and Cu, the comprehen-
sive hazard index arising from ingestion and dermal absorp-
tion pathways might be expressed as,

HI ¼ HQFe
ing þ HQMn

ing þ HQZn
ing þ HQCu

ing

� �
þ HQFe

derm þ HQMn
derm þ HQZn

derm þ HQCu
derm

� �
Likewise, the HI for all the considered matrices and path-

ways may be calculated.
HQj

k > 1 implies that the health risk associated with a
particular metal in a particular matrix through a particular
pathway is more than the accepted level.

27253Environ Sci Pollut Res  (2021) 28:27250–27260

Table 1 Calculation of hazard quotient (HQ) (USEPA 2004, 2011)

Sl. No Hazard quotient Formula Classifications of exposure parameters

1 HQing(veg) (through the ingestion of leafy vegetable) HQing ¼ Cveg � IRveg�EF�ED
BW�AT�R fDing

HQing = hazard quotient through ingestion pathway
HQinh = hazard quotient through inhalation pathway
HQdermal = hazard quotient through dermal contact
Cveg = concentration of the metal in

vegetable (mg/kg)
Cwater = concentration of the metal in water (μg/L)
Csoil/dust = concentration of the metal in

soil/dust (mg/kg)
IRveg = ingestion rate of vegetables (kg/day)
IRwater = ingestion rate of water (L/day)
IRsoil/dust = ingestion rate of soil/dust (mg/day)
EF = exposure frequency (days/year)
ED = exposure duration (years)
ET = exposure time (h/day)
EV = events (events/day)
BW = body weight (Kg)
AT = averaging time (days)
Kp = dermal permeability coefficient in water (cm/hr)
PEF = particle emission factor (m3/kg)
SA = surface area of exposed skin (cm2)
AF = skin adherence factor for dust/soil (mg/cm2

event)
ABS = dermal absorption factor
RfDing = reference dose for ingestion (mg/kg/day)
RfCi = inhalation reference concentration (mg/m3)
RfDdermal = reference dose for dermal

contact (mg/kg/day)

2 HQing(water) (through the Ingestion of water)
HQing ¼ Cwater � IRwater�EF�ED

BW�AT�R fDing
� 10−33 HQdermal(water) (through the dermal contact of water)

HQdermal¼Cwater � SA�Kp�ET�EF�ED
BW�AT�R fDdermal

� 10−64 HQing(soil/dust) (through the ingestion of soil/dust)

HQing ¼ Csoil=dust � IRsoil=dust�EF�ED
BW�AT�R fDing

� 10−6
5 HQdermal(soil/dust) (through the dermal contact of

soil/dust)

HQdermal¼Csoil=dust � SA�AF�ABS�EF�ED�EV
BW�AT�R fDdermal

� 10−6
6 HQinh(soil/dust) (through the inhalation of soil/dust)

HQinh ¼ Csoil=dust � EF�ED
PEF�AT�R fCi



Similarly, HI > 1 also implies that total risk exceeds the
acceptable limit even though each of its constituent compo-
nents (HQj

k) may be < 1.

Proposed metal transport model

Stepwise linear multiple regression analyses were used to rec-
ognize the influential environmental parameters, i.e., cultivat-
ed soils, irrigation waters, and atmospheric dust to ascertain
models for predicting metal concentrations in the leafy vege-
tables (Xu et al. 2015; Yang et al. 2014). Stepwise MVLR
checks the best combination of the independent variables to
predict the dependent variable and discards the insignificant
variables. F test was used in regression analysis to compare
the disparity between the actual data and the modeled data
derived from the fitted equation. The Durbin Watson values
are also studied to observe the autocorrelation in the residuals.

The simplest possible model for describing transport of
metal from soil, water, and dust to the leafy vegetables was
envisaged. Since the sources of metals in vegetables are pri-
marily soil along with irrigation water and atmospheric dust,
their inter relationship may be functionally expressed as,

Vi ¼ f X i; Y i; Zið Þ ð3Þ

where Vi, Xi, Yi, and Zi are the i
th heavy metal concentration

in the vegetable, water, soil, and dust, respectively.
A multivariate linear regression (MVLR) model was cho-

sen as the function f(Xi, Yi, Zi) which may be expressed as

Vi ¼ a0 þ a1:X i þ a2:Y i þ a3:Zi ð4Þ

where a0 is the constant and a1, a2, and a3 are the coefficients
for water, soil, and dust, respectively.

Model validation

Multiple regression modeling is a statistical tool used exten-
sively for the prediction analysis and examines the effect of
more than one independent variable over a response (DeForest
et al. 2018). However, it is imperative to make certain that the
prediction model works appropriately with real data and pre-
dicted data. For the performance evaluation, three assessment
tools were adopted:

i. A regression plot (scatter plot) of actual values against the
modeled values allows a visual assessment of the model
performance.More the scatters tend to concentrate close to
the equiline (denoted as 1:1 line), better is the agreement
between the actual and predicted values, and thus, better is
the model.

ii. For the validation process, model efficiency (ME) is
widely used to minimize error in the selection and feasi-
bility of a model (Eid et al. 2018). It is also known as

Nash and Sutcliffe coefficient of efficiency. The ME of
regression models was calculated using Eq. 5:

ME ¼ 1−
∑N

i¼1 Oi−Pið Þ2

∑N
i−1 Oi−O
� �2 ð5Þ

where Oi and Pi are the observed values and predicted values,
respectively, while Ō is the mean of the observed values. The
sample size is “N.”

iii. To quantify the prediction error, the root mean square
error (RMSE) is used which is calculated as Eq. 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Oi−Pið Þ2
N

s
ð6Þ

where the variables Oi , Pi, and N are same as in Equation 5.
The criteria for the goodness of fit evaluation for ME and

RMSE are given in Supplementary Table 4.

Results and discussion

Heavy metals in leafy vegetables, irrigation water,
soil, and atmospheric dust samples

The concentrations of the 10 metals (As, Cd, Co, Cr, Cu, Fe,
Mn, Ni, Pb, and Zn) in the different environmental matrices
for both the mining areas are depicted in Tables 2 and 3. The
samples were collected from six locations each from the iron
mining areas ofWest Singhbhum (Table 2) and coppermining
areas of East Singhbhum (Table 3). It is a common observa-
tion that the concentrations of the metals in the environmental
matrices do not follow a normal distribution which can be
attributed to the extreme values that are often encountered.
Since the central tendency is better represented by the geomet-
ric mean for a skewed data, it has been used in the study to
signify the average concentrations of the metals. Compared to
the Indian standards for food (Awasthi 2000), none of the
metal concentrations in the leafy vegetables from both the
areas exceeded the standards except for Cu in some samples
of Red amaranthus collected from copper mining areas.

Water, soil, and free-fall atmospheric dust samples were
collected from the same locations at the same time as that of
the collection of the leafy vegetables. The metal concentra-
tions of the soil and dust samples were compared to the metals
in the average shale values (Turekian and Wedepohl 1961) to
reveal that almost all the metals surpassed the values which
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can be attributed to the metal bearing deposits of both the
study areas in conjunction with the mining and industrial ac-
tivities. The irrigation water that was used for the vegetable
crops in the region was mostly groundwater, which was also
used for drinking purposes. However, in one location of cop-
per mining area (Kendadih), the mine water from the copper
mine was used for the irrigation. Mine water is the water
emanating from the mines and is often loaded with metals in
the case of metal mines since it is being dewatered from the
working face of the mines. The metal concentrations did not
exceed the irrigation water standards (FAO 1985) for any of
the locations but for the mine water from Kendadih which
exceeded the standards for Cu, Mn, and Ni. There is a marked
difference in the metal concentrations between the two study
areas as for most of the matrices; higher Cu, Ni, and Co con-
centrations were observed in the copper mining areas while Fe
and Mn were higher in the iron mining areas. These groups of
metals are associated with the particular geological formations
of both areas along with the respective metal mining activities.

Human health risk assessment

The health risk was assessed for 9 different pathways for the
local population. The pathways comprised of ingestion of
vegetables, water, soil, and dust; dermal contact with water,
soil, and dust; and inhalation pathway for soil and dust. The
hazard quotients for the metals for considering all the path-
ways of exposure did not exceed unity for the iron ore mining
area except for Co and Cr at one location and Fe at two loca-
tions through ingestion of vegetables (Fig. 2a). In the case of
the copper mining areas, the HQ for the metals As, Co, Cu,
and Mn surpassed the reference value of one for some of the
pathways at some of the locations. All of these incidences were
related to ingestion of leafy vegetables and water which implied
considerable risk to the local population due to the consumption
of metal-contaminated vegetables and water (Fig. 2b).

The combined risk due to the multiple metals was evaluat-
ed by summation of the HQs to obtain the hazard index (HI)
(Table 4). The HI for the different pathways for the different

Table 2 Concentration of metals in leafy vegetables, water, soil, and dust in the iron mining areas of West Singhbhum (unit: water—μg/L; soil, dust,
food—mg/kg)

Matrix As Cd Co Cr Cu Fe Mn Ni Pb Zn

Drumstick leaf Minimum 0.009 0.0005 0.052 0.386 1.14 140.6 12.0 0.102 0.007 4.47

Maximum 0.284 0.096 0.161 0.772 2.92 424.5 88.8 0.695 0.417 9.68

Geomean 0.049 0.001 0.076 0.590 1.74 217.5 33.4 0.325 0.057 6.23

Red Amaranthus leaf Minimum 0.006 0.032 0.031 0.106 0.469 91.9 12.3 0.019 0.005 6.04

Maximum 0.053 0.898 0.304 0.481 2.553 250.1 67.8 1.137 0.138 12.04

Geomean 0.017 0.091 0.083 0.225 1.039 162.3 24.0 0.097 0.045 7.86

Mustard leaf Minimum 0.003 0.0002 0.017 0.123 0.455 55.8 2.48 0.057 0.003 2.712

Maximum 0.019 0.144 0.040 0.357 2.336 202.0 22.32 0.200 0.144 9.708

Geomean 0.010 0.007 0.028 0.199 0.810 123.0 8.29 0.122 0.027 4.042

Spinach Minimum 0.004 0.043 0.022 0.229 0.486 44.2 3.30 0.213 0.005 3.06

Maximum 0.010 0.278 0.060 0.721 1.465 73.6 11.49 1.025 0.047 7.04

Geomean 0.007 0.100 0.039 0.356 0.993 59.5 6.23 0.424 0.020 5.26

Water Minimum 0.030 0.011 0.276 0.895 0.357 58.6 5.1 1.90 0.025 3.6

Maximum 0.887 0.054 1.443 1.173 3.69 1426.2 114.0 5.23 0.164 684.4

Geomean 0.202 0.026 0.582 0.982 0.618 436.6 13.6 3.37 0.067 33.9

Soil Minimum 49.0 0.21 12.3 48.7 66.2 41135.9 510.8 40.1 6.7 130.9

Maximum 66.9 3.15 51.4 295.8 147.5 105542.6 2547.4 101.3 13.9 803.4

Geomean 61.2 0.77 24.0 124.8 84.1 75145.3 1156.0 68.8 8.7 233.6

Dust Minimum 39.1 0.19 2.90 28.7 85.5 36245.6 298.3 18.3 63.8 118.1

Maximum 60.6 0.54 4.05 278.6 240.6 126913.7 1069.3 24.8 253.2 991.5

Geomean 47.7 0.36 3.50 93.3 153.5 69138.5 542.3 20.5 115.9 401.3

Indian Standards Fooda 1.1 1.5 30 2.5 50

Average shaleb 13 0.3 19 90 45 47200 850 68 20 95

Irrigating water standardsc 100 100 200 200 200 2000

aAwasthi 2000
b Turekian and Wedepohl 1961
c FAO 1985
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locations of the two study areas depicted that the most impor-
tant route of exposure to the metals was the ingestion of the
leafy vegetables, irrespective of locations and area. Intake of
the leafy vegetables contributed 71.9% and 80.7% of the total
risk for the iron and copper mining areas, respectively. In the
iron mining areas, the next significant pathway was ingestion
of soil (8.6% of total risk) followed by ingestion of dust and
drinking of water. In the area, the groundwater is used for
irrigating the vegetable fields which is also used for drinking
as well. In the case of copper mining areas, the risk apportion-
ment is a little different, where the second most relevant path-
way for exposure of metals was the drinking water pathway
contributing 10.6% of the total risk. This has been calculated
excluding the risk from the water pathway of the Kendadih
location where mine water was used for irrigation and which
is not used for drinking. The other important pathways were
the ingestion of dust and soil. Ingestion of soil and dust is
found to be an important pathway of metal exposure for both
the study areas. Ingestion exposure can occur via the inten-
tional or inadvertent non-dietary ingestion of soil and dust on
surfaces or objects that are contacted via hand-to-mouth or
object-to-mouth activity (USEPA 2017).

Considering the HIs, it can be inferred that for both the
mining areas, the ingestion pathway is the primary exposure
route irrespective of the matrix. Dermal and inhalation routes
form the secondary exposure mode. Considering both the
mining areas, the overall risk was higher for the locations of
the copper mining area compared to the iron mining areas.
The overall risk as represented by HI was more than double
for the copper mining area (12.1) than the iron mining area
(5.13) which may be attributed to the higher concentrations of
Cu and Co in environs of the copper mining areas. Cu and Co
are known to have a greater risk on human health compared to
Fe andMnwhich are found to be at large in iron mining areas.

Regression models

Regression models were formed to estimate the metal concen-
trations in the leafy vegetables based on the metal concentra-
tions in different environmental matrices. Stepwise multivar-
iate linear regression analysis was performed on the basis of
the three factors, i.e., metal concentrations in the soil, irriga-
tion water, and atmospheric dust. The results and prediction
precisions of the models are depicted in Table 5. The ANOVA

Table 3 Concentration of metals in leafy vegetables, water, soil, and dust in the copper mining areas of East Singhbhum (unit: water—μg/L; soil, dust,
food—mg/kg)

Matrix As Cd Co Cr Cu Fe Mn Ni Pb Zn

Drumstick leaf Minimum 0.095 0.003 0.044 0.274 3.01 62.1 3.26 0.428 0.049 4.07

Maximum 0.799 0.059 0.214 0.881 24.13 184.3 10.69 1.670 0.821 18.62

Geomean 0.264 0.028 0.116 0.428 8.39 103.4 5.64 0.792 0.191 7.47

Red Amaranthus leaf Minimum 0.012 0.003 0.103 0.384 2.6 58.2 5.57 0.357 0.011 5.05

Maximum 0.724 0.033 0.514 0.547 35.2 238.7 15.05 2.144 0.095 18.10

Geomean 0.050 0.011 0.214 0.449 13.5 118.5 11.53 1.051 0.030 9.30

Mustard leaf Minimum 0.013 0.029 0.035 0.357 4.83 54.3 11.1 0.392 0.079 9.54

Maximum 0.028 0.051 0.123 0.625 22.6 145.4 14.9 2.361 0.097 13.72

Geomean 0.019 0.038 0.066 0.472 10.5 88.8 12.9 0.962 0.088 11.44

Water Minimum 0.247 0.009 0.554 0.678 1.167 411.7 0.714 2.851 0.014 4.96

Maximum 1.300 0.112 244.5 4.319 1874.1 1547.6 977.1 916.0 0.158 232.0

Geomean 0.677 0.037 2.882 1.131 23.07 794.6 34.29 14.51 0.071 19.18

Soil Minimum 14.2 0.09 13.9 62.5 72.6 20415.0 119.2 34.1 21.5 65.2

Maximum 61.0 0.73 54.9 396.5 2965.3 58584.6 882.3 285.6 67.7 368.2

Geomean 28.7 0.29 37.2 118.9 422.1 37719.7 464.6 118.3 41.4 184.8

Dust Minimum 37.1 0.49 5.9 97.6 219.6 14454.6 244.6 10.2 32.0 215.5

Maximum 50.9 2.38 23.9 138.3 7858.7 75562.5 372.8 68.0 201.7 430.5

Geomean 41.1 0.93 14.3 127.7 2966.6 28717.1 310.8 35.6 51.6 356.5

Indian Standards Fooda 1.1 1.5 30 2.5 50

Average shaleb 13 0.3 19 90 45 47200 850 68 20 95

Irrigating water standardsc 100 100 200 200 200 2000

aAwasthi 2000
b Turekian and Wedepohl 1961
c FAO 1985
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results revealed that the correlation between the measured and
predicted metal concentrations by model equations was statis-
tically significant with high F values and low P values (level
of significance P < 0.001). The DurbinWatson values are also
between 1.5 and 2.5 suggesting the absence of autocorrelation
in the residuals (Rafiee et al. 2010). The high (> 0.7) coeffi-
cient of determination values (R2) which is an indicative of the
goodness of fit of the developed models is supportive for the
prediction of effective metal uptake by the leafy vegetables
from the different environmental components. The R2 of
0.725 was obtained for the model when metals for all the
samples of leafy vegetables irrespective of the species were
considered cumulatively. However, the R2 values further im-
proved when the different species of the leafy vegetables were
considered individually thus advocating for species-specific
regression models for metal uptake. The R2 for all species-

specific models ranged between 0.821 and 0.980, the highest
being for the Spinach.

The constant term or the intercept (a0) is insignificant for
all the models and can be omitted implying that the concen-
tration of metals in the leafy vegetables is totally dependent on
the concentrations of metals in soil, water, and dust. The pos-
sibility of other sources of metals in the leafy vegetables is
negligible. In view of the coefficients of the models, it can be
suggested that each and every one of the predictor variables
(metal concentrations of water, soil, and dust) did not have a
significant contribution to the metal uptake of all the leafy
vegetables. The concentration of metals in the mustard leaves
and red amaranthus was dependant on all three matrices.
However, the highest contribution is made from the metals
in the irrigation water. Same is the case when the model is
developed irrespective of the species. However, in the case of

Fig. 2 Boxplots of hazard quotient (HQ) of metals considering the 9 pathways in a iron mining areas ofWest Singhbhum, b copper mining areas of East
Singhbhum

Table 4 Location wise hazard index for different pathways for iron mining areas of West Singhbhum and copper mining areas of East Singhbhum

S.
no.

Locations Leafy
vegetable

Water Soil Dust Total
HI

Ingestion Ingestion Dermal
contact

Ingestion Dermal
contact

Inhalation Ingestion Dermal
contact

Inhalation

West Singhbhum (iron mining areas)
1 Dangoaposi 3.587 0.307 0.007 0.491 0.069 0.027 0.250 0.036 0.009 5.44
2 Noamundi 2.709 0.165 0.008 0.439 0.071 0.019 0.517 0.067 0.020 4.80
3 Kotgarh 4.760 0.545 0.011 0.393 0.071 0.041 0.415 0.058 0.017 6.98
4 Bichaikiri 2.921 0.501 0.010 0.570 0.095 0.046 0.550 0.078 0.011 5.72
5 Karampada 4.496 0.189 0.008 0.465 0.084 0.015 0.363 0.053 0.010 6.39
6 Chota Nagra 3.667 0.893 0.029 0.282 0.053 0.015 0.266 0.039 0.010 5.72

Mean 3.69 0.43 0.01 0.44 0.07 0.03 0.40 0.06 0.01 5.13
East Singhbhum (copper mining areas)
7 Bhatin 5.361 0.895 0.043 0.136 0.021 0.005 0.283 0.041 0.009 7.12
8 Bodamdera 6.838 0.576 0.008 0.390 0.063 0.024 0.452 0.058 0.011 9.11
9 Kendadih 16.31 63.48* 0.546 0.463 0.070 0.020 0.460 0.051 0.009 18.7
10 Kutludih 7.420 3.743 0.143 0.226 0.027 0.012 0.435 0.053 0.011 12.6
11 Sohada 6.754 0.677 0.011 0.442 0.062 0.022 0.466 0.050 0.009 9.25
12 Badia 15.656 0.506 0.023 0.464 0.060 0.018 0.530 0.054 0.011 18.2

Mean 9.72 1.28 0.13 0.36 0.05 0.02 0.44 0.05 0.01 12.1

*Not included in HI calculations
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spinach, the metal uptake was contributed from water and soil
and the role of atmospheric dust was insignificant. Foliar de-
position of metals through atmospheric dust is more pro-
nounced in rough leaf surfaces compared to smooth ones
(Schreiber and Schönherr 1992). The spinach leaves are
smooth compared to red amaranthus and mustard leaves,
and thus, the effect of atmospheric dust was insignificant in
spinach leaves. For the drumstick leaves, the metal content in
the soil was the only causative factor of the metal concentra-
tion in the leaves. The three leafy vegetables other than drum-
stick leaves are short life–cycled plants; however, the drum-
stick is perennial trees with smooth leaves which are used
as leafy vegetable by the local populace. Being a perennial
tree, it is not needed to be irrigated as in the case of other
three species. This might be the explanation for fact that the
stepwise regression model for drumstick leaves only
retained the metal content in the soil as a contributing factor
eliminating the water and dust factors. The same models
relevant for both the mining areas prove its versatility of
being useful in different environmental conditions with var-
iable concentrations of metals in different matrices like soil,
water, and atmospheric dust. However, the models need to
be species-specific. Thus, the models for the prediction of
metals in the 4 considered leafy vegetables are depicted as
Equations 7–10.

Metal mustard leavesð Þ ¼ 0:0284 water½ � þ 0:00058 soil½ �
þ 0:00094 dust½ � ð7Þ

Metal R:amaranthusð Þ ¼ 0:02199 water½ � þ 0:00079 soil½ �
þ 0:00162 dust½ � ð8Þ

Metal spinachð Þ ¼ 0:058 water½ � þ 0:00032 soil½ � ð9Þ
Metal drumstick leavesð Þ ¼ 0:00269 soil½ � ð10Þ

where [water] is concentration of metals in irrigating water;
[soil] is concentration of metals in soil; and [dust] is concen-
tration of metals in atmospheric dust;

Model validation

The validation of the models was performed using equiline
scatter plot of actual and modeled values, model efficiency
(ME) values, and root mean square error (RMSE) values.
The scatter plot (Fig. 3) depicts that most of the points are
near the equiline with some exceptions which may be consid-
ered outliers. However, the outliers have been retained in the
models since the extreme values (outliers) are often encoun-
tered in the environmental studies. Nevertheless, the outliers
in our study did not affect the models drastically. The plot
provides a high agreement in the positive correlation between
the observed and predicted values for all five models. TheME
values ranged from 0.720 to 0.959 which depicted good to
very good goodness of fit for the models (Cheng et al.
2017). The ratio of standard deviation of observed values to
the RMSE ranged from 1.89 (considering all species) to 5.03

Table 5 Results and prediction precisions of the species-specific multivariate linear regression (MVLR) models for predicting metals in leafy
vegetables

S. no. Species Model summary Coefficients

n F p value R2 ME RMSE Durbin Watson a0 (constant) a1 (water) a2 (soil) a3 (dust)

1 All samples 310 268.8 2.02E–85 0.7250 0.720 26.56 1.869 n.s. 0.02113 0.00128 0.00057

2 Mustard leaves 70 212.3 7.79E–34 0.9061 0.903 12.43 1.849 n.s. 0.0284 0.00058 0.00094

3 Red amaranthus 90 324.4 9.17E–47 0.9188 0.915 14.57 2.120 n.s. 0.02199 0.00079 0.00162

4 Spinach 30 669.0 9.97E–24 0.9802 0.959 3.711 2.221 n.s. 0.058 0.00032 n.s.

5 Drumstick leaves 120 541.9 6.23E–46 0.8212 0.810 26.12 1.942 n.s. n.s. 0.00269 n.s.

n.s. not significant

Fig. 3 Equiline scatter plot of actual and modeled values of regression
models
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(Spinach) which suggest that the models are acceptable to
very good based on the quantification of prediction error.

Conclusions

From the assessment of metal concentrations in the leafy veg-
etables and other associated environmental components col-
lected from the metal mining areas, we could understand the
impact of the mining and industrial activities on the food chain
and subsequently the potential risk to the human health due to
the contaminated environs inclusive of food items. Health
risks of metals were assessed for multiple pathways to the
local populace including ingestion of leafy vegetables. The
hazard quotient of the metals exceeded the reference value
of unity for some metals, however, more frequently due to
ingestion pathways for vegetables and water. The combined
risk due to multiple metals as assessed by hazard index sug-
gested that the ingestion of leafy vegetables was the major
route of exposure of metals contributing 71.9% and 80.7%
of total risk for the iron and copper mining areas, respectively.
The average HI value considering all the metals and pathways
was calculated to be 12.1 and 5.13, respectively for copper
and iron mining areas suggesting considerable risk to the local
residents.

The present study also aimed to develop species-specific
multivariate regression models for predicting the concentra-
tions of metals in leafy vegetables from their concentration in
the soil, irrigating water, and atmospheric dust. Correlations
between the measured and predicted metal values, high model
efficiency values, and low root mean square values reflected
the goodness of fit of the model. Species-specific models for
the leafy vegetables were found to be better in the prediction
of metals uptake from the associated environs. The models
will be useful for the prediction of metal concentrations in
the leafy vegetables, and thus, the possible human risks can
be identified. The models would also help to understand the
effect of environmental factors on the concentration of metals
in the leafy vegetables. Also, the results suggest screening of
irrigating water to ensure the safety of food in particular leafy
vegetables with respect to metals.
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