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Abstract
Treated wastewater (TWW) irrigation has been recommended as an environmentally friendly agricultural practice and has been
applied in many countries for decades. The effects of wastewater irrigation on rice yield and quality, as well as on the environ-
ment, with particular focus on greenhouse gas emissions from paddy fields with municipal wastewater irrigation, have gained
substantial attention. In this study, bench-scale experiments were conducted in two cultivation seasons where seedlings of
Bekoaoba, a large-grain high-yield rice variety, were transplanted and irrigated with TWW without fertilization. A control
experiment was performed to simulate the cultivation conditions of normal paddy fields. The study aimed to quantify the effects
of TWW irrigation on rice yield and quality, in addition to CH4 and N2O emissions. The highest rice yield (10.4 t ha−1) and
protein content in brown rice (13.8%) was achieved when the soil was repeatedly subjected to bottom-to-top TWW irrigation
without any synthetic fertilizer. Bottom-to-top TWW irrigation decreased CH4 emissions by up to 95.6% when compared with
tap water irrigation, whereas bottom-to-top and top-to-top TWW irrigation increased N2O emissions by 5 and 15 times, respec-
tively. Bottom-to-top irrigation of TWW could be considered a promising solution for reducing greenhouse gas emissions as
TWW irrigation resulted in a lower combined global warming potential than tap water irrigation. Further, bottom-to-top irrigation
of TWW produced less CH4 and N2O than top-to-top irrigation.

Keywords Treated wastewater irrigation . Bottom-to-top irrigation . High yield and quality rice . Greenhouse gas . Soil redox
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Introduction

Climate change is a serious environmental problem caused by
increased greenhouse gas (GHG) emissions. Thus, reducing
GHG emissions entering the atmosphere is urgently required
to mitigate the adverse impacts of climate change (Wang et al.
2017). Methane (CH4) and nitrous oxide (N2O) are two impor-
tant GHGs that have contributed to an estimated 0.6–0.7 °C
increase in the Earth’s surface temperature during the last cen-
tury (S. Yang et al. 2012). Globally, agriculture accounted for
approximately 47% and 58% of anthropogenic CH4 and N2O
emissions in 2005, respectively, representing a 17% rise since
1990 (IPPC 2007). Atmospheric concentrations of CH4 and
N2O have increased rapidly from pre-industrial levels
(722 ppb and 270 ppb, respectively) to the present levels of
1830 ppb and 324 ppb, respectively (IPCC 2013a).

Paddy fields are recognized as a significant source of at-
mospheric GHGs, including CH4 and N2O (Meijide et al.
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2016). Rice is a leading cereal crop that provides approximate-
ly 20% of the daily calorie requirements for more than 3.5
billion people through 150million hectares of global rice land,
which supply 550–600 million tons of rough rice each year
(Pham and Watanabe, 2017). Rice is highly sensitive to the
water regime, and paddy rice is estimated to consume approx-
imately 50% of global irrigation water. However, irrigation
water for rice paddies does not typically require the same
quality as drinking water (Pham and Watanabe, 2017). As a
result, municipal wastewater has been considered as an alter-
native source of irrigation water and has been applied and
studied globally due to its high concentrations of nutrients
(N and P) and organic matter, which are essential for plant
growth (Hanjra et al. 2012). Although the use of wastewater
for rice production would benefit farmers by enhancing the
rice yield and reducing the need for fertilizers, it also has the
potential to cause adverse effects to human health and the
environment. Thu (2001), Yoon et al. (2001), Nyomora
(2015), and Pham et al. (2017) reported that greater rice yields
were achieved through wastewater irrigation than freshwater
irrigation. Masto et al. (2009) found that sewage effluent irri-
gation enhanced soil texture and increased the soil carbon
content. Furthermore, some studies have reported that sewage
effluent irrigation increases soil concentrations of heavy
metals such as Pb, Cd, Cu, and Zn (Q. W. Yang et al. 2006;
Rogan et al. 2009; Chung et al. 2011).

The emission fluxes of CH4 and N2O from paddy fields can
be affected by numerous factors, including water regime, or-
ganic matter, and nitrogen sources. CH4 is generated under
anaerobic conditions by methanogens, and then 60–90% is
oxidized by methanotrophs under the aerobic conditions of
the rhizosphere to form CO2 (Wang et al. 2017). Contrary to
CH4 emissions, N2O emissions from flooded paddy fields are
mostly negligible because the anaerobic conditions of paddy
soil transfer the end product of denitrification processes to-
ward N2 (Weller et al. 2014). Domestic sewage effluent is rich
in organic matter and nitrogen, which are important sources of
CH4 and N2O. Thus, sewage irrigation for rice cultivationmay
promote the emission of these gases from paddy fields. For
example, Zou et al. (2009) observed that increased emissions
of CH4 and N2O from paddy fields accompanied an increased
rice yield in their study using domestic wastewater irrigation
with the same amount of N-fertilizer input. However, Xu et al.
(2017) found that treated sewage irrigation incorporated with
straw returns significantly decreased CH4 and N2O emissions
when compared with tap water irrigation.

In this study, we hypothesize that treated municipal waste-
water (TWW) irrigation increases CH4 and N2O emissions from
rice paddies, compared with freshwater irrigation. To investigate
this, bench-scale experiments were conducted in Tsuruoka,
Japan, under both tap water and TWW irrigation. The primary
aim is to quantify the effect of TWW irrigation on rice yield and
quality, in addition to CH4 and N2O emissions.

Materials and methods

Experimental design and cultivation management

The experiments were conducted using the same bench-scale
apparatus used in previous studies (Muramatsu et al., 2015;
Pham et al., 2019; Pham et al., 2017; Watanabe et al., 2016).
The apparatus consists of a TWW feeding system and a bench
to simulate a paddy field (Fig. 1). The feeding system com-
prised a 500-L influent tank, a peristaltic pump, and a 100-L
effluent tank for each treatment. The bench-scale paddy field
consisted of a 30 cm × 60 cm plastic box with a depth of
approximately 35 cm. A horizontal drainpipe was fixed at
the bottom of the field to supply water upward, and to drain
all the water out from the field when necessary. The drainpipe
was covered with a thin layer of gravel to avoid clogging, and
then further covered by a 15-cm thick layer of soil. An over-
flow pipe was fixed at a height of 5 cm from the soil surface.
Four treatments without replicates were employed under dif-
ferent conditions (Table 1). In 2016, bottom-to-top irrigation
was applied, whereby TWW at a flow rate of 4.5 L/day con-
tinuously entered the field from the bottom, passed through
the soil layer, and flowed out to the effluent tank via the
overflow pipe (Treatments no. 1 and no. 2). Treatment no. 3
used top-to-top irrigation, whereby TWW was continuously
supplied to the surface of the field at the same flow rate as
treatments no. 1 and no. 2. Treatment no. 4 was designed as
the control by adding tap water to make up the water loss due
to evapotranspiration with supplementation of N-P-K fertil-
izers. In the 2017 season, the flow rate of treatment no. 2
was changed to 2.0 L/day, whereas the other treatments main-
tained the same conditions as the 2016 season.

The water used for the experiments was taken from the
effluent of the municipal wastewater treatment plant
(WWTP) in Tsuruoka, Yamagata, Japan, which employs a
conventional technology with a standard activated sludge pro-
cess and chlorine disinfection. The soils for treatments no. 1
and no. 3 in the 2016 season and treatment no. 4 in both
seasons were sampled from the surface layer (0 to 20 cm) of
a paddy field in the farm of Yamagata University (Tsuruoka,
Yamagata, Japan) (New), whereas treatment no. 2 in the 2016
season reused the soil from the 2015 season (Pham et al. 2017)
and the other treatments in the 2017 season repeatedly used
the soil from the 2016 season (Pham et al. 2019).

In the 2016 season, 30-day-old rice seedlings of Bekoaoba,
a large-grain high-yield variety, were transplanted onMay 20,
at a rate of five plants per hill and four hills per container. A
water depth of 5 cm was maintained during the growing sea-
son from transplanting to harvesting on September 28, except
for the period from July 4 to 11. This period is known as the
midsummer drainage (MSD) and refers to the time when the
water supply was stopped, and the paddy soil was kept in a
dried condition in order to enhance rice root growth by serving
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oxygen to the rice root zone. The 2017 cultivation season was
conducted in the same way as 2016, with transplanting, MSD,
and harvesting occurring onMay 17, July 10–16, and October
01, respectively.

In treatment no. 4, basal N-P-K fertilizer was applied at a
rate of 160 kg/ha before transplantation, and N-K fertilizer
was applied as top-dressing at a rate of 100 kg/ha on July 11

and 16, in 2016 and 2017, respectively. This was almost twice
the amount of fertilizer used for rice as staple food, following
the local farmer’s practice. No fertilization was applied for the
other treatments in either season.

CH4 and N2O measurement

In the 2016 season, only CH4was sampled usingmanual static
chambers. In the 2017 season, samples of both CH4 and N2O
were collected using the same chambers as the 2016 season.
The chambers were made of acrylic with a 20-cm × 22-cm
footprint and two heights: 60 cm for the early rice growing
stage and 115 cm for the middle and later rice-growing stages.
Each chamber covered two hills of rice and was installed with
an air-circulating fan to ensure complete gas mixing during
the sampling period. Chambers were placed on the frame of
the apparatus in each plot prior to gas sampling. Sampling was
conducted four times at intervals of 20min, once a week in the
morning (10:30 to 12:00), using a 60-ml syringe through a
silicon tube embedded at the flank of the chamber. The sam-
ples were then immediately transferred to 10-ml glass vials for
measurement with a gas chromatography instrument (Hitachi
GC-163) with a flame ionization detector (FID) for CH4 and a
Shimadzu GC-14B gas chromatography instrument with an
electron capture detector (ECD) for N2O. The fluxes of gas
emissions were calculated according to the equation proposed
by Minamikawa et al. (2015).

GWPs of CH4 and N2O

Global warming potential (GWP) is an index that attempts to
integrate the overall climate impacts of a specific action. In the
GWP calculation, CO2 is typically used as the reference gas.
The GWPs were calculated over a specific time interval by
multiplying the seasonal total CH4 andN2O emissions by their
respective radiative forcing potentials. In this study, we calcu-
lated the GWPs for 20-year and 100-year periods. The radia-
tive forcing potentials for CH4 and N2O were 84 and 264 for

Table 1 Experimental conditions

Cultivation condition Treatment no. 1 Treatment no. 2 Treatment no. 3 Treatment no. 4 (control)

2016 2017 2016 2017 2016 2017 2016 and 2017

Soil New Old Old Old New Old New

Water TWW TWW TWW TWW TWW TWW Tap water

Flow rate (L day−1) 4.5 4.5 4.5 2.0 4.5 4.5 Depends on evapotranspiration

Flow direction B-to-T B-to-T B-to-T B-to-T T-to-T T-to-T No flow

Water supply Cont. Cont. Cont. Cont. Cont. Cont. As required

Chemical fertilizer No No No No No No N, P, K (for basal) and N-K (before flowering)

B-to-T bottom-to-top irrigation, T-to-T top-to-top irrigation, Cont. continuous irrigation

P

Influent Tank

Underdrain

Effluent Tank

Outlet

15 cm

30 cm

5 cm

15 cm 

30 cm 15 cm

(a)

PUnderdrain

Effluent TankInfluent Tank

Outlet5 cm

15 cm

(b)

Fig. 1 Simulated paddy fields with different directions of continuous
irrigation: a bottom-to-top irrigation and b top-to-top irrigation
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the 20-year period, and 28 and 265 for the 100 year period,
respectively, for a CO2 value of 1 (IPCC 2013).

Other data measurement

During the growing season, various rice plant growth param-
eters were measured, including plant height, tiller number, and
leaf chlorophyll concentration detected using a soil plant anal-
ysis development (SPAD) meter (Markwell et al. 1995). The
rice yield and yield components (number of ears per square
meter, number of kernels per ear, grain weight, matured ker-
nels, and rice weight of grain per hectare) and dry mass were
measured after harvesting. Nitrogen contents in the rice grain
were analyzed using an automatic high-sensitivity NC analyz-
er (SUMIGRAPH NC-220F, SCAS, Japan).

The properties of irrigation water were measured once a
week for basic parameters, including total nitrogen (TN), N
components (NH4, NO3), total organic carbon (TOC), total
phosphorus (TP), dissolved oxygen (DO), pH, electrical con-
ductivity (EC), oxidation-reduction potential (ORP), and
heavy metal contents, according to the methods described by
Pham et al. (2017). Soil properties before and after the exper-
iments were measured using the standard methods of Homer
and Pratt, 1962 for TC, TN, TP, and heavy metals. A platinum
Eh electrode (EP-201, Fujiwara, 24 cm) was installed perma-
nently at 10 cm soil depth during the growing season. The soil

redox potential (Eh) was measured during gas sampling using
an Eh meter (PRN-41, Fujiwara, DKK-TOA Corporation).

The overall balance of nitrogen in the experiment was cal-
culated by multiplying the dry weight of soil, whole rice plant,
or volume of irrigation water by its concentrations in these
samples. The difference from N input (soil, irrigation water,
and fertilizer) to its output (soil and rice plant) can be ex-
plained by the release of N2O and N2 into the air.

Statistical analysis

The treatments were not replicated owing to resource limitations.
Instead, four plants of rice seedlings were transplanted into each
treatment and were considered as replicates during data analysis
(Pham et al. 2019). An analysis of variance (ANOVA) was
conducted at 5% probability, and the mean differences were
detected using a least significant difference (LSD) test. The sta-
tistical package SPSS 24.0 was used for the data analysis.

Results

Irrigation water quality and soil properties

The monthly chemical characteristics of irrigation water in 2017
are illustrated in Table 2. The pH of the irrigation TWW varied

Table 2 Monthly average quality of irrigation water in 2017

Parameters Units Tap water TWW

Month Average Permissible limits a Data in 2016b

May Jun. Jul. Aug. Sep.

pH – NA 7.3 7.3 7.6 7.2 7 7.3 NA 7.1 (7.0–7.3)

ORP mV NA 197 211 219 234 279 228 NA 236 (296–178)

EC mS m−1 NA 71.7 61.7 67.4 67.7 64.2 66.5 NA 63.6 (56.7–72.5)

DO mg L−1 NA 4.8 2.9 3.2 2.9 3 3.4 NA 3.7 (1.9–5.9)

TN mg L−1 <0.1 40 31.9 28.5 33.5 27.8 32.3 NA 27.6 (23.0–40.0)

NH4-N mg L−1 NA 27.5 17.0 18.9 20.4 15.6 18.9 NA 20.4 (4.2–35.6)

NO3-N mg L−1 NA 2.8 4.8 4.6 9.7 11.0 11.2 NA 9.54 (1.0–26.8)

TOC mg L−1 <0.6 6.3 6.3 5.8 5.5 5.3 5.8 NA 6.6 (4.8–9.3)

TP mg L−1 NA 0.27 0.3 0.44 0.21 0.18 0.28 NA 0.17 (0.15–0.23)

Cu μg L−1 NA 8.5 7.7 7.8 7.4 6.5 7.6 200 11.2 (8.4–15.4)

Cr μg L−1 NA <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 100 0.64 (0.60–0.80)

Zn μg L−1 NA 25.4 14.1 13.5 12.1 18.5 16.7 2000 47.5 (40.2–58.0)

Cd μg L−1 NA <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 10 NA

Pb μg L−1 NA 3.2 1.2 4.1 0.9 1.6 2.2 5000 0.68 (0.6–0.8)

As μg L−1 NA <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 100 NA

NA not available
a Adapted from (FAO 1985)
b Average (Min–Max) (Pham et al., 2019)
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from 7.0 to 7.6. The ORP varied from 197 to 279 mV. The
average TN ranged from 27.8 to 40.0 mg L−1, and TP fluctuated
between 0.18 and 0.44 mg L−1. NH4-N was the dominant com-
ponent of nitrogen in the TWW throughout the period of exper-
iment, as the result of nitrification control in the wastewater
treatment process for phosphorus removal. The concentrations
of trace metals in TWW complied with the regulation on water
quality for agriculture (FAO 1985). The similar characteristics
of irrigation water were observed in 2016 (Pham et al. 2019).
The average TN and TOC in tap water were lower than 0.1 and
0.6 mg L−1, respectively (Table 3).

Table 4 shows the basic elements in the soil prior to the
experiments. The TN and TP in the soils varied from 1.3 to
1.7 g kg−1 and from 0.5 to 1.2 g kg−1, respectively. The con-
centrations of heavy metals in the soils were comparable, ex-
cept for Cu. The contents of Cu in the old soils (used for
treatment no. 2 in 2016 and treatments no. 1, no. 2, and no.
3 in 2017) were significantly higher than in new soils (used for
treatments no. 1, no. 3, and no. 4 in 2016 and treatment no. 4
in 2017). This was attributed to the oxidation of copper cables
used for the experiment in 2015 (Pham et al. 2019).

Grain yield, grain quality, and whole plant dry
biomass

The yield and protein content of rice grains, in addition to the
dry mass of the complete rice plant, is provided in Table 5.

Generally, for the treatments irrigated with TWW, the 2016
season exhibited higher values of rice yield, rice grain protein,
and rice plant dry mass than the 2017 season. In contrast, the
rice yield and dry mass of the control were higher in the 2017
season compared with the 2016 season, indicating that reduc-
tions in the rice yield, rice protein content, and plant dry mass
in the treatments using TWW were not due to climatic differ-
ences. Instead, the P remaining in the soil from the 2015 sea-
son must have been used effectively during the 2016 season
(Table 4).

Soil redox potential during cultivation

Soil Eh of the four treatments during the growing periods of
2016 and 2017 are illustrated in Fig. 2. The soil redox poten-
tials ranged from − 210 to + 225 mV in the 2016 season, and
from − 160 to + 500 mV in the 2017 season. Data for the first
3 weeks of the 2016 season are absent due to late preparation
for the measurement. In general, soil Eh decreased gradually
after the beginning of the season until MSD, when the fields
were drained. After MSD, when the soil was re-flooded again,
the soil redox potential continued to decrease until the end of
the season. In the 2016 season, the soil redox potential values
in most treatments were less than 0 mV.

Seasonal variation of CH4 emission

Seasonal variations of CH4 emission fluxes from the paddy
fields in 2016 and 2017 are illustrated in Fig. 3. In 2015, CH4

emissions were not observed, which is likely due to the inhib-
itory effect of high copper levels in the soil (Pham et al.,
2017). After transplantation, the paddy soil was maintained
in a flooded state with a 5-cm water depth, and the CH4 emis-
sions gradually increased with the development of soil-
reductive conditions and plant growth until week 7, immedi-
ately prior to MSD. After MSD with no measurement of

Table 3 Volume and nitrogen contents in effluents in 2017

Treatment Volume (L) TN (mg L−1)

May Jun. Jul. Aug. Sep.

No. 1 385 4.6 8.3 9.3 2.3 1.4

No. 2 155 5.9 0.7 5.9 1.2 0.9

No. 3 390 23.6 23.8 14.6 13.1 20.4

Table 4 Basic elements in the
soils before the experiments Parameters Units 2016 2017

Treatments no.
1, no. 3, no. 4

Treatments no. 2 Treatments no.
1, no. 2, no. 3

Treatment no. 4

TN g kg−1 1.3 1.4 1.7 1.6

TP g kg−1 0.7 1.2 0.5 0.7

TC g kg−1 21.5 17.1 21.5 28.3

Cu mg kg−1 17.7 97.1 59.6 16.7

Cr mg kg−1 20.5 28.5 34.3 38.5

Zn mg kg−1 98.0 119.2 88.5 82.4

Cd mg kg−1 0.06 0.07 0.12 0.14

Pb mg kg−1 12.8 16.1 16.6 18.4

As mg kg−1 1.5 3.3 2.0 2.6
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GHG, the paddy fields were re-flooded, and CH4 emission
rates increased gradually again, reaching a peak during the
heading stage (week 12), before finally dropping to the
same level as the initial stage during the late ripening stage
(weeks 18 and 19). The emission fluxes of CH4 from all
treatments varied from 0.03 to 0.52 mg m−2 h−1 in 2016
and from 0.01 to 7.69 mg m−2 h−1 in 2017, which were
much lower than those reported from normal paddy fields
(S. Yang et al. 2012; Win et al. 2013; Liu et al. 2015; Riya
et al. 2015). Interestingly, the 2017 season control revealed

that CH4 emissions began to increase sharply from week
12 until a peak flux of 7.69 mg m−2 h−1 in week 17. This
flux was much greater than in the other growing stages and
treatments throughout the experiment. Seasonal CH4 aver-
age emission fluxes in treatments no. 1, no. 2, no. 3, and
no. 4 were 0.12, 0.14, 0.15, and 0.16 mg m−2 h−1 in 2016
and 0.12, 0.09, 0.12, and 2.06 mg m−2 h−1 in 2017, respec-
tively (Table 6). There was no significant difference in
emission fluxes between treatments, except for treatment
no. 4 in 2017.

Table 5 Crude protein, grain
yield, and biomass Rice yield (t/ha) Protein content (%) Dry biomass (t/ha)

Treatment 2016* 2017 2016* 2017 2016* 2017

Treatment no. 1 14.1a 10.4a 13.5ab 12.8ab 15.5a 13.2a

Treatment no. 2 12.3a 9.1a 14.6a 12.3bc 15.0a 11.1a

Treatment no. 3 10.3a 9.4a 13.2ab 10.3c 11.8a 10.4a

Treatment no. 4 9.0a 10.1a 10.5c 10.4c 10.4b 11.7a

*Pham et al., 2019

Fig. 2 Variations in the soil redox
potential in paddy soils (mV)
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Table 6 CH4 average emission
fluxes (mg m−2 h−1) Treatment Treatment no. 1 Treatment no. 2 Treatment no. 3 Treatment no. 4

2016 0.12 0.14 0.15 0.16

2017 0.12 0.09 0.12 2.06

(a)

(b)

(c)

Fig. 3 Seasonal variations in the
methane emission flux
(mgm−2 h−1) from paddy fields: a
in the 2016 season, b in the 2017
season with full range of Y-axis,
and c in the 2017 season with
short range of Y-axis to show the
differences between treatments
clearly
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Seasonal variation of N2O emission

Figure 4 shows the seasonal variations in nitrous oxide
emission fluxes from the paddy fields in 2017. Generally,
TWW irrigation on the surface of the field led to signifi-
cantly increased N2O emissions compared with those irri-
gated from the bottom of the field or using tap water with
synthetic fertilizers. For the first week following rice
transplanting, emission fluxes from all treatments were
similarly low. Subsequently, in the greening and tillering
stages, emission fluxes for TWW irrigation from the bot-
tom at a lower flow rate (treatment no. 2) and in the control
treatment remained low. Conversely, emissions increased
slightly in subsurface TWW irrigation at a higher flow rate
before reaching a peak in week 4 and increased sharply in
surface TWW irrigation before reaching a peak in week 5
after transplanting. The highest emission fluxes of treat-
ments no. 1, no. 2, no. 3, and no. 4 were 713, 271, 1578,
and 261 μg m−2 h−1, respectively. After MSD in week 8,
N2O emission fluxes from all treatments were still high,
but then decreased gradually until harvesting. In the con-
trol, from week 16 at the start of the ripening stage, no
emissions were observed. The average seasonal N2O emis-
sions over the entire rice season of surface TWW irrigation
were significantly higher than those of bottom-to-top irri-
gation and the control (Table 7). In subsurface irrigation,
treatment no. 1 with a higher flow rate produced a larger
amount of N2O than treatment no. 2, although the differ-
ence was not statistically significant.

Combined GWP of CH4 and N2O emissions

Compared with tap water irrigation or top-to-top TWW irri-
gation, TWW irrigation from the bottom of the field signifi-
cantly decreased the net GWP for 20-year or 100-year periods
(Table 8). In comparison with synthetic fertilizer application,
top-to-top TWW irrigation decreased the net GWP slightly by
7.0% over the 20-year period but significantly increased the
net GWP by 57.6% over the 100-year period. For the treat-
ments with bottom-to-top irrigation, a lower irrigation flow
rate contributed to a lower GWP (IPCC 2013b).

Discussion

Effect of sub-irrigation of treated municipal waste-
water on rice yield and quality

The rice yield and quality data for the 2016 season was
discussed in detail in previous research (refer to Pham et al.,
2019); therefore, this section only discusses data from the
2017 season. Rice yield in the control treatment in 2017 was
higher than that obtained in 2016, indicating better climatic
conditions for rice development in the 2017 season.
Therefore, the decrease of rice yield observed for other treat-
ments in this season could not be attributed to the climatic
conditions. Compared with top-to-top irrigation, bottom-to-
top irrigation at the same flow rate resulted in a 10.2% higher
rice yield and a 24.3% higher protein content in brown rice. A

Table 7 N2O average emission
fluxes (μg m−2 h−1) in the 2017
season

Treatment Treatment no. 1 Treatment no. 2 Treatment no. 3 Treatment no. 4

2017 180 58 545 40

Fig. 4 Seasonal variations in
nitrous oxide emission fluxes
(μg m−2 h−1) from paddy fields in
the 2017 season
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comparison between treatments no. 1 and no. 2, which applied
the same irrigation flow direction without fertilization, indi-
cated that a higher flow rate increased the rice yield and rice
protein content by 14.3% and 8.5%, respectively. In treatment
no. 1, the rice yield and quality decreased in the 2017 season;
however, these decreases were not statistically significant, im-
plying that upward TWW irrigation at a high flow rate can
produce high rice yield and quality without any fertilizer, even
when the soil is used repeatedly. However, long-term experi-
ments should be conducted to verify the rice yield and quality
when the paddy soil is irrigated with TWW from the bottom of
the field with no fertilization.

Effect of TWW irrigation on GHG emissions

Zou et al. (2009) reported that, in comparison with river water
irrigation, sewage irrigation significantly increases CH4 emis-
sions from paddy fields. Several explanations were provided
for this result. Firstly, sewage is rich in organic matter, which
can promote CH4 production (Zou et al. 2005). Secondly,
wastewater irrigation may change the condition of soil phys-
iochemical properties and bacterial communities that encour-
age CH4 production. However, the results of the present study
are not consistent with their findings. TWW irrigation led to
remarkably decreased CH4 emissions, in comparison with tap
water irrigation. This could be attributed to the inhibitory ef-
fect of nitrogen in TWWon CH4 formation. TWWwas rich in
nitrogen, and denitrification is generally believed to occur

before methanogenesis. Moreover, denitrification interme-
diates such as NO2

− and NO may inhibit methanogenic
microorganisms, resulting in reduced CH4 formation
(Chen and Lin 1992). During the phase of reduction of
NO3

−, NO2
−, and N2O, the partial pressure of H2 may

decrease, reducing the concentrations required to support
CH4 production (Bao et al. 2016). As shown in Table 2, the
dominant form of nitrogen in the TWW used for irrigation
was ammonium. If TWW dominated by nitrate is used,
further reduction of CH4 emission is expected as the result
of enhanced denitrification.

In normal paddy fields, the peak flux of CH4 emissions
typically occurs during the early stage of rice development
(Zou et al. 2009; S. Yang et al. 2012). In contrast, in this study,
the peak CH4 emissions occurred during the ripening stage of
the rice plant (Fig. 5). This shift was likely caused by the
above inhibitory effect of nitrogen onCH4 production; a lower
concentration of nitrogen in soil could promote CH4 produc-
tion in the final stage of rice growth. Furthermore, this rise
may have been due to an increase in the available C from root
exudates in the reproductive stage. A rice plant during
flowering to ripening stages offers more exudates for the me-
thanogenic microbial community (Singh and Dubey 2012).
Furthermore, the increase in CH4 emission rates at the
flowering stage is associated with the improved CH4 transport
capacity of the rice plants due to well-developed aerenchyma
tissues (Gaihre et al. 2014). Methane emission from the con-
trol treatment in 2017was greater than in 2016, which is likely

Table 8 Net GWPs of CH4 and
N2O emissions over the growing
season (kg CO2-eq ha−1) in 2017

Treatment Treatment no. 1 Treatment no. 2 Treatment no. 3 Treatment no. 4

20-year period 1863 757 4995 5367

100-year period 1639 608 4807 2036

Fig. 5 Overall mass balance of
nitrogen in the experiment (g)
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a result of the greater concentration of C in the soil in 2017
(426 and 605 g/g in 2016 and 2017, respectively).

Conversely, TWW irrigation significantly increased N2O
emissions when compared with tap water irrigation, especially
when top-to-top irrigation or bottom-to-top irrigation at a
higher flow rate was applied. This could be because high
nitrogen contained in the TWW may have enhanced nitrifica-
tion and denitrification processes in the soil and consequently
increased N2O emissions. The larger amount of nitrogen was
released to the air in treatments no. 1, no. 2, and no. 3 than the
control (Fig. 2), although it contained both N2O and N2.
Alternatively, carbon is a key factor controlling soil nitrifica-
tion and denitrification processes; thus, organic matter in the
TWW acted as carbon sources to enhance nitrification and
denitrification processes in the soil, resulting in increased
N2O emissions (Ndour et al. 2008). The TOC concentration
in TWW was not so high (Table 2) but, under continuous
irrigation, it must have supplied a considerable amount of
carbon into the soil.

Hou et al. (2000) reported that N2O emissions are strongly
influenced by the soil redox potential and that less N2O is
emitted under low redox potential conditions, probably due to
the reduction of N2O to N2. In the 2017 season, both a higher
soil redox potential (Fig. 2) and notably greater N2O emissions
were recorded in treatment no. 3, especially before MSD, in
comparison with the other treatments. Moreover, in the top-to-
top irrigation (treatment no. 3), N2O can be produced in the
nitrification process in the surface water regardless of soil redox
potential at the deep soil layer (Kampschreur et al. 2009). The
ammonium-dominant TWW used for irrigation (Table 2)
should have contributed to N2O emission in this pathway. For
the same reason, nitrate-dominant TWW seems to reduce N2O
emission in the top-to-top irrigation, while the emission may
increase due to the enhanced denitrification in the bottom-to-
top irrigation. Although it is known that rice plants can uptake
NH4

+ more easily than NO3
− (Fried et al. 1965), the dependen-

cy of GHG emission from paddy fields on the nitrogen form in
the TWW should be investigated in further studies.

Conclusions

Bench-scale experiments were conducted under tap water and
TWW irrigation conditions in order to quantify the effect of
TWW irrigation on rice yield and CH4 and N2O emissions.
The main findings are as follows:

& A high rice yield and protein content was achieved over
two cultivation seasons by bottom-to-top TWW irrigation
at a high flow rate without any fertilizers.

& TWW irrigation decreased CH4 emissions, but increased
N2O emissions, resulting in a lower combined GWP than
tap water irrigation.

& Bottom-to-top TWW irrigation produced less CH4 and
N2O than top-to-top TWW irrigation.
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