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Abstract
High-strength concrete (HSC) is defined as concrete that meets a special combination of uniformity and performance require-
ments, which cannot be attained routinely via traditional constituents and normal mixing, placing, and curing procedures. It is a
complex material since modeling its behavior is a difficult task. This paper intends to show the feasible applicability of optimized
convolutional neural networks (CNN) for predicting the slump in HSC. The following are the parameters that given as the input
for the prediction of slump: cement (kg/m3), slag (kg/m3), fly ash (kg/m3), water (kg/m3), super-plasticizer (kg/m3), coarse
aggregate (kg/m3), and fine aggregate (kg/m3). In order to make the prediction more accurate, the design of CNN is assisted
with optimization logic by making some fine-tuned filter size of the convolutional layer. For this optimization purpose, this work
presents a new “hybrid” algorithm that incorporates the concept of sea lion optimization algorithm (SLnO) and dragonfly
algorithm (DA) and is named as Levy updated-sea lion optimization algorithm (LU-SLnO). Finally, the performance of the
proposed work is compared and proved over the state-of-the-art models with respect to error measure and convergence analysis.
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Abbreviations
ANN Artificial neural network
BPC Bentonite plastic concrete
M5Tree M5 model tree
UEO Used engine oil
GA Genetic algorithm
RMC Ready mix concrete
BPNN Backpropagation neural network
GEP Gene expression programming
HPC High-performance concrete
PCE Polycarboxylate ether
RMSE Root mean square error
SF Silica fume
AASC Alkali-activated slag concretes
HSC High-strength concrete
SCC Self-compacting concrete

ELM Extreme learning machines
MARS Multivariate adaptive regression splines
MAPE Mean absolute percentage error
MAD Mean absolute deviation

Introduction

Concrete (Prasad et al. 2020; Vieira and Figueiredo
2020;Kaufmann 2020;Honglei et al. 2020) is defined as the
core building material that deployed all around the world. It is
highly noted for its durability, abrasion resistance, resistance
to fire, high compressive strength, and impermeability. It is
very much essential to compact the concrete for contributing
the maximum structured strength. The concrete quality that
satisfies the aforesaid need is explained as workability. It is
a parameter that defines the concrete property, which iden-
tifies the effort needed for compaction, placing, and finishing
with reduced homogeneity loss. The overall work required to
initialize and maintain flow aids in the determination of the
effort needed to place a concrete mixture. On the one hand,
this mainly relies on the lubricant’s rheological property (the
cement paste) and the internal friction amongst the aggregate
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particles, in contrast to the friction among the surface and
concrete of the model.

The concrete workability (Sokhansefat et al. 2019;Abdalla
et al. 2019;Fang et al. 2018;Li et al. 2018) typically relies on nu-
merous factors and one of them is the water-cement ratio, which
greatly affects theworkability. Theworkability andwater-cement
ratio factor are directlyproportional to eachother. So, themaximi-
zation in thewater-cement ratiomaximizes theconcreteworkabil-
ityaswell.The test that isused tocalculate theparametersnearer to
workability is termed the slump test (Domone 1998;Yuan et al.
2020; Tay et al. 2019;Lu et al. 2015) and further offers helpful
informationon thisworkability. The concrete consistency is com-
monly measured by this method and it is deployed mostly on the
sites or labs. The drop in the peak of the slumped fresh concrete is
measured to deduce the slump from this test. Additional informa-
tion regarding the concrete workability might be gained by ana-
lyzing the slump shape in concrete.

Each construction type needs concrete testing for identifying
the slump obtained from the fresh concrete to assure the concrete
with needed strength and workability, though no much research
works have existed in the literature work with respect to slump
prediction of concrete. The purpose of the supply chain in the
cement industry is to propose the right supply chain for cement
and to prove that the supply chain can produce value for cement
companies (Taghipour et al. 2013; Vosooghidizaji et al. 2020;
Agudelo and Isabel 2009). The researchers still look at the pa-
rameter characterization, which impacts the concrete’s slump
value. Furthermore, the technical personnel has tried on various
mixture proportions for gaining the concrete of suitable and de-
siredworkability, but it results inmaterial wastage and cost and is
time-consuming. Therefore, machine learning models (Nilsen
et al. 2019; Feng et al. 2020; Bayar and Bilir 2019; Rousseau
et al. 2019; Zheng et al. 2019; (Yu et al. 2018) (Yu et al. 2019;
Nguyen et al. 2019; Nguyen et al. 2020) (Beno et al. 2014) need
to be developed for the sake of minimizing the design cost and
saving time and can be the better option for predicting the con-
crete slump. CNN is more efficient than traditional classifiers,
because it reduces the number of parameters to be given as input
for learning. It uses pooling and convolution operations thereby
perform parameter sharing and so it can perform the learning
with a limited number of attributes. This makes the CNN towork
on any device. Though it has several advantages than other deep
learning algorithms, it is not much used in literary works.

The major contribution of this work is stated below:

& This work introduces a new fine-tuned CNN design for
predicting the slump of concrete, which is done by the
logic of optimization.

& Presents a novel hybrid concept named LU-SLnO, which
is the hybrid version of sea lion and dragonfly models.

& The proposed work in the view of performance is com-
pared and proved over other classical works with respect
to error and convergence analysis.

The paper organization is as follows: The “Literature sur-
vey” section defines the literature survey on review papers un-
der the topic slump prediction in concrete. The “Designing of
optimization-assisted deep learning for slump prediction” sec-
tion elucidates the designing of optimization-assisted deep
learning for slump prediction. The “Proposed hybrid algorithm:
objective function and solution encoding” section describes the
proposed hybrid algorithm with objective function and solution
encoding. The “Results and discussions” section manifests the
results along with their discussions. Finally, concludes the pa-
per in the “Conclusions” section.

Literature survey

Related works

Amlashi et al. (2019) have introduced prediction models for
predicting the strength of elastic modulus, slump, and cubic
samples of BPC. In this, soft computing models like M5Tree,
ANN, and MARS were deployed and differentiated.
Furthermore, the analysis was made regarding the parameters
as well. The experimental analysis thus validated the im-
proved performance of the ANN method over other compar-
ative methods with the precise prediction of these parameters.
The slump of BPC gets impacted more by the water variables
and less by sand variables.

Shafiq et al. (2018) have presented the investigational out-
comes in response to the impact of UEO on hardened concrete
and slump properties. For this investigation, the preparation of
three concrete groups has been made. A control mix along with
the mix of 0.15% UEO dosage was composed within every
group. From this, it can say that the small dosage of UEO has
increased the reasonable slump amount in concrete by calculat-
ing the slump measurement of fresh concrete. Typically, the
result has confirmed that there was a substantial minimization
in oxygen porosity coefficient and permeability of entire con-
crete mixes using the small dosage of used engine oil, whereby
termed as the pointer of improved long-term durability.

Chandwani et al. (2015) have exposed the work of combin-
ing two different nature-inspired computational intelligence ap-
proaches like ANN and GA tomodel the RMC slump. This was
exploited using the designmix constituents such as water-binder
ratio, cement, coarse aggregates, sand, fly ash, and admixture.
Under six diverse statistical parameters, the hybrid model
(ANN-GA) was scrutinized in terms of performance over the
BPNN model. From this study, the prediction accuracy and
convergence speed of ANN seem to get improved using hybrid-
ized ANN andGA. The concrete slumpwas predicted using this
trained hybrid approach. This does not need any usage of mul-
tiple trials with diverse design mix proportions.

Chen et al. (2014) have processed several parallel subpop-
ulations for avoiding the local optima and also for improving
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the search diversity at the instance of the GEP optimization
process. Through the whole subpopulations, the fascinating
solutions were rapidly distributed by the hyper-cubic topolo-
gy. The case learning thus revealed that the parallel hyper-
cubic GEP needs to be more precise than the fundamental
GEP and the other two regression methods for evaluating
the HPC slump flow. In this, the implemented model was
highly preferred since it provides clear formulas with measur-
able parameters, even though both the implemented model
and BPNN provides similar performance.

Meng et al. (2019) have investigated the impact of slump-
retaining PCE dispersant, SF, and their mixture, over the hard-
ened and fresh properties of normal Portland cement paste.
The properties used for investigation were rheological prop-
erties, hydration kinetics, compressive strength, and setting
time. The resultant outcomes have formulated, in which the
cement hydration rates were accelerated and initial/final set-
ting time was reduced by SF. To the end, there established a
feasible correlation among rheological properties, hydration
kinetics, and compressive strength evolution. This in turns
offered a fundamental to optimize binder formulation and
proportion of high/ultra-large performance concrete.

Bondar et al. (2018) have highlighted the investigational find-
ings of AASC for offering an inclusive view on the impact of
design variables mixture related to strength, slump, and chloride
binding and transport. The result thus verified that AASC has
been modeled for diverse grades and diverse workability of con-
crete. The diffusivity outcomes have formulated that the excess
addition of water has not managed the pore connectivity/
structure in AASC. Hence, the designing of AASC was made
on the basis of the water/binder ratio required for a particular
mechanical performance. Furthermore, it was observed that there
was an increase in the chloride binding capacity along with the
raise in the silica content of the activator and/or the paste content
of the concrete.

Agrawal and Sharma (2010) have intended to demonstrate
the probable application of NN for slump prediction in HSC.
Based on the existing test data having 349 diverse concrete
mix designs of HSC collected from a specific RMC batching
plant, the NNwas trained, tested, andmodeled. The prediction
of the slump in concrete was made using the most flexible NN
model. The input parameters utilized in this dataset were fly
ash, cement, coarse aggregate (10 mm), sand, water, water/
binder ratio, and super-plasticizer. The experimental out-
comes were differentiated based on the performance function
or error function.

Ma et al. (2017) have introduced an enhanced mix design
approach of SCC in correspondence to the correlation be-
tween average diameter of coarse aggregate, slump flow,
and coarse aggregate volume. Similarly, in the volume of
coarse aggregate condition, the small SF was made suitable
by large coarse aggregate average diameter; still, the small
coarse aggregate average diameter had matched large SF.

The investigational outcomes have thus demonstrated
that the SCC properties involving compressive strength
and workability have satisfied the requirements. This en-
hanced mix design model aided in advancing SCC and
cuts the cost in real-world engineering projects with bet-
ter results.

Review

Table 1 shows the features and challenges of the conven-
tional methods regarding concrete slump prediction.
ANN is the used method in (Amlashi et al. 2019) that
attains minimum values for RMSE, MAD, and MAPE
parameters with the reduced slump, compressive
strength, and elastic modulus, even though sensitivity
analysis is needed to conduct for future use and recom-
mends incorporating the global optimization bio-inspired
algorithms. Modified Darcy’s equation (Shafiq et al.
2018) achieves high performance and has reasonable
minimization in total porosity. But, there is no concern
on UEO effect on the long-term durability of concrete.
ANN-GA (Chandwani et al. 2015) has better robustness
with fast convergence to the global optimum and poses a
better prediction of slump value, even though we plan to
use the ELMs to model the material behavior of concrete
and the overall performance needs to be improved fur-
ther. Parallel hyper-cubic GEP (Chen et al. 2014)
achieves lower RMSE error and has better accuracy in
estimating the slump flow of HPC. But, the prediction
ability is restricted because of high non-linear problems.
The Bingham fluid model (Meng et al. 2019) has en-
hanced cement hydration kinetics and has reduced plastic
viscosity and yield stress. However, it poses fewer hy-
dration enhancements and the difference in strength be-
tween plain and binary pastes is significantly smaller.
Fick’s second law of diffusion (Bondar et al. 2018) pro-
duces AASC of required strength and poses better work-
ability. Yet, further study is needed to discern the bind-
ing capacity. ANN (Agrawal and Sharma 2010) is con-
venient and easier in predicting any mix proportions and
has a better estimation of slump prediction. It still needs
further studies for the slump prediction using some soft
computing techniques. Improved mix design method (Ma
et al. 2017) has excellent workability and low cost and is
very useful in developing SCC. For future work, more
attention is needed on SCC workability.

Designing of optimization-assisted deep
learning for slump prediction

This paper plans to develop a novel machine learning model
for predicting the slump in HSC. The block diagram of the
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concrete slump prediction modelis depicted in Fig. 1. From
the literature work, most of the prediction model relies with
the application of the ANN model. This research work makes
an attempt to design a new optimized CNN for predicting the
slump, which is trained with the input data patterns. They are
cement (kg/m3), super-plasticizer (kg/m3), slag (kg/m3), fly
ash (kg/m3), water (kg/m3), coarse aggregate (kg/m3), and fine
aggregate (kg/m3). Furthermore, the synthetic data are as well
generated with the above data. Moreover, the fine-tuning of
filter size in the convolutional layer makes the model more
accurate and precise in predicting the slump. For this optimi-
zation purpose, this work introduces a new “hybrid” algorithm
termed LU-SLnO.

Design of fine-tuned convolutional neural network

Even after applying the computer vision tasks within the NNs,
the prior knowledge integration within the network architec-
ture is a crucial one for superior generalization performance.
The spatial information practice is the main intention of CNN
O’Shea and Nash (2015) and hence, it relies on discrete
convolution.

Convolutional layer The convolutional layers have to use small
filters fs (e.g., 3 × 3 to the maximum as 5 × 5), based on a stride
of S = 1 and, significantly, padding the input volume with zeros
whereby the convolutional layer has not changed the input’s

spatial dimensions. In this work, the filter size fs is optimally
tuned using the proposed LU-SLnO algorithm.

Let the convolutional layer is assumed as cl. Consequently,

the input of the layer cl consists of p cl−1ð Þ
1 feature maps from

the earlier layers, each of size p cl−1ð Þ
2 � p cl−1ð Þ

3 . While cl = 1,
the input remains as the single data cl that is the composition

Table 1 Features and challenges of conventional concrete slump prediction models

Author (citation) Methodology Features Challenges

Amlashi et al.
(2019)

ANN • Attains minimum values for RMSE, MAD,
and MAPE parameters

• Sensitivity analysis is needed to conduct for future use

• Reduced slump, compressive strength, and
elastic modules

• Recommends to incorporate the global optimization
bio-inspired algorithms

Shafiq et al. (2018) Modified Darcy’s
Equation

• Achieves high performance • No concern on UEO effect on the long-term durability of
concrete• Reasonable minimization in total porosity

Chandwani et al.
(2015)

ANN-GA • Better robustness •Will plan to use the ELMs to model the material behavior
of concrete• Fast convergence to global optimum

• Better prediction of slump value • Overall performance needs to be improved further

Chen et al. (2014) Parallel hyper-cubic
GEP

• Achieves lower RMSE error • Prediction ability is restricted because of high non-linear
problems• Better accuracy in estimating the slump flow

of HPC

Meng et al. (2019) Bingham fluid
model

• Enhanced cement hydration kinetics • Less hydration enhancements

• Reduced plastic viscosity and yield stress • The difference in strength between plain and binary pastes
is significantly smaller

Bondar et al.
(2018)

Fick’s second law of
diffusion

• Produce AASC of required strength • Further study is needed to discern the binding capacity
• Better workability

Agrawal and
Sharma (2010)

ANN • Convenient and easier in predicting any mix
proportions

• Further studies needed for the slump prediction using
some soft computing techniques

• Better estimation of slump prediction

Ma et al. (2017) Improved mix
design method

• Excellent workability and low cost •More attention is needed in the future on SCC workability
• Useful in developing SCC
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Fig. 1 Block diagram of the concrete slump prediction model
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of one or more channels, which in turn accept the raw data as
input of CNN. The layer cl poses the output that contains pcl1
feature maps of size pcl2 � pcl3 . bX cl

i delineates the ith feature
map in layer cl and is formulated as per Eq. (1).

bX cl

i ¼ D clð Þ
i þ ∑

p cl−1ð Þ
1

j¼1
P clð Þ
i: j *bX cl−1ð Þ

j ð1Þ

In which, bias matrix is expressed as D clð Þ
i and the filter of

size 2scl1 þ 1� 2scl2 þ 1 linking the jth feature map in a layer

cl − 1 along with the feature map in cl is depicted by P clð Þ
i: j . The

output feature map has provided the size as per Eq. (2).

pcl2 ¼ p cl−1ð Þ
2 −2scl1 and pcl3 ¼ p cl−1ð Þ

3 −2scl2 ð2Þ

Frequently, the filters are deployed for measuring the sim-

ilarity of the fixed feature mapbX cl
i , i.e., P

clð Þ
i: j ¼ P clð Þ

i:k for j≠k.

Every feature map bX cl
i in the layer cl consists of pcl2 :p

cl
3 units

organized in two-dimensional array form. The output is calculat-
ed as per the unit at position (g, h) is portrayed in Eqs. (3) and (4).

bX cl

i

� �
g;h

¼ D clð Þ
i

� �
g;h

þ ∑
p cl−1ð Þ
1

j¼1
P clð Þ
i: j *bX cl−1ð Þ

j

� �
g;h

ð3Þ

¼ D clð Þ
i

�
g;h þ ∑

p cl−1ð Þ
1

j¼1
∑
scl1

d¼−scl1

∑
scl2

e¼−scl2

P clð Þ
i: j

� �
d;e

bX cl−1ð Þ
j

� �
gþd;;hþe

ð4Þ

In which, bX cl−1ð Þ
j is referred as the trainable weight of the

network and the bias matrix is explicated as D clð Þ
i . The skip-

ping factors ucl1 and ucl2 is evaluated by deploying subsam-
pling. The fundamental notation is to fix the count of pixels
in the vertical and horizontal direction, once before the filter
application. The size of the output feature maps by employing
the skipping factor is evaluated based on Eq. (5).

pcl2 ¼ p cl−1ð Þ
2 −2scl1
ucl1 þ 1

and pcl3 ¼ p cl−1ð Þ
3 −2scl2
ucl2 þ 1

ð5Þ

Non-linearity layer Let the layer cl is considered as a non-
linearity layer, wherein the input is pcl1 feature maps and the

output included again with pcl1 ¼ p cl−1ð Þ
1 feature maps offered

the size of each asp cl−1ð Þ
2 � p cl−1ð Þ

3 , which is stated in Eq. (6).

bX cl

i ¼ f bX cl−1ð Þ
i

� �
ð6Þ

In which, the activation function in the layer cl is signified
as f and works on pointwise. The supplementary gain coeffi-
cient is formulated using Eq. (7).

bX cl

i ¼ gai f bX cl−1ð Þ
i

� �
ð7Þ

Rectification Let the rectification layer be considered as cl.
Each component has the absolute value with the feature maps
and is evaluated based on Eq. (8) with the input comprised of

p cl−1ð Þ
1 feature map having size p cl−1ð Þ

2 � p cl−1ð Þ
3 .

bX cl

i ¼ bX cl

i

����
���� ð8Þ

In which, the absolute value is measured as pointwise so

that the output contains thepcl1 ¼ p cl−1ð Þ
1 feature maps with no

alteration in size.

Feature pooling and subsampling layer Considering cl as the

pooling layer and their outputs is comprised of pcl1 ¼ p cl−1ð Þ
1

feature maps having minimized size. Typically, in every feature
map, the pooling works by locating the windows at non-
overlapping positions and sustains one value for every window,
whereby the subsampling of feature maps is exploited. Two
kinds of pooling are differentiated in this layer as follows:

Average pooling: The operation is exploited as average
pooling when the boxcar filter is utilized and is demonstrat-
ed as QAg.
Max pooling: The maximum value of every window is
assumed to be in max pooling and is expressed usingQMax.

Fully connected layer Let us assume the fully connected layer
as cl. If the layer cl − 1 is not considered as fully connected,

then the layer cl gets the input other than p cl−1ð Þ
1 feature maps

having the size p cl−1ð Þ
2 � p cl−1ð Þ

3 and the j layer with the ith unit
is measured as per Eq. (9).

bxcli ¼ f vcli
� �

with vcli ¼ ∑
pcl−11

j¼1
∑
pcl−12

g¼1
∑
pcl−13

h¼1
Wcl

i; j;g;h
bX cl−1ð Þ

j

� �
ð9Þ

In which, the weight that associates the unit at the position
(g, h) in the jth feature map of layer cl − 1 and the ith unit in cl
is elucidated by Wcl

i; j;g;h. The block diagram of the optimized

CNN model is depicted in Fig. 2.

Proposed hybrid algorithm: objective
function and solution encoding

Solution encoding

As mentioned above, the f i l ter s ize f s of the
convolutional layer is optimally tuned using the pro-
posed hybrid algorithm. The input given to the imple-
mented work is elucidated in Fig. 3. The main objective
defined in the implemented prediction model is given in
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Eq. (10), where err is the error among the predicted and
actual value.

obj ¼ min errð Þ ð10Þ

Proposed LU-SLnO algorithm

The proposed LU-SLnO algorithm merges the principle of
DA in the sea lion model that obviously deals with the better
convergence rate and speed. The proposed SLnO includes
three major phases:

& Tracking and chasing of prey by their whiskers.
& Pursuing and encircling the prey by calling other members

of their subgroups to join them.
& Attack the prey.

Mathematical modeling of the proposed algorithm is
exploited with four stages that are termed as proposed tracking
a detection phase, social hierarchy, attacking, and encircling
prey.

Detecting and tracking phase The whiskers facilitate the sea
lion to sense the existing prey and for detecting their position
when the direction of whiskers is in the opposite of the water
wave’s direction, though the vibration of whiskers is less
while its orientation is as same as the present orientation.

Sea lion positioned the prey’s location and call for other
members to merge its subgroup for pursuing and hunting the

prey. The leader is the sea lion which calls others and the
updating of the position of target prey is exploited by other
members. This algorithm assumes the target prey as the closer
one to the optimal solution or recent best solution. Towards
the following iteration, to get closer, the sea lion moves over
the target prey. In this scenario, the position of the sea lion gets
updated using the arithmetical model of Levy update in DA
(Jafari and Chaleshtari 2017) given in Eq. (11).

S
!

t þ 1ð Þ ¼ S
!

tð Þ þ Levy yð Þ � S
!

tð Þ ð11Þ

Levy yð Þ ¼ 0:01� r1 � Φ

r2j j1y
ð12Þ

Φ ¼
Γ 1þ ξð Þ � sin

πξ
2

Γ
1þ ξ
2

� �
� ξ � 2

ξ−1
2ð Þ

0
BB@

1
CCA ð13Þ

Vocalization phase Sea lions can adapt to stay in both land and
water. The sound of sea lion in water can travel four times
quicker than in the air. While chasing or hunting the prey, the
communication of sea lions is made via numerous vocaliza-
tions. In addition, they have the capacity on detecting the
sound both on and under the water. On identifying prey, the
sea lion calls on other members for encircling and attacking
the prey. This is arithmetically given in Eqs. (14), (15), and
(16), where the speed of sea lion leader’s sound is portrayed as

Sleader
			!

, the sounds speed in water and air is demonstrated as

P1
	!

and P2
	!

.

Sleader
			! ¼ P1

	!
1þ P2

	!� �� �
= P2
	!��� ��� ð14Þ

P1
	! ¼ sinθ ð15Þ
P2
	! ¼ sinφ ð16Þ

Attacking phase In the exploration part, the sea lions’ hunting
behavior is formulated based on two stages as follows:

Fig. 2 Optimized CNN model

Filter size

S

Fig. 3 Solution encoding
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a) Dwindling encircling approach: This approach is expli-
cated based on Levy value (Nair and Muthuvel 2019) K
Levy(y) in Eq. (11) and is decreased steadily via a course
of iteration from 2 to 0. This reducing factor directs the
sea lion to forward on and to encircle the prey.

b) Circle updating position: The bait ball of fishes is the
prime target of sea lions and the attack is started from
edges which is explicated as per Eq. (17), in which the
distance among the search agent (sea lion) and best opti-

mal solution (target prey) is represented as M
!

tð Þ− S
!

tð Þ,
the absolute value is indicated by ||, and the random num-
ber is manifested as l and falls between − 1 and 1.

S
!

t þ 1ð Þ ¼ M
!

tð Þ− S
!

tð Þ:cos 2πlð Þ
��� ���þM

!
tð Þ ð17Þ

Prey searching From the best search agent in the exploration
phase, the position update of the sea lion is formulated. The
search agent’s position update in the exploration phase is eval-
uated with respect to the chosen random sea lion. It can also
say that the SLnO algorithm carries out a global search agent

and determine the global optimum solution, while F
!

is larger
than 1. This is defined as in Eqs. (18) and (19). The flowchart
of the proposed LU-SLnO algorithm is exploited in Fig. 4.
The pseudo-code of the implemented LU-SLnO algorithm is
given in Algorithm 1.

Dis
	! ¼ 2B

!
:Srnd
		!

tð Þ− S
!

tð Þ
��� ��� ð18Þ

S
!

t þ 1ð Þ ¼ Srnd
		!

tð Þ−Dis:		!
H
! ð19Þ

Algorithm 1: Pseudocode of LU-SLnO Algorithm

Initialization of population 

Choose rndS
Estimate the fitness function for every search agent

if )max( iteri

estimate leaderS as per Eq. (14)

If( leaderS <0.25)

If ( 1)(yLevy )

Update the position of current search agent using the Levy update in DA 
algorithm given in Eq. (11)

else

Select a random search agent rndS
Update the current search agent location using Eq. (19)

End if

else

Update the current search agent location using Eq. (17)

End if

If the search agent do not belong to any leaderS
Go to the first if condition

else

Compute the fitness function for every search agent

Update S as per the better solution

Return S , which is the best solution

End if

End if

stop
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Results and discussions

Simulation setup

The evaluation of this implemented slump prediction model is
made usingMATLAB. The dataset used for this experiment is
downloaded from the link: https://archive.ics.uci.edu/ml/
datasets/Concrete+Slump+Test. The data set includes 103
data samples. There are 7 input variables namely cement,
slag, fly ash, water, SP, coarse aggregate, fine aggregate,
and 3 output variables slump (cm), flow (cm), and 28-
day compressive strength (Mpa). Since this paper intents
to predict the slump, we have used the slump (cm) as
the output variable. Super-plasticizer has an effect on
workability and to collect the data; 78 mix proportions
were performed at the first phase of the experiment.
Furthermore, 35 more proportions are extended to ac-
quire the total samples of 103. More details about the

experiment can be referred from Yeh (2008), Yeh and I-
Cheng (2009), Yeh and I-Cheng (2008), Yeh and I-
Cheng (2007), and Yeh and I-Cheng (2006). The anal-
ysis in this work is exploited by varying the learning
percentage to a different extent as 50, 60, 70, and 80.
For example, with a learning rate of 60%, there are 62
data samples used for training and validation for the
remaining 38 data samples were used for the testing
set. Furthermore, the 62% of data samples are divided
into 70% for training and 30% for testing. Hence, 43
out of the 62 data samples are used for training, while
18 data samples are used for validation The experimen-
tal analysis is made by comparing the proposed work
with the conventional models like SLnO (Masadeh et al.
2019), DA (Jafari and Chaleshtari 2017; Jadhav and
Gomathi 2019), LA (Boothalingam 2018; (Brammya
and Deepa 2019), and LA-RE (Shaswat, personal com-
munication) under actual and predicted values and con-
vergence. Furthermore, the overall error analysis is as
well as formulated under certain error measures like
RMSE, MD, MASE, SMAPE, one norm, MAE, infinity
norm, and two norms. The purpose of the slump pre-
diction method is to minimize the error between actual
and predicted value. The formula for some errors is
given below.

MSE ¼ ∑
N

i¼1

Predictedi−Actualið Þ
N

2

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Predictedi−Actualið Þ2

N

vuuut

MAE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
jPredictedi−Actualj

N

vuuut

SMAPE ¼ 100

N
∑
N

i¼1

Predictedi−Actuali
Predictedi

Analysis on actual vs. predicted slump

The analysis on actual versus the predicted slump of the im-
plemented model against the classical models is exhibited in
Fig. 5. These values are plotted for different learning percent-
ages like 50, 60, 70, and 80 and the results are analyzed. From
the graphical representation, it is monitored that the predicted
value of the proposed model has highly got closer with the
actual slump while comparing over other compared models.
The prediction rate is high if the actual and the predicted
values are the same. Hence, from this analysis, it is clear that
the implemented approach has achieved a superior prediction
rate than any other models.

Start

Initialize population

Choose rndS

Estimate the fitness function for every search agent

Compute leaderS as per Eq. (14)

if(
leaderS <0.25)

Update the current 

search agent location 

using Eq. (17)

if( 1)( <yLevy )

Update the current search 

agent location using Eq. (19)

Update the position of 
current search agent using 

the Levy update in DA 
algorithm given in Eq. (11)

If the search agent do not 

belong to any leaderS

Compute the fitness function for every search agent

Update S as per the better solution

Return S , which is the best solution

Stop

Yes No

Yes 

Yes 

Yes 

No

No

No

if <  max iter)(i

Select a random search 

agent rndS

Fig. 4 Flowchart of the proposed LU-SLnO algorithm

43765Environ Sci Pollut Res  (2022) 29:43758–43769

1 3

https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test


Convergence analysis

Figure 6 illustrates the convergence analysis of the proposed
model against other compared models under diverse learning

percentages. The error performance needs to be minimum for
attaining the best prediction performance. Particularly, while
considering the results under 50% of learning, the error is at
the maximum level for both the proposed and conventional

Fig. 5 On actual slump vs.
predicted slump of the proposed
model over state-of-the-art
models for different learning per-
centage a 50, b 60, c 70, and d 80

Fig. 6 Convergence analysis of
the proposed model over state-of-
the-art models for varied learning
percentage a 50, b 60, c 70, and d
80
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models and as the iteration gets increased, the error gets line-
arly decreased. At the 25th iteration, the proposed model re-
mains with less error than in the range of ~ 8.5. Moreover,
almost in all the iterations, the implemented approach is
seemed to achieve better performance with minimum error
in all the learning percentages.

For learning percentage 50, the proposed model in the 5th
iteration has achieved the least error than DA and LA by
9.73% and 4.47%, respectively. Similarly, for the 25th itera-
tion, the proposed work is 26.63%, 29.96%, 31.42%, and
14.83% better from SLnO, DA, LA, and LA-RE, respectively,
with the minimized error. The analysis is also made for all
other learning percentages and the resultants are graphically
illustrated, where the proposed model shows its betterment
over other conventional models.

Overall error analysis

Table 2 manifests the overall error analysis of the implement-
ed approach over other classical approaches with respect to
diverse learning percentages. In learning percentage 50, the
proposed work regarding MDmeasure is achieved better with
least value, which is 31.23%, 17.26%, 41.44%, and 17.24%

improved than SLnO, DA, LA, and LA-RE, respectively. In
the view of the RMSE measure, the proposed work achieves
minimum RMSE error than other conventional models like
SLnO, DA, LA, and LA-RE by 31.02%, 16.89%, 41.72%,
and 17.28%, respectively. Subsequently, on considering
learning percentage 80, the proposed model in response to
MASEmeasure has attained betterment with minimized error,
which is 32.46%, 16.56%, 14.73%, and 3.6% better from
SLnO, DA, LA, and LA-RE, respectively. Similarly, all the
other learning percentages are analyzed for all the error mea-
sures and are plotted in the table given below. The resultant
outcomes thus explicated that the implemented approach has
achieved better performance with less error than the existing
approaches, thereby validates the betterment of implemented
work with increased prediction accuracy.

Conclusions

The main intention of this implemented approach was on
finding the reasonable applicability of optimized CNN for
slump prediction in HSC. The input that applied for the fol-
lowing process was super-plasticizer, slag, cement, coarse

Table 2 Overall error analysis of the proposed model over conventional models

MD Infinity norm MASE One norm MAE Two norms RMSE SMAPE
Learning percentage=50

SLnO (Masadeh et al. 2019) 4.6113 0.093085 0.15496 13.43 0.02686 0.74179 0.033174 0.045366

DA (Jafari and Chaleshtari 2017) 3.833 0.082326 0.12637 11.131 0.022262 0.61567 0.027533 0.037782

LA (Boothalingam 2018) 5.4155 0.10687 0.18861 15.867 0.031734 0.878 0.039265 0.053309

LA-RE (Shaswat, personal communication) 3.8317 0.080861 0.12655 11.102 0.022204 0.61855 0.027663 0.037754

LU-SLnO 3.1713 0.070611 0.10305 9.1565 0.018313 0.5117 0.022884 0.031335

Learning percentage=60

SLnO (Masadeh et al. 2019) 2.6478 0.058483 0.072587 6.3861 0.015965 0.39263 0.019632 0.026387

DA (Jafari and Chaleshtari 2017) 2.385 0.05425 0.065655 5.7561 0.01439 0.36013 0.018007 0.023744

LA (Boothalingam 2018) 3.9331 0.084856 0.10884 9.4354 0.023588 0.58537 0.029268 0.039038

LA-RE (Shaswat, personal communication) 2.0327 0.046695 0.054982 4.8547 0.012137 0.30325 0.015163 0.020248

LU-SLnO 1.9945 0.042507 0.053727 4.7481 0.01187 0.29456 0.014728 0.01987

Learning percentage=70

SLnO (Masadeh et al. 2019) 2.3837 0.052789 0.050066 4.2531 0.014177 0.30619 0.017678 0.023715

DA (Jafari and Chaleshtari 2017) 2.4025 0.052118 0.050203 4.2655 0.014218 0.31053 0.017929 0.023867

LA (Boothalingam 2018) 2.2924 0.049382 0.047733 4.057 0.013523 0.29341 0.01694 0.022817

LA-RE (Shaswat, personal communication) 2.2268 0.047571 0.046757 3.9733 0.013244 0.28703 0.016572 0.022156

LU-SLnO 1.9343 0.04081 0.0405 3.4376 0.011459 0.24722 0.014273 0.019247

Learning percentage=80

SLnO (Masadeh et al. 2019) 2.1668 0.041341 0.029938 2.5702 0.012851 0.22671 0.016031 0.021612

DA (Jafari and Chaleshtari 2017) 1.7731 0.032127 0.024232 2.0863 0.010432 0.18104 0.012801 0.017676

LA (Boothalingam 2018) 1.7282 0.037862 0.023713 2.0394 0.010197 0.17842 0.012616 0.017222

LA-RE (Shaswat, personal communication) 1.5315 0.026866 0.020975 1.8063 0.009032 0.15666 0.011077 0.015277

LU-SLnO 1.4701 0.024769 0.020219 1.7402 0.008701 0.15054 0.010645 0.014653
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aggregate, water, fine aggregate, and fly ash. The prediction
was made precise by incorporating the optimization logic in
CNN by fine-tuning the filter size of the convolutional layer.
This optimization was exploited by incorporating the two op-
timization algorithm concept and stated as LU-SLnO. The
performance regarding the proposed work was evaluated and
the results were compared over the traditional models in the
view of convergence analysis and error measure. On consid-
ering convergence analysis, for learning percentage 50, the
proposedmodel in the 5th iteration has achieved the least error
than DA and LA by 9.73% and 4.47%, respectively.
Similarly, for the 25th iteration, the proposed work is
26.63%, 29.96%, 31.42%, and 14.83% better from SLnO,
DA, LA, and LA-RE, respectively, with the minimized error.
The experimental results are encouraging and they have
shown significant performance in predicting the slump.
However, to ensure the reliability of the slump prediction, it
is essential to experiment under diverse practical constraints
and large datasets. Moreover, the real-time environment has to
be simulated to the most possible extent. Our future research
has been planned to accomplish diverse experimental platform
and precise slump prediction model.
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