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Abstract
Heavy metal contamination in the aquatic environment is one of the most serious health issues worldwide. In this study, an
evaluation framework is developed to identify the sources and health risk of heavy metals (i.e., As, Hg, Cr, Cu, Zn, Pb, and Cd)
contamination in the North Canal of Fengtai District, China, which is based on multiple approaches, including multivariate
statistical method, health risk assessment, and uncertainty analysis. Spatial distribution of these heavy metals could exhibit their
impact on the aquatic environment. Pearson’s correlation analysis shows that a majority of the correlations between different
heavy metals are not significant due to the differences in sources of heavy metals. Principal component analysis indicates that
there are four principal components to explain 91.381% of the total variance. Moreover, health risk reveals that hazard quotient
values are in low levels, ranging from 0.48 to 0.74, relative higher quotient levels could be observed in the northern section. The
carcinogenic risk of Cd has exceeded the acceptable level in S1, S3, and S7. Sensitivity analysis ensures the reliability of health
risk assessments. Furthermore, some specific recommendations are given to help decision-makers develop more comprehensive
strategies for improving water environment quality.
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Introduction

Heavy metal (HM) contamination, especially in the aquatic en-
vironment, is one of the most serious health issues worldwide,
mainly because of their anthropogenic inputs (De Silva et al.

2015; Deepa and Jitendra 2019; Islam et al. 2020b). HMs fre-
quently accumulate in sediments, and they cannot easily be re-
moved by biodegradation or chemical degradation (Bartoli et al.
2012; Haris et al. 2017; Hossain et al. 2019; Haghshenas et al.
2019; Hosseini et al. 2020). The sources of HMs in the aquatic
environment are natural and anthropogenic activities, such as
agriculture runoff, unfettered industrialization, rapid urbaniza-
tion, and massive use of fossil fuels (Zafra et al. 2017). It should
be specifically mentioned that HMs, like mercury (Hg), arsenic
(As), copper (Cu), chromium (Cr), lead (Pb), zinc (Zn), and
cadmium (Cd), are of a high concern since they have direct
impacts on human health through affecting the food chains
(Martinez-Cortijo and Ruiz-Canales 2018; Paschoalini et al.
2019). Exposure to these HMs, dermal absorption, inhalation,
and direct intake could result in serious diseases, such as hyper-
tension, renal dysfunction, and cancer (Saha et al. 2017;Devi and
Yadav 2018; Tepanosyan et al. 2018). Hence, analyzing the
sources, spatial distribution patterns, and health risks of HMs in
the aquatic environment is an important undertaking (Swain and
Sahoo 2017).

Currently, the level of HM contamination in the aquatic
environment and the related risks have received considerable

Responsible Editor: Xianliang Yi

* Yizhong Chen
2019075@hebut.edu.cn

* Hongwei Lu
luhw@igsnrr.ac.cn

1 Key Laboratory ofWater Cycle and Related Land Surface Processes,
Institute of Geographic Science and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China

2 Hebei Key Laboratory of Environmental Change and Ecological
Construction, Hebei Technology Innovation Center for Remote
Sensing Identification of Environmental Change, College of
Resources and Environmental Sciences, Hebei Normal University,
Shijiazhuang 050024, China

3 School of Economics and Management, Hebei University of
Technology, Tianjin 300401, China

https://doi.org/10.1007/s11356-020-12212-x

/ Published online: 11 January 2021

Environmental Science and Pollution Research (2021) 28:22804–22822

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-020-12212-x&domain=pdf
mailto:2019075@hebut.edu.cn
mailto:luhw@igsnrr.ac.cn


attention, and multiple approaches have been applied for their
assessment (Nath et al. 2018; Pal and Maiti 2018;
Withanachchi et al. 2018; Zivkovic et al. 2019;). Excess abun-
dances of As in shellfish was detected in the Pearl River Delta
in South China (Yu et al. 2021). Copper, zinc, and iron were
widely detected in the Dawen River basin of Shandong
Province in China, followed by nickel, arsenic, selenium, lead,
and mercury (Liu et al. 2021). Among these researches, the
widely used analysis techniques for metal contamination
based on existing water quality standards are the heavy metal
pollution index (HPI) and pollution index (PI). These simple
approaches facilitate the analysis of pollution sources and the
verification of protection measures based on generated solu-
tions (Zhang et al. 2017). According to the U.S.
Environmental Protection Agency (USEPA), the evaluation
of potential health risks and the spatial distribution of HMs
should be conducted to identify carcinogenic and non-
carcinogenic risks. For example, Singh and Kumar (2017)
focused on HM contamination in the Ajay River with consid-
eration of seasonal and spatial variations by analyzing 76
samples for 2 years. Results showed that the mean values of
HPI and PI were found above the critical index owing to a
higher concentration of Cd, Pb, and Fe. Solutions of health
risk assessment disclosed that high loads of Cd, Pb, and Fe in
the surface water could harm the population. Islam et al.
(2020a) analyzed concentrations of eight trace elements in
surface water in Bangladesh. Six assessment methods were
used to evaluate the water quality and health risks, including
hazard index and Monte Carlo simulation. Results showed
that the values of the hazard index surpassed the acceptable
level. Carcinogenic risks of Cr also exceeded the acceptable
level for adults and children. Habib et al. (2020) appraised 10
trace metals in groundwater samples using multivariate statis-
tical approaches, health risk model, and Monte Carlo simula-
tion. Results of hazard index evaluation showed the values
exceeded the safe levels for adults and children. The carcino-
genic risk values of Cd and Cr exceeded acceptable levels as
well, with oral intake as the key exposure pathway.

Although existing efforts have helped identify the associated
health risks of HM contamination in the aquatic environment,
much needs to be done with regard to the uncertainties arising
frommodeling parameters, such as pollutant concentration, car-
cinogenic slope factors, and daily ingestion (Keller et al. 2002;
Albuquerque et al. 2017; Troldborg et al. 2017; Eze et al. 2019;
Shabanda et al. 2019). The lack of consideration for uncertain
information could cause the obtained solutions to deviate from
the “true” solutions of identified problems (Harris et al. 2017;
Sharafi et al. 2019). Uncertainties expressed as probability dis-
tributions have been widely investigated, and the results could
provide decision-makers with multiple optimal strategies under
different probability levels. However, in the general decision-
making process, difficulties arise when tackling cumbersome
water quality datasets. Multiple statistical analyses, e.g.,

principal component analysis (PCA) and cluster analysis
(CA), provide a powerful approach for classifying, modeling,
and interpreting complex water quality datasets (Astel et al.
2007; Peiris et al. 2010; Maere et al. 2012; Viswanath et al.
2015; Javadi et al. 2017). In water quality evaluation, identify-
ing the interrelations in huge datasets, and the key factors great-
ly affecting the aquatic environment is critical. Accordingly,
PCA should be applied to process water quality datasets so as
to identify the hypothetical sources of HMs, minimizing the
number of variables with high loadings on each component.
CA can classify these samples with similar HM contents.
Specifically, R-mode CA could evaluate the association be-
tween various parameters and sources of water quality while
Q-mode CA is used to determine similar site clusters (Bayo and
López-Castellanos 2016; Delpal et al. 2018).

The purpose of this study is to establish evaluationmethods for
identifying the degree of contamination and health risk of HMs in
the aquatic environment. Seven HMs (Pb, As, Cr, Cd, Cu, Hg,
and Zn) will be considered to compute the exposure rates of HMs
for human health through ingestion owing to their toxic proper-
ties. Spatial distribution of these HMs will be presented to exhibit
the impact of contaminants on the aquatic environment.
Additionally, multiple statistical analysis is used to determinate
the connection between different HM contamination.

Materials and methods

Overview of the study region

This study focuses on the North Canal of Fengtai District
(from 39 45′ to 39 55′ N in latitude, and from 116 03′ to 116
30′ E in longitude), which is located along the western border
of Beijing, China (Fig. 1). This district has an area of
205.87 km2 and 2.26 million of the population (Chen et al.
2016). In terms of the geological and geomorphology, there
are different geological conditions in the western and eastern
parts of Fengtai District, where stratigraphic lithology in dif-
ferent geologic time is distributed. The western and eastern
parts are respectively composed of mountains and plains. The
soil types in Fengtai District are mainly brown and tidal soils,
which account for 67% and 29% of the soil in the whole
region, respectively, while the rest are mostly composed of
wind sand and paddy soils. Among them, the brown soil is
mainly distributed in the western, northern, southeastern parts
of the region, and the tidal soil is principally located in the
middle and southern parts. When it comes to the meteorolog-
ical and hydrological conditions, this district is a typical con-
tinental and semi-arid climate of a warm temperate zone. The
annual average temperature is 11.7 °C, and the annual average
precipitation is 580.6 mm. The average annual surface evap-
oration is 934.7 mm, and the land evaporation is about
472.2 mm.
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In addition, there are three major rivers in this district, namely
the Yongding River, North Canal, and Daqing River. Because of
insufficient water in the Yongding River and Daqing River for
many years, this study centers mostly on the North Canal, which
has a length of 68 km (8.8 km in Fengtai District) and a basin area
of 630 km2. With rapid development of economy and continued
acceleration of the population, the increasingly severe water con-
tamination has become one of the trickiest problems. For example,
rivers with grade V accounted for more than 95% of all rivers in
2013, and according to Fengtai District environmental quality re-
port in 2012, the super standard rate of chemical oxygen demand
(COD), potassium permanganate index (PPI), biological oxygen
demand (BOD), ammonia nitrogen (NH3-N), and total phospho-
rus (TP) were examined up to 67.4%, 37.5%, 87.5%, 85.9%, and
100%, respectively (Fig. 2) (Chen et al. 2017). The study area
belongs to a warm temperate semi-arid and semi-humid continen-
talmonsoon climate. The annual average temperature is 11~12 °C,
the annual average precipitation is 551.9 mm, andmore than 85%
of the annual rainfall is concentrated in June to September. The
study area is located in the alluvial proluvial plain of Chaobai
River, with a Quaternary sedimentary thickness of more than
300 m. the lithology is mainly composed of interbedding of silty
clay, silty sand, and fine sand. In this study, eight sampling sites
have been used to determine its water contaminations (Fig. 1). All
of the eight sampling sites are on the North Canal. Themonitoring
sites are established by the government of Fengtai District, and the
water quality is regularly monitored by the Beijing Municipal
Ecology and Environment Bureau.

Multivariate statistical analysis

Principal component analysis aims to turn multiple index
problems into a few comprehensive variables with less infor-
mation loss, which could significantly improve the efficiency
of analysis. According to the sample attributes, a hierarchical
clustering method set is introduced to cluster the network
nodes. In this study, R software and SPSS software are applied
to reduce the dimension of seven HMs based on PCA and to
analyze the correction and primary sources of pollutants.
Moreover, these seven HMs are classified by cluster analysis,
the HMs with similar attributes or sources are then obtained,
and such results could be further verified by a PCA approach.

Human health risk assessment

It is increasingly desired to identify the probability of carcino-
genic and non-carcinogenic risks to a human body owing to
HMs in the aquatic environment (USEPA 2000; Lu et al.
2018). There are two major exposure pathways, i.e., dermal
contact absorption and direct ingestion. In this study, only
direct ingestion is considered due to its higher environmental
risks. The chronic daily intake (CDI), hazard quotient (HQ),
and hazard index are calculated according to USEPA stan-
dards, which could determinate the ingestion rate of contam-
ination.

CDIi ¼ ECi⋅DI
BW

ð1Þ

China

Beijing City Fengtai District

S7

S8

S2S5

S4

S3
S6 S1

Legend

Sampling sites

North Canal

S1: Xitiejiangying

S2: Dahongmen

S3: Liucunluqiao

S4: Wanshoulu

S5: Majaibaoqiao

S6: Wanquanshi

S7: Donggaodi

S8: Jinglianglu

Fig. 1 Schematic of the aquatic environment in Fengtai district, Beijing, China
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where EC denotes pollutant concentration (mg/L); DI denotes
daily ingestion, which is suggested by 2.0 L/day for adult, and
0.7 L/day for children; BW denotes body weight, which is
assumed as 60 kg for adult, and 14.2 kg for children.

HQi ¼
CDIi
RfDi

ð2Þ

where RfD denotes the oral toxicity reference dose values,
which are determined as 0.0003, 0.0004, 0.04, 0.3, 0.0005,
0.0014, and 0.0015 mg/kg-day for As, Hg, Cu, Zn, Cd, Pb,
and Cr, respectively. There are four scales of HQ: HQ≤1 (no
risk), 1<HQ≤5 (low risk), 5<HQ≤10 (medium risk), and

HQ>10 (high risk).
Then, the carcinogenic risk (CR) can be calculated as fol-

lows (Ren et al. 2016; Dehghani et al. 2017):

CRi ¼ CDIi⋅SFi

CR ¼ ∑CRi

�
ð3Þ

where SF denotes the carcinogenic slope factors, which are sug-
gested by 0.5, 15, and 1.5 mg/kg-day for Cd, Cr, and As, respec-
tively. A CR value between 1 × 10−6 and 1 × 10−4 implies
acceptable/tolerable carcinogenic risk; the risk changes to be un-
acceptable with a CR value higher than 1 × 10−4, while it has no
significant health hazards when the value is lower than 1 × 10−6
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Fig. 2 Variations in pollutant concentrations in different sampling sites

22807Environ Sci Pollut Res  (2021) 28:22804–22822



(Men et al. 2018).

Heavy metal pollution index

To evaluate the critical level of water quality, the heavy metal
pollution index (HPI) is determined based on the weighted
arithmetic mean calculation of selected parameters, which
can be calculated as follows:

Wi ¼ k
Si

Qi ¼ 100⋅
Ci

Si

� �

HPI ¼ ∑
n

i¼1

Qi⋅Wi

∑
n

i¼1
Wi

8>>>>>>>><
>>>>>>>>:

ð4Þ

whereWi denotes the weighting factors of each heavy metal; k

Table 1 Statistical description of heavy metal and physicochemical parameters

Items S1 S2 S3 S4 S5 S6 S7 S8

pH Min 7.25 7.31 7.17 7.38 7.18 7.26 7.31 7.23
Max 8.51 8.60 8.01 7.96 8.63 7.61 7.82 7.74
Mean 7.77 7.76 7.45 7.55 7.63 7.48 7.54 7.43

As (mg/L) Min 0.00013 0.00016 0.00010 0.00030 0.00030 0.00040 0.00010 0.00060
Max 0.00120 0.00080 0.00080 0.00110 0.00110 0.00170 0.00100 0.00180
Mean 0.00063 0.00059 0.00057 0.00068 0.00073 0.00083 0.00064 0.00100

Hg (mg/L) Min 0.00006 0.00005 0.00003 0.00004 0.00006 0.00004 0.00004 0.00009
Max 0.00025 0.00025 0.00026 0.00026 0.00027 0.00030 0.00029 0.00034
Mean 0.00013 0.00013 0.00014 0.00014 0.00014 0.00016 0.00014 0.00019

Cr (mg/L) Min 0.00290 0.00292 0.00280 0.00280 0.00289 0.00289 0.00288 0.00281
Max 0.00360 0.00380 0.00360 0.00360 0.00360 0.00365 0.00365 0.00500
Mean 0.00336 0.00329 0.00324 0.00333 0.00327 0.00319 0.00331 0.00350

Cu (mg/L) Min 0.04620 0.04360 0.04350 0.04660 0.04605 0.03620 0.04415 0.04320
Max 0.05230 0.05250 0.05000 0.05120 0.05270 0.05420 0.05200 0.05300
Mean 0.04898 0.04944 0.04867 0.04927 0.04928 0.04771 0.04849 0.04833

Pb (mg/L) Min 0.00800 0.00850 0.00850 0.00860 0.00860 0.00838 0.00807 0.00776
Max 0.01000 0.01000 0.01000 0.01000 0.01000 0.01015 0.01055 0.01095
Mean 0.00971 0.00972 0.00934 0.00952 0.00929 0.00915 0.00937 0.00923

Zn (mg/L) Min 0.01860 0.01950 0.01920 0.01970 0.02000 0.02000 0.01830 0.01800
Max 0.06000 0.06000 0.07000 0.06000 0.08000 0.06000 0.06000 0.04200
Mean 0.03738 0.03463 0.03577 0.03498 0.04292 0.03489 0.03328 0.02978

Cd (mg/L) Min 0.00080 0.00086 0.00100 0.00080 0.00080 0.00070 0.00060 0.00050
Max 0.00120 0.00130 0.00140 0.00140 0.00160 0.00180 0.00950 0.00100
Mean 0.00110 0.00106 0.00107 0.00100 0.00095 0.00096 0.00159 0.00086
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Fig. 3 Heavy metal variations in the aquatic environment of different sampling sites
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(a)Cd (b)Cr (c)As

Fig. 4 Distribution patterns of carcinogenic HMs along the sample sites

(a)Cu (b)Hg

(c)Pb (d)Zn

Fig. 5 Distribution patterns of non-carcinogenic HMs along the sample sites
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is the proportionality constant and is set as 1 in this study; Si
denotes the desirable limit of each heavy metal given by reg-
ulatory standard; Ci denotes the average concentration of each
heavy metal; Qi denotes the sub-index of each heavy metal.
When HPI ≤ 100, it means that the contamination of HMs in
the aquatic environment could be acceptable.

Monte Carlo–based uncertainty analysis

Uncertainties associated with carcinogenetic risk could
be conducted into a matrix and vectors based on
Monte Carlo simulation, during which each execution
generates a sample output. The output can then be sto-
chastically analyzed for identifying the corresponding
cumulative probability distributions. Generally, the de-
tailed Monte Carlo process can be summarized as fol-
lows: (a) producing lots of random numbers for each
stochastic input; (b) according to a special statistical
distribution, these random numbers could be trans-
formed into the related random variates; (c) storing the
obtained stochastic variates in an array for each param-
eter; (d) each parameter would generate a value, which
is used as a deterministic input in the computation for-
mula of the allowable carcinogenetic risk; (e) computing
the acceptable carcinogenetic risk based on a numerical
model for each Monte Carlo run; (f) the outputs of the
acceptable carcinogenetic risk would be stored; (g) re-
peating Steps (a)–(f) for specified Monte Carlo runs;
and (h) analyzing the calculation results and achieving
a cumulative probability distribution. Carcinogenic risk
describes the probability when human beings are ex-
posed to cancer-causing contaminants like heavy metals.
It is one of the most concerning health problems in
human beings. Therefore, it is significant to accurately
evaluate the level of carcinogenic risk. However, quan-
titative calculation of carcinogenic risk involves param-
eters with a mount of uncertainties. The value of these
parameters (e.g. slope factors and daily ingestion) are
recommended by USEPA, based on numerous animal
toxicity experiments. It is hard to accurately predict
the value for humans in this special case (a case study

of China). The uncertainty of parameters can directly
influence the accuracy of carcinogenic health risk as-
sessments. Monte Carlo simulation is one of the most
effective methods to solve the randomness and uncer-
tainty within model operations. Moreover, sensitivity
analysis could be given to determine the impacts of
modeling components or modeling inputs on the final
results of carcinogenetic risk. Sensitivity analysis could
reflect the impacts of parameters uncertainties on carci-
nogenic risk calculation and make the values of carci-
nogenic risk of heavy metals close to the “real” ones.

Results and discussion

Compositional analysis and identification of pollution
sources

The statistical descriptions of HMs and the physico-
chemical parameters with minimum, maximum, and
mean values are presented in Table 1. The HM varia-
tions in the aquatic environment are illustrated in Fig. 3.
The monitoring data of all the seven heavy metals were
measured by the official government considering
Environmental Quality Standards for Surface Water of
National Standard of China (GB3838-2002). In this

Table 2 Correlation matrix for heavy metals

As Hg Cr Cu Zn Pb Cd

As 1.0000

Hg 0.2190 1.0000

Cr 0.4200 0.1500 1.0000

Cu − 0.0770 − 0.1690 0.0190 1.0000

Zn − 0.1360 − 0.1530 0.0360 0.0470 1.0000

Pb − 0.0510 − 0.3330 − 0.1190 0.2440 − 0.0760 1.0000

Cd − 0.2560 − 0.1540 − 0.1040 − 0.1250 − 0.1320 0.2590 1.0000

Table 3 Loading scores of heavy metals to each component

Comp. 1 Comp. 2 Comp. 3 Comp. 4

As − 0.457 0 − 0.386 − 0.256
Hg − 0.446 0.226 0.187 0.583

Cr − 0.427 0 − 0.223 − 0.525
Cu 0.256 − 0.467 − 0.508 0.408

Zn 0.455 0.127 − 0.397 − 0.192
Pb 0 − 0.632 0.551 − 0.266
Cd 0.362 0.552 0.218 − 0.214
Eigenvalue 1.7575 1.1909 1.0731 0.8590

Proportion of variance (%) 44.126 20.263 16.449 10.543

Cumulative proportion (%) 44.126 64.389 80.838 91.381
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work, the pH values varied between 7.17 and 8.63, and
the mean value is 7.58 for the aquatic environment. All
water samples showed neutral to slightly alkaline pH
level, and no contamination by acidic pollutants was
noted. S8 had high concentrations of As, Hg, and Cr;
S4 had high concentrations of Cu; S1 and S2 had high
values of Pb; and S5 and S7 had high concentrations of
Zn and Cd, respectively. According to the mean

concentrations in the water samples, the metals followed
this decreasing order of concentration: Cu > Zn > Pb >
Cr > Cd > As > Hg. All of them met the water quality
standard of GB3838–2002 grade III. The mean concen-
tration of HMs and their spatial distribution patterns
along the sample sites are displayed in Figs. 4 and 5,
respectively. As can be seen in Fig. 4, the concentration
of Cd in the studied samples was less than 0.0095 mg/
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Fig. 6 Clustering tree of the HMs based on different methods
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Fig. 7 Principal component analysis of HMs concentrations in aquatic environment
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L, with the mean value being 0.0011 mg/L. The com-
mon sources of Cd in the aquatic environment are the

burning of fossil fuels, wastewater from industrial and
urban effluence, and agriculture activities. The Cr level
mainly ranged from 0.0028 to 0.0050 mg/L, with a
mean of 0.0033 mg/L; hence, it did not exceed the
permissible limit of grade III water quality of
0.0050 mg/L. In terms of As concentration, it ranged
from 0.0001 to 0.0018 mg/L, with a mean of
0.0007 mg/L. Located downstream of the river, S7 and
S8 showed relatively high values of Cd, Cr, and As. As
illustrated in Fig. 5, the concentration of Cu was within
the permissible limit of l.0 mg/L. A high Cu concentra-
tion was observed at S2 and S4, possibly because of the
presence of copper bucket industries in these two areas.
Meanwhile, Zn is an important micronutrient for ensur-
ing proper metabolic processes in living organisms.
However, high Zn levels could exert a negative impact

Table 4 Description of the mean CDI and HQ for adult and children
through ingestion

HMs CDI (adult) CDI (children) HQ (adult) HQ (children)

As 2.36E−05 3.33E−05 0.079 0.111

Hg 4.79E−06 6.74E−06 0.012 0.017

Cu 1.63E−03 2.29E−03 0.041 0.057

Zn 1.18E−03 1.66E−03 0.004 0.006

Cd 3.58E−05 5.04E−05 0.072 0.101

Pb 3.14E−04 4.42E−04 0.224 0.316

Cr 1.10E−04 1.55E−04 0.074 0.104

Fig. 8 Solutions of HPI along the
sampling sites
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(a)As-Adult

(c)Hg-Adult

(e)Cr-Adult

(b)As-Children

(d)Hg-Children

(f)Cr-Children

(g)Cu-Adult (h)Cu-Children

Fig. 9 Distribution of hazard quotient (HQ) indices of HMs in the aquatic environment
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(i)Pb-Adult

(k)Zn-Adult

(m)Cd-Adult

(j)Pb-Children

(l)Zn-Children

(n)Cd-Children

Fig. 9 (continued)
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on such processes, especially from a long-term perspec-
tive. In the study area, the average concentration of Zn
was 0.284 mg/L, which was within the safe limit. S5
showed higher Zn levels than the other sites. As for Pb
contamination, its concentration ranged from 0.007 to
0.011 mg/L, with a mean of 0.0094 mg/L. The major
source of Pb contamination was identified to be anthro-
pogenic activities. For example, the extensive applica-
tion of fossil fuels in thermal power plants might lead
to high Pb contaminations in S1 and S2. The concen-
trations of heavy metals are directly influenced by the
nearby industrial activities.

Table 2 presents the correlation matrix for heavy metals.
Pearson’s correlation analysis indicated that the correlations be-
tween different HMs were weak and not significant (p > 0.05),
except for As and Cr. The poor correlations might be due to the
geochemical behaviors of the parameters and the differences in
the sources of HMs, implying that non-point sources exhibited
strong contamination characteristics, such as contamination dis-
tributing disperses, component complexities, and contamination
approach diversity. Additionally, CA was conducted to classify
the HMs in the surface water dataset. Multiple tools, including

the complete method, average method, ward method, and cen-
troid method, were applied to visualize this process. The corre-
sponding results are displayed in Fig. 6. The results showed that
regardless of the model used, the two major clusters were (1) Pb
Cr Cd As Hg and (2) Cu Zn. Moreover, PCA was used to
conduct composition analysis, as it could help reduce the dimen-
sion of multivariate data and provide useful information associ-
ated with the significant parameters present in the whole dataset.
Hence, its application greatly reduces the complexities of the
evaluation framework. Four principal components explained
91.381% of the total variance (Table 3 and Fig. 7), with
44.126%, 20.263%, 16.449%, and 10.543% of the variance ex-
plained by Comp. 1, Comp. 2, Comp. 3, and Comp. 4, respec-
tively. Comp. 1 loaded strongly onAs, Hg, Cr, and Zn, and these
metals were mostly from natural sources and industry activities.
Comp. 2 was mainly composed of Cu, Pb, and Cd possibly
because of the extensive utilization of fossil fuels and wastewater
emissions. Comp. 3 exhibited high loadings of Cu because of the
copper bucket industries around this river. Comp. 4 showed high
loadings of Hg and Cr, from natural sources. The above results
indicate the sources of the seven heavy metals and their
interrelations.

Table 5 Carcinogenic risks As,
Cd, and Cr for adult and children
through ingestion

Sites As (adult) Cd (adult) Cr (adult) As (children) Cd (children) Cr (children)

S1 1.400E−05 7.306E−05 7.472E−06 1.972E−05 1.029E−04 1.052E−05
S2 1.311E−05 7.089E−05 7.300E−06 1.847E−05 9.984E−05 1.028E−05
S3 1.267E−05 7.111E−05 7.204E−06 1.784E−05 1.002E−04 1.015E−05
S4 1.511E−05 6.633E−05 7.407E−06 2.128E−05 9.343E−05 1.043E−05
S5 1.622E−05 6.356E−05 7.267E−06 2.285E−05 8.951E−05 1.023E−05
S6 1.844E−05 6.417E−05 7.094E−06 2.598E−05 9.038E−05 9.992E−06
S7 1.422E−05 1.058E−04 7.363E−06 2.003E−05 1.490E−04 1.037E−05
S8 2.222E−05 5.755E−05 7.772E−06 3.130E−05 8.106E−05 1.095E−05

Fig. 10 Distribution of carcinogenic risk (CR) indices of As, Cd, and Cr in the aquatic environment
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HPI analysis

PIs, such as the HPI, were evaluated for different sampling sites
in the aquatic environment. The results are displayed in Fig. 8.
All of these HPI values were significantly higher than the critical
level (i.e., 100), thus implying that this aquatic environment was
contaminated by multiple HMs. High HPI values were observed
in S5, S6, and S8while lowHPI values were noted in S1 and S2.
Hence, the upper and middle parts of this river had high contam-
inations while the downstream of this river had slight loadings.
This result might be attributed to a large number of production
and living activities upstream and dilution and flushing effect by
the natural discharge of the river.

Potential risk assessment for human health

HMs are potentially harmful to human health, and HQ could
be used to assess the risks of chronic health through the in-
gestion of water. CDI represents the daily exposure of the
population to HM contaminations in mg/kg-day. The descrip-
tions of the mean CDI and HQ for adults and children through
ingestion are presented in Table 4. The CDI values in both
groups showed that water was Cu > Zn > Pb > Cr > Cd > As>

Hg type, with Cu in the highest CDI value (1.63E–0.3 for
adults and 2.29E−0.3 for children) among all metals.
Figure 9 illustrates the distribution of HQ values of HMs with
consideration of the two receptors (i.e., adults and children).
The HQ values of all sampling sites were below 1 and ranged
from 0.48 to 0.74, which indicated a low non-carcinogenic
hazard. The results showed that the sampling sites in this study
area followed the decreasing order of HQ values: S7 > S8 > S1
> S6 > S4 > S2 > S5 > S3. Such a tendency revealed that the
HQ value in the northern section of the aquatic environment
was significantly higher than that in the southern and central
sections. Additionally, HMs followed the decreasing order of
HQ values: Pb >As > Cr > Cd > Cu > Hg >Zn. The total HQ
value for children reached 5.69, which was 1.65 times higher
than that for the adults. In terms of different HMs, Pb
(0.224 mg/kg-day for adult and 0.316 mg/kg-day for children)
had the greatest health risk with a total HQ value of 2.53,
especially in S1, followed by As (0.079 mg/kg-day for adults
and 0.111 mg/kg-day for children) with a total HQ value of
0.89, especially in S8. Thus, these two pollutants should be
controlled for the purpose of public safety.

Among these HMs, As, Cd, and Cr pose significant carcino-
genic risks to the public. As shown in Fig. 10 and Table 5, the
carcinogenic risk of Cdwas the highest, especially in S1, S3, and
S7, with some values exceeding 1 × 10−4 for adults and children.
These values indicated unacceptable carcinogenic risks. The CR
values of other metals (i.e., As and Cr) for all populations were
between 1 × 10−6 and 1 × 10−4, implying acceptable or tolerable
carcinogenic risks. Although the insignificant carcinogenic risks
posed to the public are insignificant, decision-makers should pay
attention particularly to children because most values exceeded
1 × 10−5. Additionally, the sampling sites followed the decreas-
ing order of CR values: S7 > S1 > S2 > S3 > S6 > S4 > S8 >S5.
This result is due to S7 comprising many industries, which gen-
erate wastewater that could increase HM concentrations. For
example, Cd emitted from industrial activities might enter the
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Fig. 11 Variations in hazard
quotient and carcinogenic risk
along the sampling sites

Table 6 Parameters of the model for probabilistic risk assessment

Parameters Unit Mean Minimum Maximum

DI (adult) L/day 2.0 1.5 3.2

DI (children) L/day 0.6 0.5 1.5

BW (adult) kg 61.0 60.0 64.3

BW (children) kg 18.2 14.2 22.9

SF-Cd mg/(kg-day) 1.3 0.5 6.1

SF-Cr mg/(kg-day) 23.0 15.0 41.0

SF-As mg/(kg-day) 2.2 1.5 15.0
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aquatic environment through atmospheric sedimentation and sur-
face runoff, eventually enriching the sedimentation environment.
Generally, variations in hazard quotient and carcinogenic risk
along the sampling sites are illustrated in Fig. 11.

Uncertainty analysis

Uncertainty, especially as stochastic property, extensively ex-
ist in the water quality evaluation framework. In this study, the
Monte Carlo simulation method as a widely used tool is ap-
plied for better understanding the variations in carcinogenic
risk, during which the majority of parameters were assumed as
triangular distributions (Table 6). For example, the concentra-
tions of As, Cd, and Cr are presented as a triangular

distribution with determining their maximum, minimum, and
mean values as shown in Table 1.

Figures 12, 13 and 14 show the probability distributions of
the carcinogenic risks of As, Cd, and Cr for adults and chil-
dren. With regard to these two populations, the CR values
followed the order Cd > As > Cr. The Monte Carlo results
revealed that regardless of the quantile considered, the CR
value of Cd was significantly higher than 1 × 10−4, even
reaching 7.3 × 10−4 for children under the 90th quantile
(Table 7). In terms of As, its mean carcinogenic risks were
0.8 × 10−4 and 1.2 × 10−4 for adults and children, respectively.
Their resulting 90th quantile values respectively reached
1.1 × 10−4 and 1.7 × 10−4 (Table 7), thus exceeding 1 × 10−4

and indicating obvious carcinogenic risks for both popula-
tions. Relative to those of Cd and As, all CR values of Cr

Table 7 Quantile statistics of carcinogenic risks for adult and children

Quantile Cd (adult) Cd (children) As (adult) As (children) Cr (adult) Cr (children) Total (adult) Total (children)

10% 1.90E−04 2.50E−04 6.00E−05 7.00E−05 1.20E−05 4.20E−05 2.90E−04 3.80E−04
20% 2.20E−04 2.90E−04 6.00E−05 9.00E−05 1.30E−05 4.60E−05 3.30E−04 4.40E−04
30% 2.40E−04 3.30E−04 7.00E−05 1.00E−04 1.40E−05 5.00E−05 3.60E−04 4.90E−04
40% 2.70E−04 3.70E−04 8.00E−05 1.00E−04 1.40E−05 5.30E−05 3.90E−04 5.40E−04
50% 3.00E−04 4.10E−04 8.00E−05 1.10E−04 1.50E−05 5.70E−05 4.20E−04 5.90E−04
60% 3.30E−04 4.60E−04 9.00E−05 1.20E−04 1.60E−05 6.00E−05 4.50E−04 6.50E−04
70% 3.60E−04 5.20E−04 9.00E−05 1.40E−04 1.70E−05 6.40E−05 4.90E−04 7.10E−04
80% 4.10E−04 6.00E−04 1.00E−04 1.50E−04 1.90E−05 6.90E−05 5.40E−04 7.90E−04
90% 4.90E−04 7.30E−04 1.10E−04 1.70E−04 2.00E−05 7.60E−05 6.20E−04 9.30E−04
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Fig. 12 Probability distributions of As carcinogenic risk for adult and children
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were below the risk threshold, with the mean carcinogenic
risks being 0.16 × 10−4 and 0.58 × 10−4 for adults and chil-
dren, respectively. In addition, the total carcinogenic risks
respectively reached 4.4 × 10−4 and 6.3 × 10−4 for adults and
children on average (Fig. 15). Their corresponding 90th
quantile values changed to 6.2 × 10−4 and 9.3 × 10−4. Cd con-
tributed over 70% to the total carcinogenic risk, followed by
As (above 19%). Moreover, sensitivity analysis indicated that

daily ingestion and slope factors exerted significant impacts
on the total carcinogenic risk as they accounted for 40.8% and
− 35.5% of the total, respectively (Fig. 16). The results also
indicated that the concentration of Cd in S7 had a moderate
impact (i.e., 13.1%) on the total carcinogenic risk; the other
was mostly contributed by body weight (i.e., − 7.9%). In gen-
eral, uncertainties relative to modeling parameters exerted sig-
nificant effects on the final CR solutions. A high quantile
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corresponded to a high CR value and a low standard-reaching
rate; conversely, a low quantile led to a low CR value and then
to a high probability of acceptable risks. These results could
help decision-makers coordinate the conflict interaction be-
tween carcinogenic risks and system reliability.

Actually, each step of health risk assessment is full of un-
certainty. In this study, majority of parameters for carcinogen-
ic risk are taken into consideration. Surely, the overall effects
of other coefficients and risk assessment kinds may hardly be
ignored. Moreover, the steps and evaluation criterion of health
risk assessment are recommended by the U.S. EPA. Although
parameter values are scientifically based on statistics of a large
amount of toxicological experiments, they are not absolutely
suitable for all case studies from different countries. It is thus
desired that a new system for health risk assessment of our
own country should be developed as soon as possible, which
is applicable to local conditions.

Conclusions and recommendations

This study proposes an evaluation framework for characteriz-
ing and quantifying the sources and contamination degrees of
heavy metal contamination in the North Canal of Fengtai
District, China. The framework could exhibit the impacts of
heavy metals on human health and their relationships with
uncertainties by integrating multidisciplinary approaches, in-
volvingmultivariate statistical method, health risk assessment,
and uncertainty analysis. Results indicated that (1) the down-
stream of the river had higher concentrations of Cd, Cr, and
As; sources of Cd were identified as domestic and industrial
wastewater, consumption of fossil fuels, as well as agriculture
activities; (2) Pearson’s correlation analysis revealed that the
correlations between different HMs were weak and not signif-
icant (p > 0.05), except for As and Cr, which was mostly
owing to geochemical behaviors of parameters and

Fig. 16 Sensitivity analysis of the
total carcinogenic risk
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differences in sources of heavy metals. There were two major
clusters: Pb Cr Cd As Hg and Cu Zn; (3) principal component
analysis showed that four principal components were given to
explain 91.381% of the total variance. Solutions from HPI
values presented that they were significantly higher than the
critical level, especially in S5, S6, and S8, implying that this
aquatic environment has been contaminated bymultiple HMs;
(4) health risk assessment demonstrated that all HQ values in
each sampling sites ranged from 0.48 to 0.74, representing a
low non-carcinogenic hazard; and HQ value in the northern
section of the aquatic environment was significantly greater
than that in the southern and central sections. The highest
carcinogenic risk was from Cd in S1, S3, and S7with unac-
ceptable carcinogenic risks. The CR values of As and Cr were
lower than acceptable carcinogenic risks; (5) uncertainty anal-
ysis disclosed that a low quantile led to a low CR value, and
then to a high probability of the acceptable risk. Conversely, a
higher quantile corresponded to a higher CR value and a lower
standard-reaching rate. These results could help decision-
makers coordinate the conflict interaction between carcino-
genic risk and system reliability. Sensitivity analysis indicated
that both daily ingestion and slope factors had significant im-
pacts on the total carcinogenic risk, accounting for 40.8% and
− 35.5%, respectively.

As multiple complicated characteristics were merged into
the evaluation framework, difficulties emerged with regard to
addressing the evaluation issues exclusively on the basis of
mathematical approaches, particularly when uncertainties
were considered in the decision-making process. Although
all the concentrations of HMs met the standard of GB3838-
2002 grade III, their carcinogenic risks and other pollutants
should attract the attention of decision-makers. Some effective
management measures should also be taken to ensure water
safety. For example, regulation of pollutant sources (Wang
et al. 2015), and development of advanced technologies for
treating wastewater in municipal wastewater treatment plants.
Any human activities within the areas with higher environ-
mental risks (i.e., S7 and S8) should be also prohibited to
the most extent.

The specific recommendations of this work could be sum-
marized as follows. Firstly, thorough investigations are obvi-
ously needed. With respect to the upstream performances be-
ing significantly better than the downstream performance, the
junction of S1, S5, and S2 should be studied with a focus on
the key pollutant discharging enterprises along the river. The
objective is to identify explicitly the channels and patterns of
pollutant discharge, which could lay the foundation for the
diversion of rain and wastewater. Secondly, remediation re-
quires unification. Local governments should construct infra-
structure and protection facilities to protect water resources.
To ensure water quality and water supply to the river, they
should conduct sewage interception that will prevent second-
ary pollution. Thirdly, supervision should also be

strengthened through the enforcement of environmental laws
and regulations, particularly those pertaining to illegal activi-
ties. It is also required to strengthen identification of risk
sources, assessment of environmental risks, and disposal of
emergency. Finally, publicity and education for local people
should be improved by emphasizing the significance of the
health and biodiversity of the ecosystem (Zhang et al. 2017).

Two concerns should be addressed in future studies. On the
one hand, this study only assesses seven heavy metals, prob-
ably leading to an unrealistic state of heavy metal contamina-
tion in the aquatic environment. Therefore, more heavy metal
types should be integrated into the improved evaluation
framework to comprehensively reflect the real status of heavy
metal contamination. On the other hand, in most cases, there
might be more uncertain information (e.g., interval and fuzzy
parameters) associated with the modeling inputs. Future stud-
ies will be required to deal with the impacts of multiple un-
certainties on the health risks of heavy metals.
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