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Abstract
Many indices are used to monitor drought events. However, different indices have different data requirements and applications.
Hence, evaluating their applicability will help to characterize drought events and refine the development of effective drought
indices. We constructed different drought indices based on multisource remote sensing data and comprehensively evaluated and
compared their applicability for drought monitoring throughout China. The characteristics of drought events in 2009 and 2011
were compared using various drought indices. The different time scales of the Palmer Drought Severity Index (PDSI) and the
Standardized Precipitation Index (SPI) were used to evaluate remote sensing drought indices in different regions. Single drought
indices, including the Vegetation Condition Index (VCI), the Temperature Condition Index (TCI) derived from Moderate
Resolution Imaging Spectroradiometer (MODIS) data, the Precipitation Condition Index (PCI) derived from Tropical Rainfall
Measurement Mission (TRMM) data, and the TCI and Soil Moisture Condition Index (SMCI) derived from Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data, as well as combined drought indices,
including the Microwave Integrated Drought Index (MIDI), Optimized Vegetation Drought Index (OVDI), Optimized
Meteorological Drought Index (OMDI), Scale Drought Conditions Index (SDCI), and Synthesized Drought Index (SDI), were
analyzed and compared to evaluate their applicability. The results showed that different drought indices have specific charac-
teristics under different land use types in China. The VCI and TCI can better monitor long-term drought conditions, but they have
a weak correlation with the in situ drought index in forestland and grassland areas. The correlation of SPI-1 with the PCI is higher
than that with other single indices, which indicates that the PCI is a good short-term drought index. The SMCI has a better
correlation with the short-term in situ drought index, but it is not conducive to drought monitoring in areas such as densely
forested land and grassland. The correlations of the in situ drought index with the combined drought indices (the MIDI, OVDI,
OMDI, SDCI, and SDI) are better than those with the single drought indices.

Keywords Remote sensing . Drought monitoring . Combined drought index . Comparative evaluation . China

Introduction

Drought is one of the most harmful natural disasters in the
world (Hagman 1984; Huang et al. 2006). Frequent and
prolonged periods of droughts result in not only considerable
economic losses but also severe social and environmental
problems (Halwatura et al. 2017; Trenberth et al. 2003).
Drought is usually classified into four types: meteorological
drought, agricultural drought, hydrological drought, and so-
cioeconomic drought (Dracup et al. 1980; Orville 1990).
Meteorological drought is caused by a lack of precipitation
that leads to abnormal water shortages caused by an imbalance
between precipitation and evaporation. Agricultural drought
leads to a lack of water available for plant growth; consequent-
ly, due to the influences of various external factors, the water
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absorption and consumption of plants become imbalanced.
Hydrological drought refers to a deficient supply of surface
water and groundwater. Finally, socioeconomic drought refers
to the water supply being insufficient to meet the needs of
economic interests; hence, the cause of socioeconomic
drought is an imbalance between the supply and demand of
water resources in both the natural system and the human
socioeconomic system. With the increasing severity, period-
icity, randomness, and regional nature of drought and the ris-
ing frequency and impacts of drought in recent decades, re-
search on drought has become increasingly important world-
wide (Hayes et al. 1999; McKee et al. 1993), particularly with
regard to drought indices (Keyantash and Dracup 2004;
Wilhelmi and Wilhite 2002). Given the above, the timely
and accurate monitoring of drought conditions using various
drought indices is essential.

Drought indices are established to monitor drought by in-
tegrating weather variables such as precipitation, evapotrans-
piration, and temperature (Hao and Singh 2015; Jiao et al.
2019a; Wang et al. 2012). Drought indices based on meteoro-
logical data derived from meteorological stations are particu-
larly effectively at monitoring drought. For example, the
Palmer Drought Severity Index (PDSI) (Palmer 1965),
Standardized Precipitation Index (SPI) (McKee et al. 1993),
and Standardized Precipitation Evapotranspiration Index
(SPEI) (Vicente-Serrano et al. 2010) are widely used for mon-
itoring meteorological drought. Among these indices, the SPI
is the most widely used and accepted by the scientific com-
munity (Hayes et al. 1999; Park et al. 2017; Zhang and Jia
2013) and is often used to evaluate the precision of other
indices because of the simplicity of its theory and calculation
process (McKee et al. 1993; Park et al. 2017). The SPI can be
calculated flexibly at different time scales (e.g., 1, 2, 3, 6, 9,
12, and 24 months) according to the user’s needs for monitor-
ing meteorological, agricultural, or hydrological drought
(Guttman 1999). However, ground-based observation sites
cannot offer data with continuous spatial coverage, limiting
the ability to monitor the regional spatial pattern of drought
conditions in detail, especially in areas with sparse weather
stations or high spatial variability (Karnieli et al. 2010; Rhee
et al. 2010).

Drought monitoring based on remote sensing data can
overcome the abovementioned challenges involved in
collecting ground observation data and can be used to contin-
uously monitor the processes of and changes in drought across
both time and space (Hao et al. 2015). Moreover, a drought
index based on remote sensing data can capture spatial details,
making it the most promising tool for regional-scale drought
monitoring. Remote sensing technology makes it possible to
monitor the soil moisture and vegetation status over a large
area (Rhee et al. 2010; Wu et al. 2013; Zhang et al. 2017).
Thus, with the development of remote sensing technology,
numerous types of remote sensing data have been made

available and have become an important data source for
large-scale drought monitoring (Rhee et al. 2010).
Consequently, several remote sensing-based drought indices
have been established in a variety of disciplines. In recent
years, with rapid technological developments, satellite mea-
surements of solar-induced chlorophyll fluorescence (SIF),
the energy that is re-excited after the absorption of light by
vegetation during photosynthesis, has become an effective
method for the global monitoring of photosynthesis
(Frankenberg et al. 2011; Guanter et al. 2014). SIF is directly
related to the photosynthetic rate of vegetation and can quick-
ly reflect the impact of water stress on vegetation growth (Jiao
et al. 2019c; Meroni et al. 2009; Wang et al. 2016).
Accordingly, many researchers have evaluated the ability of
SIF to monitor and assess drought (Sun et al. 2015). In addi-
tion, on the basis of the Normalized Difference Vegetation
Index (NDVI), Badgley et al. (2017, 2019) proposed the
near-infrared reflectance of vegetation (NIRv), the value of
which is equal to the product of the near-infrared ground re-
flectance and NDVI. To a certain extent, NIRv takes into
account the proportions of the reflectance from vegetation
and soil in a pixel. Systematic studies have found that NIRv
is highly consistent with SIF, photosynthetically active radia-
tion components, and gross primary productivity (GPP).
Moreover, the vegetation optical depth (VOD) indicator is
closely related to the vegetation moisture content (Owe et al.
2008; Song et al. 2019) and thus has been widely used in
drought monitoring research (Jackson and Schmugge 1991;
van Dijk et al. 2013), while the vapor pressure deficit (VPD) is
closely related to the joint mechanism of plant photosynthesis
and transpirat ion (Buckley 2019; Kimball 2016;
Manderscheid et al. 2016). Kogan (1995) obtained the
Vegetation Condition Index (VCI) by scaling the NDVI value
from 0 to 1 and using the maximum and minimum NDVI
values for each location. At the same time, Kogan (1995)
established the Temperature Condition Index (TCI) through
determining the weight of the NDVI in the same way. Zhang
and Jia (2013) used remote sensing data from the Tropical
Rainfall Measurement Mission (TRMM) and the Advanced
Microwave Scanning Radiometer for the Earth Observing
System (AMSR-E) to construct the Precipitation Condition
Index (PCI) and Soil Moisture Condition Index (SMCI) and
used these indices to monitor the drought conditions in north-
ern China. Rhee et al. (2010) comprehensively used land sur-
face temperature (LST), NDVI, and TRMM precipitation data
to propose the Scale Drought Conditions Index (SDCI), which
is suitable for both arid and humid regions through a weighted
combination, and successfully monitored agricultural drought
in North Carolina and South Carolina in the USA. Du et al.
(2013) used LST, NDVI, and TRMM precipitation data to
obtain the TCI, VCI, and PCI and the integrated PCI, TCI,
and VCI by using principal component analysis (PCA) to
construct the Synthesized Drought Index (SDI) and applied
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them to drought monitoring in Shandong Province, China,
where good drought monitoring results were obtained.
Zhang and Jia (2013) used the empirical weighting method
to combine the TCI, PCI, and SMCI to establish the
Microwave Integrated Drought Index (MIDI) and monitor
meteorological drought in northern China. Hao et al. (2015)
introduced constrained optimization methods to combine the
VCI, TCI, PCI, and SMCI into an Optimized Vegetation
Drought Index (OVDI) and an Optimized Meteorological
Drought Index (OMDI) and used these two indices to monitor
agricultural drought in Southwest China; these indices, which
are mainly calculated by remote sensing data or provided as
products, have become the most important source of informa-
tion for drought monitoring. Zhang et al. (2017) designed a
Process-based Accumulated Drought Index (PADI) based on
precipitation, soil moisture, and vegetation conditions and
comprehensively considered drought development and crop
phenology in an agricultural drought assessment. Jiao et al.
(2019b) used a geographically weighted regression (GWR)
model and PCA to synthesize the TCI, VCI, PCI, and SMCI
and proposed the station-enabled Geographically Independent
Integrated Drought Index (GIIDI_station). Liu et al. (2020)
used multivariate linear regression methods (MCDI) to com-
bine the TCI, VCI, PCI, and SMCI. Wei et al. (2020) used the
PCI, VCI, and TCI to construct the Temperature Vegetation
Precipitation Dryness Index (TVPDI) through the spatial dis-
tance method.

In recent decades, the international research community
has displayed growing interest in the comparison of drought
indices (Dubovyk et al. 2019; Seiler et al. 1998; Zhou et al.
2012). Since different data requirements are imposed on the
establishment of different drought indices, different ap-
proaches for quantifying drought exhibit different
characteristics, and different drought indices are suitable for
different situations. Therefore, the comparative analysis of
drought indices is very important for different regions. Many
scholars have compared and analyzed the advantages and
disadvantages of drought indices according to different
perspectives, applications, and methods. Gitelson et al.
(1998) studied the applicability of the VCI and TCI in
Poland, and the results showed that the average error of the
TCI was better than that of the VCI in terms of crop yield.
Seiler et al. (1998) verified the TCI and VCI in drought-
affected areas in Argentina and found that they were in good
agreement with precipitation. Singh et al. (2003) used the TCI
and VCI for drought monitoring in India and found that the
VCI was not suitable for drought monitoring therein.
Bayarjargal et al. (2006) compared the VCI, TCI,
Standardized Vegetation Index (SVI), Normalized
Difference Vegetation Index Anomaly (NDVIA), ratio of
LST to NDVI (LST/NDVI), and Drought Severity Index
(DSI) in Mongolia, and a comparative study was conducted
in the region; the results showed that these different drought

indices have different characteristics and different accuracies.
Bhuiyan et al. (2006) compared the SPI, VCI, and
groundwater index of northern India and found that the VCI
was related only to the meteorology and hydrology and thus
provided better meteorological drought monitoring results.
Quiring and Ganesh (2010) compared the VCI with the in situ
meteorological drought index for 254 counties in Texas and
found that counties in northwestern and southwestern Texas
have more significant correlations than counties in the east
and along the Gulf Coast. Shahabfar et al. (2012) used corre-
lation analysis to compare four remote sensing indices and
five water balance parameters to analyze the applicability of
remote sensing indices in different climatic regions of Iran.
Zhou et al. (2012) compared the VCI and TCI with the
Percentage of Average Seasonal Greenness (PASG),
Percentage of Precipitation Anomalies (PPA), and SPI per-
centages in the central eastern region of China. Dubovyk
et al. (2019) used the 0.5° spatial resolution monthly standard
meteorological index and 1 km Vegetation Health Index
(VHI) products to analyze the consistency of these drought
indices with the vegetation conditions in Kazakhstan derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) Enhanced Vegetation Index (EVI). Pouya et al.
(2020) compared the applicability of three different indicators
of agricultural drought in Iran and showed that the
Multivariate Standardized Precipitation Index (MSPI) can be
used for monitoring agricultural drought.

In China, long-term and high-frequency droughts greatly
affect food security and economic development (Yuan et al.
2015). In severe cases, these droughts may even cause famine
and affect social stability, among other problems. According
to the National Bureau of Statistics of China (NBSC 2009), a
total of 26 provinces (autonomous regions and municipalities)
in the country experienced drought problems in 2009, and the
land area affected by crops reached 29,258.80 × 103 hm2, of
which the area affected by disasters and the area without a
crop harvest reached 13,197.10 × 103 hm2 and 326.88 × 103

hm2, respectively; the annual amount of food loss reached
34.849 × 108 kg, and the economic crop loss amounted to
43.344 × 108 yuan with a direct economic loss of 120.659 ×
108 yuan. In addition, during the drought disaster that oc-
curred in 2011, approximately 60% of the area was affected
by natural disasters (NBSC 2011). Because economic losses
caused by drought account for 35% of the total losses from
various natural disasters, the two drought disasters that im-
pacted China in 2009 and 2011 were selected to investigate
the spatial variations of numerous drought indices.

The purpose of this research is to study drought indices
based on multisource remote sensing data. Accordingly, a
variety of typical drought monitoring indices (VCI, TCI,
PCI, SMCI, SDCI, SDI, MIDI, OVDI, and OMDI) were con-
structed based onmultisource remote sensing data to study the
drought situation in China. We studied the spatial distribution
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patterns and evolutionary characteristics of typical drought
events in China to obtain a better understanding of the region-
al differentiation of drought conditions throughout the coun-
try. We comprehensively evaluated the applicability of differ-
ent indices to monitoring the drought environment in China
and compared the characteristics of the different drought indi-
ces (Table 1).

Study area and data

Study area

The scope of this study covers the entire China. China spans
3°51′ N–53°34′ N in latitude and 73°29′ E–135°04′ E in lon-
gitude, covering an area of about 9.6 × 106 km2 (Fig. 1a).
China includes 34 provinces (cities, autonomous regions),
and the main land use types include forestland (24%), grass-
land (31%), water area (3%), construction land (2%), cultivat-
ed land (19%), and unutilized land (21%) (He et al. 2017).
Cultivated land is mainly distributed in the northeast and cen-
tral part, forestland is mainly distributed in northeast and south
China, grassland is mainly distributed in the Inner Mongolia
and Qinghai-Tibet Plateau, and unutilized land is mainly dis-
tributed in the northwest. In recent years, China has experi-
enced severe short-term (monthly to quarterly) droughts
(Wang et al. 2011; Feng et al. 2014), which leads to the in-
creased threat of arable land drought (Piao et al. 2010). In
order to better control the drought situation in China, it is
necessary to carry out drought monitoring research in China.

Data and processing

Remote sensing data

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is one of the most important sensors developed by
the National Aeronautics and Space Administration (NASA)
on the Terra and Aqua satellites. MODIS data products are
updated in a timely manner. We downloaded two MODIS
land products from 2002 to 2011 (http://search.earthdata.
nasa.gov/search). Twenty-two tiles (h23v04, h23v05,
h24v04, h24v05, h25v03, h25v04, h25v05, h25v06,
h26v03, h26v04, h26v05, h26v06, h27v04, h27v05,
h27v06, h28v05, h28v06, h28v07, h28v08, h29v06,
h29v07, h29v08) were used to cover the study area.
MOD11A2 daytime surface temperature (LST) product data,
with a time resolution of 8 days and a spatial resolution of
1 km, were used. The maximum value method was used to
synthesize the 8-day LST product into monthly data for cal-
culating TCI. The NDVI data of MODD13A2 and
MYD13A2 were used in this study, which have a time reso-
lution of 16 days and a spatial resolution of 1 km. The

MOD13A2 product starts on the first day of each year, and
the MYD13A2 product starts on the 9th day of each year. The
NDVI data are preprocessed and then processed into monthly
data using the maximum value synthesis method for calculat-
ing VCI. The coverage is the same as the LST data, with a total
of 22 images.

The TRMM satellite was launched in November 1997, and
since then, several algorithms have been developed to esti-
mate rainfall (Iguchi et al. 2000). In this study, the monthly
precipitation products of TRMM (3B43) from 2002 to 2011
were downloaded, with a spatial resolution of 0.25° × 0.25°,
expressed in monthly precipitation (mm/h), and the storage
format is HDF. The data coverage is between 50°S~50°N
and 180°W~180°E. We used ENVI software and ArcGIS
software to transform and project TRMM (3B43) products
for PCI calculation. Since there are no data for the area north
of 50°N in China, Climatic Research Unit (CRU) data were
used for extrapolation (Wei et al. 2020). TRMM (3B43) data
are from the NASA Data and Information Service Center
(DISC) (http://mirador.gsfc.NASA.gov/).

The soil moisture (SM) and LST data were jointly devel-
oped by the Amsterdam Vrije University and NASA Goddard
Space Flight Center (VUA-NASA) based on the descent pat-
tern of the Aqua satellite (Njoku et al. 2003; Owe et al. 2008).
The Land Parameter RefutationModel (LPRM) was proposed
and launched in May 2002. The AMSR-E has two polariza-
tion modes: horizontal polarization and vertical polarization.
There are 6 bands in the 6.9–89 GHz range and 12 channels in
total (Kawanishi et al. 2003; Parkinson 2003), with a spatial
resolution of 0.25° × 0.25°. AMSR-E L3A soil moisture data
were obtained from an official inversion of 6.9 GHz and
10.7 GHz, which was used to calculate the SMCI. The inver-
sion instructions and methods can be obtained free of charge
from the NASA website (Bindlish et al. 2003). The LST data
are the AMSR-E L3 data obtained from the 37 GHz vertical
polarization brightness temperature and were used to calculate
TCI_VUA. The VUA-NASA SM/LST dataset has been in-
tensively validated in multiple regions (De Jeu et al. 2008;
Draper et al. 2009; Parinussa et al. 2008). The VUA-NASA
products are in good agreement with the in situ SM/LST mea-
surement results and have a strong correspondence with tem-
poral and spatial precipitation.

Climatic research unit data

The CRU high-resolution gridded dataset is one of the most
widely used near-surface climate datasets in the world (Harris
et al. 2014). The CRU dataset contains climate variables such
as the average temperature, daily temperature range, precipi-
tation, water vapor pressure, and cloud cover. In CRU_ts4.03,
the time coverage of the data is 1901–2018, and the spatial
resolution is 0.5° × 0.5°. This study used the monthly average
precipitation data in the CRU_ts4.03 dataset to calculate
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China’s SPI, and the time coverage is from 1960 to 2011. This
study also used the product data of CRU_scPDSI; the time
coverage is 1960–2011, and the spatial resolution is 0.5° ×
0.5°. These data were used to verify the drought index.
Figure 1b shows the grid point distribution.

Measured precipitation data

The monthly precipitation and evapotranspiration data from
2002 to 2011 are from the China Meteorological Data
Network (http://data.cma.cn/), and they include observation
records from national and local weather stations (450 in
total) (Fig. 1c). These data were used to calculate the SPI
and SPEI to determine the weights of the OMDI and OVDI
(Hao et al. 2015).

Other data

The spatial resolution of the digital elevation model (DEM)
data is 1 km × 1 km, and the data were from the geospatial data
cloud platform (http://www.gscloud.cn) and stitched together
after downloading.

The land use data are based on the current land use classi-
fication standard (GB/T21010-2011) combined with the actu-
al situation in China; after visual interpretation, land use was
divided into forestland, grassland, water areas, cultivated land,

construction land, and unutilized land (He et al. 2017). The
classification results are verified with reference to Google
Earth high-resolution remote sensing images and GPS field
survey samples to meet research needs. The data come from
the website of the Resource and Environmental Science Data
Center of the Chinese Academy of Sciences (http://www.
resdc.cn/data.aspx?DATAID=97), and the spatial resolution
is 1 km.

Method

In situ drought indices

The SPI is the most widely used and recognized index in
drought monitoring, and it is usually used to verify other in-
dices (Um et al. 2018; Park et al. 2017; Zhang and Jia 2013).
The SPI was developed by McKee et al. (1993) to quantify
precipitation over multiple time scales. This index requires
long-term precipitation records, and the recommended
drought monitoring period is at least 50 years (Guttman
1999). Since the calculation of the SPI is based on observa-
tions from stations, the spatial distribution of the SPI is affect-
ed by the density and distribution of stations. In this study, the
basic SPI data were improved, and CRU grid data were used
to capture spatial details. Monthly precipitation data from

Fig. 1 Land use across China (a), spatial distribution of CRU gridded points and elevation (b), and distribution of meteorological stations in China (c)
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1960 to 2011 were used to establish SPI series of 1, 2, 3, 6, 9,
12, and 24 months at various weather stations. The 1-month
SPI is used to analyze meteorological drought (Caccamo et al.
2011), while the 3-month or 6-month SPI seasonal scale is
considered more suitable for measuring agricultural drought
(Guttman 1998; Hayes et al. 1999). Meteorological droughts
and agricultural droughts are usually considered short-term
droughts (Brown et al. 2008). The 1-month and 3-month
SPIs of the regional weather stations were averaged to esti-
mate the regional drought. Only the data during the growing
season were used in the analysis.

SPI is an indicator of the probability of occurrence of rain-
fall in a certain period of time. It uses г distribution probability
to describe the change in precipitation and normalizes the
precipitation of skewed probability distribution (Park et al.
2017; Um et al. 2018). The SPI calculation formula is as
follows:

SPI ¼ S
t− c2t þ c1ð Þt þ c0

d3t þ d2ð Þt þ d1½ �t þ 1:0
ð1Þ

In the formula, t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
In 1

G xð Þ2
q

, whereG(x) is the distribution

probability of precipitation related to the г function, x is the
precipitation sample, and S is the positive and negative coef-
ficient of probability density.

When G(x) > 0.5, S = 1; when G(x) ≤ 0.5, S = − 1. G(x) is
calculated by the probability density integral formula of г
distribution function:

G xð Þ ¼ 1

βγΓ xð Þ0
∫x0x

γ−1e
−x
β dx x > 0 ð2Þ

In the formula, γ and β are the shape and scale parameters
of the г distribution function, respectively. The calculation
parameters are as follows: c0 = 2.515517, c1 = 0.802853,
c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 =
0.001308.

Single indices

This study defines the VCI, TCI, TCI _VUA, PCI, and SMCI
as single indices. In many studies of drought indices, the VCI,
TCI, TCI_VUA, PCI, and SMCI have been used (Du et al.
2013; Kogan 1995; Seiler et al. 1998; Zhang and Jia 2013).
The calculation formulas are shown in Table 2. The drought
index value is scaled to a range of 0 to 1. A scale value of 0
represents the driest state, and 1 represents the wettest state
(Table 3).

Combined drought indices

In this study, the SDI, SDCI, MIDI, OVDI, and OMDI were
defined as combined indices. The SDI, SDCI, and OVDI are

agricultural drought indices, and the OMDI and MIDI are
meteorological drought indices.

SDI

The SDI was proposed by Du et al. (2013), and it combines
the PCI, VCI, and TCI. The principal component analysis
(PCA) method is used to extract the main information from
the PCI, VCI, and TCI and eliminate the relevant signals
(Deng et al. 2008). The principal component transformation
is completed in the ENVI software environment. Each month
of PCI, VCI, and TCI data was input as bands, and the PCA
method was used to calculate the bands. The first principal
component (PC1) contains more than 75% of the information
from the PCI, VCI, and TCI. Based on the PCA method, the
SDI dataset from June 2002 to October 2011 was generated.
The SDI was divided into five categories according to the
classification displayed in Table 4.

SDCI

We used the empirical weight method to combine the VCI,
TCI, and PCI to establish the SDCI (Rhee et al. 2010). To
obtain the best weighted components of the SDCI in China,
several sets of weights were tested for the SDCI and SPI for 7
time scales (1, 2, 3, 6, 9, 12, and 24 months) in China
(Table 5). In all cases, the SDCI showed the highest correla-
tion with the 1-month-scale SPI. According to the perfor-
mance of the SDCI under different weight combinations, a
VCI of 0.1, a TCI of 0.4, and a PCI of 0.5 are the best com-
bination of components of the SDCI in the study area.

MIDI

The MIDI was established by Zhang and Jia (2013). The aim
is to monitor short-term drought conditions and integrate three
variables: TRMM-based precipitation data, AMSR-E-based
SM, and AMSR-E surface temperature data. To obtain the
best MIDI weight distribution for China, this study assumes
many experience-based weight distributions. The MIDI
values calculated from these experience-based weight distri-
butions were compared with the results of the scPDSI and SPI
in China for Pearson correlation analysis. All correlations in
this study were statistically significant (p < 0.01). The results
show that the weighted MIDI has a strong correlation with
SPI-1, and the correlation decreases as the SPI time scale
increases (Table 6). From the test results, the MIDI when the
weights of the PCI, SMCI, and TCI are 0.5, 0.3, and 0.2,
respectively, shows the best correlation with the scPDSI and
SPI of each time scale. This combined drought index is used to
assess the capability of remote sensing drought monitoring in
China.
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The MIDI is calculated by the following formula:

MIDI ¼ α � PCIþ β� SMCIþ 1−α−βð Þ � TCI ð3Þ

OVDI and OMDI

The OVDI and OMDI are combined drought indices, which
are optimal weight combinations of the four variables of pre-
cipitation, SM, vegetation status, and surface temperature.
However, there are obvious spatial differences in climatic fac-
tors such as precipitation and temperature, so the combined
values of the OVDI and OMDI weights calculated for differ-
ent regions may be different (Powell 1978). The constrained
optimization method is used to optimize the parameters of
remote sensing variables; that is, under the constraints of these
variables, they are combined by maximizing the correlation
with the in situ indices of certain variables (Powell 1983). The
PCI, TCI, VCI, and SMCI were combined to calculate the
OVDI and OMDI. This method is used to combine the PCI,
TCI, VCI, and SMCI, taking the SPI as reference data. In this
study, to calculate the OVDI and OMDI, we used data from
450 observing stations to calculate the SPI and SPEI (Fig. 1c).
For detailed information about the OVDI and OMDI calcula-
tions, please refer to Hao et al. (2015).

The optimization weight method is described by the fol-
lowing formula:

f x; yð Þ ¼ max
E X−uxð Þ � Y−uyð Þ½ �

∂x� ∂y

� �
ð4Þ

X ¼ SPI
SPEI

�
ð5Þ

Y ¼ α � TCIþ β� PCIþ 1−α−βð Þ � SMCI
α � TCIþ β� PCIþ γ� SMCIþ 1−α−βð Þ � VCI

�
ð6Þ

The formula is subject to the constraints

0 < α < 1
0 < β < 1
0 < γ < 1

ð7Þ

In the formula, f (x, y) represents the situation with the
greatest correlation between X and Y, X represents the SPI
and SPEI, and Y represents the OVDI and OMDI. The
OVDI is a combination of the TCI, PCI, SMCI, and VCI.
The OMDI is a combination of the TCI, PCI, and SMCI. ∂x
and uy are the standard deviations of the variables X and Y,
respectively; ux and uy are the mean values of the variables X
and Y, respectively; and α, β, and γ are the optimized param-
eters of the TCI, PCI, and SMCI, respectively.

The constrained optimization method is used to analyze the
correlation between China’s SPI and SPEI and each single
drought index based on remote sensing (PCI, SMCI, TCI,
and VCI). The weights of the TCI, PCI, and SMCI of
OMDI are 0.14, 0.53, and 0.33, respectively. The weights of
the TCI, PCI, SMCI, and VCI are 0.43, 0.11, 0.13, and 0.33,
respectively.

Pearson correlation analyses

A correlation analysis is a statistical method that reflects the
degree of correlation between variables (Mitchell et al. 2008).
In geographic research, the Pearson correlation coefficient is
usually used to test the relationships and accuracy of various
indices. The calculation formula is as follows:

Table 2 Descriptions of remote sensing-based single condition drought indices, including names, data sources, calculated formulas, and reference

Drought index Data source Formula Reference

VCI MODIS (NDVIi −NDVImin)/(NDVImax −NDVImin) (Kogan 1995; Du et al. 2013)

TCI MODIS, AMSR-E (LSTmax − LSTi)/(LSTmax − LSTmin) (Kogan 1995; Wu et al. 2013)

PCI TRMM (TRMMi − TRMMmin)/(TRMMmax − TRMMmin) (Zhang and Jia 2013; Rhee et al. 2010)

SMCI AMSR-E (SMi − SMmin)/(SMmax − SMmin) (Zhang and Jia 2013; Hao et al. 2015)

Table 3 Combined-index information on establishment methods and data sources

Drought index Drought type Data source Single drought indices based Weight determination method Source

SDI Agricultural MODIS, TRMM TCI, PCI, VCI PCA (Du et al. 2013)

SDCI Agricultural MODIS, TRMM, AMSR-E TCI, PCI, VCI Empirical weights (Rhee et al. 2010)

MIDI Meteorological MODIS, TRMM, AMSR-E TCI, PCI, SMCI Empirical weights (Zhang and Jia 2013)

OVDI Agricultural MODIS, TRMM, AMSR-E TCI, PCI, SMCI, VCI Constrained optimization (Hao et al. 2015)

OMDI Meteorological MODIS, TRMM, AMSR-E TCI, PCI, SMCI Constrained optimization (Hao et al. 2015)
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Rxy ¼
∑
n

i¼1
xi−x

� 	
yi−y

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi−x

� 	2
∑
n

i¼1
yi−y

� 	2
r ð8Þ

In the formula, xi and x are the i-th value and average value of
the variableX, respectively; yi and y are the i-th value and average
value of the variable Y, respectively. n is the total number of
sample sequences. The closer |R| is to 1, the stronger the corre-
lation. If R = ± 1, the two groups of variables have a perfect
positive (negative) correlation. If 0 <R < 1, the two groups of
variables are positively correlated; if − 1 <R < 0, then the two
groups of variables are negatively correlated (Shen et al. 2019).

Results

Spatial distribution patterns of remote sensing
drought indices

Spatial distribution patterns of single drought indices

After consulting the China Statistical Yearbook, we found that
severe droughts occurred in 2009 and 2011 (NBSC 2009,
2011). The drought indices in July 2009 presented in Fig. 2

a, b, c, d, and e and those in July 2011 presented in Fig. 3 a, b,
c, d, and e show the changes in the single indices and allow a
comparison of these indices in these 2 months.

Figure 2 shows the spatial distributions of the drought
levels in July 2009 characterized by five indices: the PCI,
VCI, TCI_VUA, TCI, and SMCI. The PCI distribution indi-
cates that Northwest China is the driest area, while the south-
east, southwest, and south are the wettest areas. The VCI and
SMCI have similar spatial distributions, both of which dem-
onstrate severe drought in the northwest, including most of
Inner Mongolia, Xinjiang, Tibet, and Qinghai; however, the
northeastern, southwestern, and southern regions are relative-
ly wet. The distributions of the TCI and TCI_VUA vary sig-
nificantly in space, especially in Qinghai and Tibet: the severe
drought in Qinghai and Tibet was monitored by the
TCI_VUA, while the MODIS-derived TCI can monitor
droughts and identify severe droughts in small areas through-
out China.

Similarly, the spatial distributions of the drought grades
represented by these five single drought indices in July 2011
are shown in Fig. 3. Each single drought index has a similar
distribution spatial to that in July 2009. The difference is that
the PCI detected extreme drought events in the northwestern
desert region, while severe drought events occurred in Hunan
Province. The VCI and SMCI distributions indicate that
Northwest China and Tibet are arid areas, while the

Table 4 Classification of the drought indices compared in this study

Name of class PCI TCI VCI SMCI MIDI OMDI SDCI SDI OVDI

Extreme drought 0–0.1 0–0.1 0–0.1 0–0.1 0–0.1 0–0.2 0–0.2 0–0.2 0–0.2

Severe drought 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 0.2–0.4 0.2–0.3 0.2–0.3 0.2–0.4

Moderate drought 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3 0.2–0.3 0.4–0.6 0.3–0.4 0.3–0.4 0.4–0.6

Mild drought 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4 0.3–0.4 0.6–0.8 0.4–0.5 0.4–0.5 0.6–0.8

No drought 0.5–1 0.5–1 0.5–1 0.5–1 0.4–1 0.8–1 0.5–1 0.5–1 0.8–1

The names of the category rows show different definitions of drought severity, and all other rows include drought indices

Table 5 Correlation coefficients among the SDCI and scPDSI and SPI at different time scales

Indices Weights n = 15,405

VCI TCI PCI PDSI SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24

SDCI 0.4 0.3 0.3 0.422** 0.494** 0.448** 0.342** 0.331** 0.316* 0.262* 0.255*

0.5 0.2 0.3 0.416** 0.472** 0.325** 0.322* 0.334** 0.321* 0.261* 0.256*

0.3 0.3 0.4 0.444** 0.544** 0.485** 0.374** 0.347** 0.327** 0.272* 0.261*

0.2 0.3 0.5 0.466** 0.594** 0.523** 0.507** 0.462** 0.437** 0.382** 0.367**

0.1 0.4 0.5 0.474** 0.608** 0.551** 0.531** 0.457** 0.425** 0.383** 0.365**

0.4 0.1 0.5 0.449** 0.544** 0.466** 0.456** 0.468** 0.447** 0.378** 0.368**

** Denotes a significant correlation at the 0.01 confidence level
* Denotes a significant correlation at the 0.05 confidence level

The highest r values of each combined drought index for each row/column were shown in italics/bold
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TCI_VUA shows that most of the central region is not arid
and presents the greatest difference from the other single
drought indices in Tibet and China. In general, the drought
situations monitored by these five indices feature different
spatial variabilities in Qinghai, Tibet, Hunan, Guizhou, and
Heilongjiang.

Spatial distribution patterns of combined drought indices

Among the combined drought indices, there are signifi-
cant differences between the meteorological drought indi-
ces and the agricultural drought indices, suggesting that
combined drought indices can distinguish between

meteorological drought and agricultural drought.
Compared with the agricultural drought indices, the me-
teorological drought indices show that more areas are in
an arid state. Two of the agricultural drought indices,
namely, the SDCI and OVDI, do not show a large area
of overlap in the southern part of China. The same situa-
tion can be found for the meteorological drought indices,
the MIDI and OMDI. In contrast, the SDCI, SDI, and
OVDI show a high degree of consistency. Almost all the
drought indices considered are able to monitor the
drought situation in Northwest China.

In July 2009, the five combined drought indices (MIDI,
OMDI, OVDI, SDCI, and SDI) exhibit similar spatial

Table 6 Correlation coefficients among the MIDI and scPDSI and SPI at different time scales

Indices Weights n = 15,405

PCI SMCI TCI PDSI SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24

MIDI 0.3 0.4 0.3 0.325** 0.449** 0.406** 0.410** 0.373** 0.292* 0.249** 0.226*

0.3 0.5 0.2 0.296* 0.41** 0.366** 0.374** 0.363** 0.290* 0.23** 0.218*

0.4 0.3 0.3 0.355** 0.501** 0.442** 0.439** 0.390** 0.307* 0.267* 0.223*

0.4 0.4 0.2 0.326** 0.461** 0.401** 0.402** 0.382** 0.305* 0.246* 0.233*

0.4 0.5 0.1 0.367** 0.519** 0.360** 0.365** 0.368** 0.301* 0.229* 0.22*

0.5 0.3 0.2 0.395** 0.604** 0.495** 0.464** 0.382** 0.364** 0.313** 0.235*

0.5 0.4 0.1 0.36** 0.562** 0.388** 0.387** 0.383** 0.314** 0.243* 0.249*

**Denotes a significant correlation at the 0.01 confidence level
* Denotes a significant correlation at the 0.05 confidence level

Fig. 2 Drought conditions in China monitored by multiple drought indices in July 2009
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distribution characteristics. In Fig. 2 f, g, h, i, and j, the
spatial distributions of the drought grades of the meteoro-
logical drought indices (MIDI and OMDI) are highly con-
sistent, and both indices monitor severe drought events in
central China. For the drought grade distributions of the
agricultural drought indices (the OVDI, SDCI, and SDI),
the OVDI and SDCI display almost identical spatial dis-
tributions, and both indices monitor extreme drought
events in the northwestern desert region and severe
drought events in western Xinjiang and eastern Inner
Mongolia, while both the southwestern and northeastern
regions are relatively wet. Similarly, Fig. 3 f, g, h, i, and j
show the spatial distributions of the MIDI, OMDI, OVDI,
SDCI, and SDI in July 2011. The MIDI, OMDI, and
SDCI have high spatial consistency and monitor severe
drought in the south. The OVDI and SDI also exhibit high
compliance. However, the PCI, VCI, TCI, and SMCI in
southwestern China show different drought situations,
while the combined drought indices (SDI and OVDI)
show similar drought situations.

Comparison of remote sensing drought indices

According to the similarity of the drought indices, we can
determine the drought status of different regions. Figure 4
and Fig. 5 show maps describing the temporal and spatial
similarities between the drought indices and the in situ
drought index based on the linear correlations between the
drought indices.

Comparison between the single drought indices

The correlation coefficients (r) between the single indices and
the in situ drought index are illustrated in Fig. 4. The correla-
tion between the MODIS-derived VCI and the in situ drought
index is relatively good overall, where the former performs
best for SPI-3 and SPI-6 but is inferior for SPI-9, SPI-12, and
SPI-24. As shown in Fig. 5, the VCI and the in situ drought
index show a strong correlation, representing the strongest
correlation in central China. The correlations between the
VCI and SPI-6 and SPI-9 are high in the northeast. The
highest correlation corresponds to forestland, while the
weakest is observed for cultivated land. Generally, areas with
a stable VCI have higher annual precipitation, including main-
ly forestland and grassland areas. Compared with the other
indices, the correlation of the VCI in wet areas (such as the
southern and coastal areas) is weak, whereas in the northwest-
ern arid region, the VCI outperforms the other single indices.

The PCI has relatively strong correlations with SPI-1 and
SPI-3 (with average coefficients of 0.615 and 0.443, respec-
tively). The regions with the highest correlations are located in
southern China. The PCI performs slightly better in short-term
drought monitoring than the other indices (Fig. 5), and the PCI
has a stronger correlation with SPI-1 in almost all of China. In
addition, the correlation between the PCI and SPI-3 is stronger
than those between the VCI, TCI, and SMCI and SPI-3 in
most regions. However, also in most regions, the correlation
between the PCI and SPI-9 is lower than those between the
VCI, TCI, and SMCI and SPI-9.

Fig. 3 Drought conditions in China monitored by multiple drought indices in July 2011
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As depicted in Fig. 4, the MODIS-derived TCI is superior
to the VUA-derived TCI in monitoring short-term drought,
confirming that the choice of the single drought index is very
important when establishing a combined drought index. In
general, the MODIS-derived TCI is better for monitoring
drought on a short time scale. Compared with the
TCI_VUA, the MODIS-derived TCI has a stronger correla-
tion with the in situ drought index in almost all of China. It is
important to note that the MODIS-derived TCI and VUA-
derived TCI have similar spatial variabilities, and both single
indices have a good correlation with SPI-3 and are highly
suitable for long-term drought monitoring.

The correlation between the SMCI derived from the VUA
and in situ drought index SPI-1 is relatively good with a cor-
relation coefficient of 0.360. However, the correlations be-
tween the PDSI and the long-term SPI and SMCI are weak
in most regions. The SMCI is more suitable for monitoring
short-term drought conditions in large areas. Moreover, com-
pared with the VCI, PCI, and TCI, the SMCI is particularly
sensitive to terrain; the SMCI is calculated from soil moisture,
so the land type affects the value of the SMCI. Figure 1a and
Fig. 5 show that the r values between the SMCI and SPI-1 and
SPI-3 are lower in areas with more forestland coverage; for
example, in the Northeast Greater Khingan Range and
Xinjiang Tianshan, the r values are lower than those of culti-
vated land and grassland in central China. In areas with limit-
ed forestland coverage and sparse vegetation, the correlation
between the SMCI and SPI-1 is higher than that between the
TCI and SPI-1.

In general, different single indices have specific char-
acteristics. The PCI has the highest correlation with the in
situ drought index, followed by the TCI derived from
MODIS. The PCI is highly correlated in most regions,
while the SMCI is more suitable for short-term drought
monitoring.

Comparison between single drought indices and combined
drought indices

The combined drought indices have advantages over the sin-
gle drought indices. When all drought indices are correlated
with SPI-1, the overall correlation coefficient of a combined
drought index is higher than that of a single drought index.
However, the correlation coefficient between the PCI (a single
drought index) and SPI-1 is also relatively high. Among the
meteorological drought indices, the correlation between the
PCI and SPI-1 is 0.615, and the correlation between the
MIDI and SPI-1 is 0.601; thus, the r value of the MIDI for
the combined drought index is lower than that of the PCI for
the single drought index. The correlation between the OMDI
and SPI-1 is 0.659, and the r value of the OMDI for the
combined drought index is slightly higher than the r value of
the PCI for the single drought index. In terms of the agricul-
tural drought indices, the r values of the OVDI with the SDCI
and SPI-3 are 0.539 and 0.531, respectively, while the r values
of the PCI with the TCI and SPI-3 are only 0.443 and 0.393,
respectively.

Comparison of combined drought indices

Generally, a combined drought index is a type of synthesis
method. The correlation between the in situ drought index and
each combined drought index shows the lack of an obvious
difference among the combined drought indices. However,
combined drought indices have some shortcomings.
Figure 4 shows that most of the combined drought indices
are highly correlated with SPI-1 and SPI-2. We define the
MIDI and OMDI as meteorological drought indices. The cor-
relations of the MIDI and OMDI with SPI-1 are high and
should be close to those for the short-term drought indices.
Therefore, the MIDI and OMDI are suitable for short-term

Fig. 4 Correlation coefficients (r)
between remote sensing drought
indices (rows) and station-based
drought indices (columns)
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drought monitoring. Related research defines the OVDI,
SDCI, and SDI as agricultural drought indices; the changes
in the r values of most combined agricultural drought indices
with SPI-3 are larger than those of the short-term drought

indices (Fig. 4). The correlation of the in situ drought index
with the OMDI is higher than that with the MIDI, demonstrat-
ing that the constrained optimization method has certain ad-
vantages when combining single drought indices. Among the

Fig. 5 Coefficient of determination of temporal correlation between monthly maps of remote sensing-based combined drought indices and in situ
station-based drought indices
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agricultural drought indices, the SDCI has the highest corre-
lation with the in situ drought index; on the other hand, the
SDCI uses the empirical weighting calculation of the VCI,
TCI, and PCI, and the weight of the PCI is greater than the
weights of the TCI and VCI. This finding shows that the
influence of the empirical weighting method should be fully
considered. The SDCI and SDI are based on the same single
index, but while the SDI is constructed by PCA, the SDCI is
constructed by the empirical weighting method. At the same
time, both the SDCI and the SDI are indices for monitoring
agricultural drought, and the correlation of the in situ drought
index with the SDCI is higher than that with the SDI. This
finding indicates that performing PCA on VCI, TCI, and PCI
data will cause a loss of information during the dimensionality
reduction process, resulting in a low correlation with the in
situ drought index.

As shown in Fig. 5, the combined indices have similar
spatial variabilities. For the agricultural drought indices, the
spatial variability does not differ greatly among the OVDI,
SDCI, and SDI; in particular, their correlations with SPI-6
and SPI-9 are the same. In the northwestern arid area, the
correlations of the MIDI and OMDI with SPI-1 are relatively
low (approximately between − 0.2 and 0.3) but reach 0.5–0.8
in the central and southern regions. These correlations present
a predominant trend of high in the southern region and low in
the western region. The correlations between the MIDI and
OMDI and SPI-3, SPI-6, and SPI-9 also have similar spatial
distributions. Only the OMDI shows a stronger correlation
with SPI-1. The three agricultural drought indices (OVDI,
SDCI, and SDI) show relatively small spatial differences,
and the correlation among their spatial distributions is relative-
ly even overall.

Discussion

Single index selection

The selection of single indices has a decisive effect on the
combined index, and different combined indices have differ-
ent data requirements. Hence, different characteristics are con-
sidered when using various methods to quantify drought. For

example, although the OMDI and OVDI use the same com-
bination method (constrained optimization method), because
they employ different single indices, they show different
drought distributions and characteristics. Furthermore, the
SDCI and SDI use the same single indices (the VCI, TCI,
and PCI) to monitor agricultural drought.

We now analyze the meteorological drought indices. The
PCI is the most important single index in the OMDI, while the
weights of the TCI and SMCI are relatively low. The weight
of the PCI in the OMDI is 0.53, while the weights of the TCI
and SMCI are 0.14 and 0.33, respectively. These results show
that the TCI and SMCI contribute less to the OMDI. Figure 4
shows that the correlations between the OMDI and PCI and
the in situ drought index are similar. The OMDI’s r value is
0.044 higher than that of the PCI. The MIDI is another mete-
orological drought index, in which the weights of the PCI,
SMCI, and TCI are 0.5, 0.3, and 0.2, respectively. In meteo-
rological drought monitoring, the PCI, which has the highest
weight, is the most effective. Compared with the PCI, the PCI-
merged MIDI is more complicated, but it contains little addi-
tional information, and there is no substantial improvement.
Thus, in certain situations, a single index can be more advan-
tageous than a combined drought index; if a single index per-
forms better than other single indices, the weight of that single
index will be the highest when constructing a combined
drought index, and the performance of the combined index
will not differ significantly from that of the single index. In
contrast, the OVDI is a combined agricultural drought index
composed of the TCI and VCI, whose weights are 0.43 and
0.33, respectively, indicating that the degree of vegetation
coverage and surface temperature play important roles.
Moreover, the correlation between the OVDI and SPI-1
reaches 0.539, while the correlations of the TCI and VCI with
SPI-1 are only 0.361 and 0.223, respectively. These results
show that the combined drought index is somewhat improved
over the single indices that compose it.

Long-term evolution characteristics of drought
indices

Combining five combined drought indices, we analyzed the
long-term evolutionary characteristics of China’s regional dry

Fig. 6 Annual time series of
various drought indices in China
from 2002 to 2011
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and wet changes from June 2002 to October 2011. As shown
in Fig. 6, in the overall change trend over time, the MIDI and
OMDI both have good spatial consistency, and their temporal
change trends are almost the same. The MIDI and OMDI are
both meteorological drought indices with the same three sin-
gle indices (the PCI, TCI, and SMCI); the difference between
the two is that different methods are used for their construc-
tion: the OMDI adopts the constrained optimization method,
while the MIDI adopts the empirical weighting method. In
addition, the temporal trends of the MIDI and SDCI are sim-
ilar, whereas the OVDI and SDI have slight deviations from
other combined drought indices.

Correlations between combined drought indices

The MIDI, OMDI, OVDI, SDCI, and SDI are all very effec-
tive indices for monitoring drought. The differences among
these drought indices are that different modeling methods are
used when constructing them, and different factors that cause
droughts (e.g., precipitation, soil moisture, land surface tem-
perature, and vegetation conditions) are considered.
According to the spatial correlations between the drought in-
dices in Fig. 7, both the OMDI and the SDCI have a high
degree of spatial correlation in China as a whole with a corre-
lation coefficient of 0.848. Moreover, the MIDI and OMDI
are generally highly correlated with a correlation coefficient of
0.826. The spatial correlations between the MIDI and OVDI

and between the MIDI and SDI are the poorest with correla-
tion coefficients of 0.417 and 0.469, respectively. The spatial
correlation between the SDCI and SDI is also low overall,
reaching a coefficient of 0.484. The reason for this result
may be that the combined factors considered in each drought
index are different. On the other hand, among the combined
drought indices, the different combination methods are anoth-
er key factor. For example, the OMDI and SDCI are highly
spatially correlated, but their combination methods are differ-
ent. We used the constrained optimization and empirical
weighting methods to obtain the OMDI and SDCI, respective-
ly, but the performance of the indices is similar. In contrast,
the OMDI and MIDI have similar spatial distributions.
Therefore, it is very important to summarize the combined
drought indices in different regions with simple methods and
efficient monitoring results (Table 7).

Influencing factors

From the correlation diagrams between each drought index
and the in situ drought index (Fig. 5), the MODIS-derived
VCI and the MODIS-derived TCI have similar spatial vari-
abilities, which is because these indices use data from the
same satellite sensors, and the NDVI and LST data inputs
cover the same geographic area and time frame. There is a
strong negative correlation between the LST and NDVI
(Karnieli et al. 2010), which has been confirmed by many
previous studies. Because of this correlation, the LST and
NDVI may behave similarly for the same land cover. In addi-
tion, the PCI has a high correlation with SPI-1. The PCI is
determined based solely on rainfall and is not affected by
changes in the surface, such as variations in the land cover,
land use, and DEM. The SMCI has a high correlation with the
short-term in situ drought index, while it has a weak correla-
tion with the long-term SPI in most areas. Hence, the SMCI is
more suitable for monitoring large-scale, short-term drought

Table 7 Correlation coefficients among the combined drought indices

Drought index MIDI OMDI OVDI SDCI

MIDI – – – –

OMDI 0.826** – – –

OVDI 0.417** 0.547** – –

SDCI 0.646** 0.848** 0.583** –

SDI 0.469** 0.525** 0.638** 0.484**

Fig. 7 Spatial correlations
between combined drought
indices
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conditions. Combining Fig. 1a and Fig. 5 shows that the
SMCI is more sensitive to short-term drought in areas with
limited forest coverage and sparse vegetation. The SMCI is
calculated based on the soil moisture retrieved from X- and C-
bandmicrowave brightness temperature data from 1 to 1.5-cm
soil, so when the vegetation density is too high, the SMCI
value will not achieve good convergence. Other factors also
affect the performance of remote sensing drought indices.
Residual cloud pollution in a remote sensing image will affect
the drought results in a specific area, and the low spatial res-
olution of some remote sensing data means that local drought
values may not be accurately monitored. Finally, human dis-
turbances can change the agricultural climate and cause errors
in drought monitoring and the actual conditions, such as the
irrigation and fertilization of crops.

Conclusions

In this study, the single drought indices, combined drought
indices, and in situ drought indices across China were com-
pared over the period from 2002 to 2011. July 2009 and
July 2011 were selected as typical dry years to analyze the
spatial distributions of the indices. The analysis revealed differ-
ent characteristics between the single drought indices and com-
bined drought indices. The VCI derived from MODIS NDVI
data was not suitable for monitoring drought in wet regions
because it was easily affected by climate change. However,
the VCI was more reliable than the other indices for monitoring
drought in arid and semiarid regions. In addition, we found that
the TCI was not suitable to monitor drought in desert environ-
ments because of interference by the LST. The SMCI could be
affected by soil moisture, especially in densely forested and
grassland-covered regions. The PCI was most suitable for mon-
itoring short-term droughts because it exhibited a strong corre-
lation with the short-term in situ drought index. The results of
this comparison showed that the combined drought indices
could better reflect drought events than the single indices in
specific areas and could display the detailed characteristics of
drought on a large scale. The empirical weighting method was
more suitable than the constrained optimization method for
constructing combined drought indices because of the simplic-
ity of its theory, fewer parameters, and easier calculation pro-
cess. These results may be helpful for drought monitoring on
different scales, especially in agricultural regions. The evalua-
tion framework proposed and utilized in this study can also be
applied to other regions by adjusting the parameters of the
model in the region of interest.
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