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Glyphosate-based herbicides affect behavioural patterns
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Abstract
Roundup® is one of the most widely marketed glyphosate-based herbicides in the world. There are many different formulations
of this brand that differ from each other in glyphosate concentration, salts and adjuvants, including surfactants, which are labelled
as “inert” compounds. Several studies have shown that these formulations are highly toxic to fish, even compared with pure
glyphosate. However, mechanisms underlying this toxicity are not fully understood. In this context, this study evaluated the
effects of exposure to Roundup Original® (RO), Roundup Transorb® (RT), and Roundup WG® (RWG) on the behavioural
patterns of the livebearer Jenynsia multidentata. This fish naturally inhabits agricultural areas in southern Brazil and Argentina
where glyphosate is used extensively. In the experiment, animals were exposed to the herbicides for 96 h, at the environmentally
relevant concentration of 0.5 mg/L of glyphosate. Swimming performance, anxiety, aggressiveness, long-termmemory and male
sexual activity were recorded. The formulation RWG negatively affected swimming performance, thigmotaxia and long-term
memory consolidation. Conversely, RT reduced the sexual performance of males. These results confirm that Roundup® formu-
lations are extremely harmful and also that they have different targets of toxicity, affecting behaviours that are essential for fish
survival.
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Introduction

The increased use of herbicides, together with the disposal of
effluent without proper treatment and accidental spills, has
detrimental effects on aquatic ecosystems (Caballero-
Gallardo et al. 2016; Moustafa et al. 2016). One of the most
commonly used herbicides in the world is glyphosate

(Caballero-Gallardo et al. 2016; IARC 2015; IBAMA 2014;
J ames 2015 ; Wang e t a l . 2 016 ) . G l ypho s a t e ,
N-(phosphonomethyl)glycine, is an aminophosphonate and
analogue of the natural amino-acid glycine that acts as a
broad-spectrum, post-emergent and non-selective herbicide.
The extensive application of glyphosate and its relatively long
persistence in water (half-life between 45 and 60 days) lead to
its presence in the environment in concentrations that may
vary from 0.1 to 1.5 mg/L in water bodies (Annett et al.
2014; Peruzzo et al. 2008; Queiroz et al. 2011; Tzaskos
et al. 2012).

Roundup is a widely available commercial glyphosate-
based herbicide. Their formulations contain glyphosate,
salts and surfactants, which facilitate penetration of the ac-
tive component into biological membranes (Székács and
Darvas 2012; Tsui and Chu 2003). Although the toxicity
of pure glyphosate is considered to be low by the World
Health Organization (WHO 2005), its formulations are
highly toxic to many aquatic species (Melo et al. 2017;
Velasques et al. 2016; Pérez et al. 2011; Salbego et al.
2010; Relyea and Jones 2009). This increase in toxicity is
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related to the surfactants and other unspecified compounds
labelled as inert ingredients (Sánchez et al. 2017, 2018).

Several studies have shown that glyphosate-based herbi-
cides have neurodegenerative effects on fish (Braz-Mota
et al. 2015; Salbego et al. 2010; Glusczak et al. 2006, 2007).
Sandrini et al. (2013) showed in an in vitro experiment that
pure glyphosate inhibited the acetylcholinesterase (AChE) ac-
tivity in the brain and muscle of the zebrafish Danio rerio and
the livebearer Jenynsia multidentata. Furthermore, Sánchez
et al. (2017) showed that Roundup Original® (RO) and
Roundup Transorb® (RT) inhibited this enzyme in the brain
and muscle of J. multidentata exposed (96 h) to these formu-
lations. It is well known that AChE catalyses the breakdown
of the neurotransmitter acetylcholine (ACh), terminating syn-
aptic transmission at neuromuscular junctions and chemical
synapses of the cholinergic type.

Glyphosate-based herbicides can also induce oxidative
stress in several organs, including the brain, which may affect
the morphology and function of its cells (Moura et al. 2017;
Sánchez et al. 2017; Velasques et al. 2016; Braz-Mota et al.
2015; Sinhorin et al. 2014a, b). In this context, Sánchez et al.
(2018) observed glial cell proliferation in J. multidentata after
exposure to different Roundup® formulations. Alterations in
the brain influence fish behavioural patterns. Hued et al.
(2012) observed a reduction of male sexual activity in
J. multidentata and Sandun et al. (2015) recorded alterations
in nesting and aggressive behaviour of male tilapia,
Oreochromis mossambicus, both having been exposed to
commercial formulations based on glyphosate (Roundup
Max Granular® and Roundup®, respectively).

The effects of herbicides on fish behaviour can affect their
survival, which ultimately may have ecological consequences,
particularly in agricultural areas where agrochemicals are ap-
plied regularly. Moreover, it is important to compare toxicity
between the different formulations that are marketed to indicate
how dangerous they are and to support new rules for environ-
mental protection. Thus, the aim of this study was to evaluate
and compare the effects of three commercial Roundup formu-
lations (RO, RT and Roundup WG® (RWG)) on behaviour
patterns such as locomotion, aggressiveness, social interaction
and reproduction, learning and memory in the neotropical fish
J. multidentata. This species is often used as a model in bio-
monitoring studies due to its ability to respond to the presence
of environmental contaminants (Ballesteros et al. 2007; Hued
et al. 2012; Sandrini et al. 2013; Pinto et al. 2015; Sánchez et al.
2017, 2018) and because it can inhabit environments that are
severely degraded by anthropogenic activities (Hued and
Bistoni 2005; Chivittz et al. 2016). In addition, this species
exhibits sexual dimorphism, facilitating the evaluation of the
effects of contaminants on reproductive traits. Adult males de-
velop a gonopodium (copulatory organ), constituted by a mod-
ification of the anal fin (Galindo-Villegas and Sosa-Lima
2002), which is introduced into the female genital pore

(gonopore), to achieve fertilization. J. multidentata is a vivipa-
rous species; fecundation and initial development of the brood
are internal.

Materials and methods

Herbicides

Three commercial glyphosate herbicides were used in this
study: RO, RT and RWG. RO is a liquid formulation com-
posed of glyphosate isopropylamine salt (IPA) (480 g/L),
glyphosate acid equivalent (360 g/L GlyAE) and surfactant
MON 0818, the Monsanto code for the POEA designation.
POEA is a polyoxyethylene amine derived from fatty acids
that is added to the herbicides to facilitate the penetration of
glyphosate into plant tissues. RT is also a liquid made from
glyphosate isopropylamine salt (IPA), but at 648 g/L, glyph-
osate acid equivalent, at 480 g/L GlyAE, and POEA.
However, RWG is a granular formulation that has ammonium
salt glyphosate at 792.5 g/kg, glyphosate acid equivalent at
720 mg/kg GlyAE, and unspecified “inert compounds”. In
fact, all these formulations have “inert compounds” in which
the surfactants and other adjuvants are included. Due to the
risk to environment they represent, the surfactants generally
represent 15% or less of the formulations (Giesy et al. 2000).

Acclimation and exposure to herbicides

The present study comprises of experiments conducted in
Brazil and Argentina. Experiments in Brazil were carried out
in the Laboratory of Toxicology of Universidade Federal do
Rio Grande using J. multidentata (males: weight 0.54 ± 0.03
g, length 2.90 ± 0.06 cm and females: weight 0.69 ± 0.03 g,
length 3.05 ± 0.05 cm) collected, using a hand net, during
spring and summer of 2017, from pristine streams in
Cassino Beach, Rio Grande do Sul, Brazil (licence for
collection SISBIO 37129-2) (Chivittz et al. 2016).

In Argentina, the experiments were performed at the
IDEA-CONICET Laboratory of Universidad Nacional de
Córdoba, Argentina, with specimens of J. multidentata
(males: weight 0.30 ± 0.02 g, length 2.49 ± 0.05 cm) that were
collected with a backpack electrofisher during spring
(October) 2018 at Rio Villa de Soto, Córdoba, Argentina,
which is surrounded by forest and has no human population
or crop fields in the area.

The acclimation period was 2 weeks in Brazil and 4 days in
Argentina. During the acclimation, fish were fed with com-
mercial food (Tetra Color Bits®) twice a day. The ratio of 1 g
of fish per 1 L of water was maintained in the acclimation
period and also during the experiment. In both countries, fish
were put in 20-L tanks filled with water with aeration. In
Brazil water at 5 ppt was used, obtained by mixing
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dechlorinated tap water with marine salt. Fish from Argentina
were acclimated in dechlorinated tap water only. Water was
partially changed every 2 days during the acclimation period.

The mean values of the physicochemical parameters mea-
sured in the acclimation and experimental waters were pH 7.2
± 2, temperature 21.4 °C ± 0.69, dissolved oxygen 6.7 mg/L ±
1.37 (measured with a multiparameter probe, HANNA
HI9146, Brazil), nitrite 0.20 ± 0.04 (LaboconTest, Brazil)
and ammonia 0.4 ± 0.08 (LaboconTest, Brazil). The photope-
riod was fixed at 12L:12D.

Fish were exposed to a fixed concentration of 0.5 mg/L of
glyphosate in all the tests, calculated on the basis of the glyph-
osate contained in the three formulations used (RO, RT and
RWG, see Acclimation and exposure to herbicides). This is
considered a concentration of environmental relevance (see
Introductory). Moreover, it was chosen due to the non-
mortality of J. multidentata after 96 h of exposure to this
concentration, regardless of whether the formulation was
RO, RT or RWG (Sánchez et al. 2017). A control group
(without glyphosate in the medium) was maintained through-
out the test. The animals were fasted during the tests. RO, RT
and RWG were put in the water only at the beginning of the
test and the media were not renewed. An aliquot of water was
collected daily from each treatment for glyphosate analysis.
Temperature and photoperiod were reported above in this sec-
tion. At 96 h, the fish were submitted to behavioural tests and
later euthanized with an overdose of 500 ppm Benzocaine®
(Sigma-Aldrich). The behavioural patterns analysed in Brazil
were social interaction, space exploration (open field test),
swimming, aggressiveness and long-term memory (LTM).
In Argentina, males were submitted to analysis of sexual
activity.

Performances of social behaviour, open field
aggressiveness and avoidance

Twenty fish were used for the analysis of behavioural patterns.
They were exposed to each treatment (96 h), being randomized
males (n = 10) and females (n = 10). RO, RT and RWG were
put in the water only at the beginning of the experiment and
media were not renewed. An aliquot of water was collected
daily from each treatment for glyphosate analysis. At 96 h,
the fish were submitted to behavioural tests and later eutha-
nized with an overdose of 500 ppm Benzocaine® (Sigma-
Aldrich). The behavioural patterns of social interactions, space
exploration (open field test), swimming and aggressiveness
were conducted with fish sampled in Brazil, as was the avoid-
ance inhibitory test that measured LTM.

Social behaviour

The protocol used for social interaction was proposed by
Gerlai et al. (2000) and adapted to our fish model and

experimental conditions. After 96 h of exposure to the herbi-
cides, each fish was put in an aquarium (25 cm wide × 44 cm
long) filled with 5 cm of clean water (without herbicide) and
divided into three compartments using nets (Fig. 1a). The
compartment on the left side was empty of fish, the compart-
ment on the right side contained a group of five fish (stimulus)
and in the middle was the fish submitted to the experiment.
Fish were tested individually. Before recording started, each
fish was habituated to the experimental aquarium for 1 min.
The preference of the animal for each side (left or right) was
recorded for 10 min (SONY SSC-G118) and then analysed
using the Software SMART 3.0, Panlab/Harvard Apparatus,
Spain.

Open field test

The open field test can be used to analyse fear and swimming
performance (Egan et al. 2009;Maximino et al. 2010; Prut and
Belzung 2003; Rosemberg et al. 2011). The apparatus
consisted of a white aquarium (25 cm wide × 44 cm long)
with uniform colour, filled with only 3 cm of clean water so
fish swam only at the bottom (Fig. 1b). Each fish was placed
in the centre of the aquarium and its activity was recorded for
10min (Panasonic DMC-FZ40). The fish’s spatial exploration
behaviour and swimming performance were examined. The
following variables were considered: total distance covered
(mm/s), swimming speed (cm/s), percentage of exploration
rate, percentage of mobility rate and freezing. This last was
considered to occur when the fish was immobile for more than
5 s. Videos were analysed using the ToxTrac® software. In
addition, the preference of the fish for the central or peripheral
area of the aquarium was recorded. A fish remaining perma-
nently in the peripheral area or exhibiting thigmotaxis were
behaviours associated with fear. On the other hand, a perma-
nent presence in the central area was associated with predatory
susceptibility. Thigmotaxis was analysed using SMART 3.0
software (Panlab/Harvard Apparatus, Spain). The method was
adapted for J. multidentata.

Aggressiveness

Aggressiveness was evaluated by observation of the animal
and its reaction to its own reflected image in a mirror, as de-
scribed by Gerlai et al. (2000). A mirror was glued on one wall
of the aquarium at an angle of 22.5° with the base (25 cm wide
× 44 cm long and filled with 3 cm of clean water) (Fig. 1c). The
image of the animal itself was reflected in the mirror, looking
larger when the animal was positioned near to it. Fish were
analysed individually after 1 min of habituation.

The proximity of fish to the mirror segment indicated a
preference for the “opponent” and the contrary meant “avoid-
ance of the opponent”. Aggressive behaviour was evaluated
from the number of episodes of approaching the mirror with a
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combative posture (swimming fast towards the “opponent”)
and “bites” in the mirror over 10 min (after 1 min of habitua-
tion), recorded with a video camera (SONY SSC-G118).

Avoidance inhibitory test

Avoidance inhibitory apparatus was used to examine the con-
solidation of long-term memory (LTM) (Castro et al. 2009).
The apparatus was divided into a dark and light area separated

by a gate. The dark area was a tool that generates electric
shocks (5 mA, 6 V, unconditioned stimulus) (Fig. 1d). For
this test, fish were trained 1 day before the end of the herbicide
exposure. During the training stage, animals were placed on
the light side of the apparatus with the gate closed. After 3 min
in the apparatus (habituation), the gate was opened, allowing
the animal to pass to the dark area. This area should be the area
preferred by the fish, possibly seeking “protection” (Serra
et al. 1999). When fish swam into the dark area, two

Fig. 1 Illustrative images of the
methodological approaches
carried out for behavioural
analyses of J. multidentata: a
social interaction; b open field; c
aggressiveness; and d inhibitory
avoidance. In a, b and c, the green
areas correspond to the stimuli
areas and the red areas correspond
to non-stimuli areas. On the side
of a, b and c are pictures created
by Smart Software® at the end of
the analysis by the control fish. d
represents the apparatus of avoid-
ance inhibitory test in the training
phase when the fish received
shocks (after 72 h of exposure),
and in the test phase without
shock (after 96 h of exposure)
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sequential electrical shocks were triggered. Immediately after
the shock, the fish was removed from the apparatus and
returned to its respective experimental aquarium for the con-
tinuation of the experiment to complete 96 h of exposure to
the herbicides. After 96 h of pesticide exposure (1 day after the
training), fish were submitted to the same protocol, but no
shock was triggered. LTM formation was determined by the
time required for the fish to enter into the dark area, with a
maximum of 300 s. The inhibitory avoidance apparatus was
filled with water without herbicides.

Male sexual activity

After the 96-h herbicide exposure period (eight fish per treat-
ment-control, RO, RT and RWG), males were individually
placed together with a female that had not been exposed to
any glyphosate formulation. They were placed in a 5-L aquar-
ium filled with 4 L of clean dechlorinated tap water. After
10 min of habituation, the male’s sexual behaviour was re-
corded for 20 min through direct observation and recording
(Panasonic DMC-FZ40). When the males showed no interest
in the female, the female was removed and replaced by anoth-
er female, with a maximum of four substitutions. If the male
did not manifest interest in any of the females, it was consid-
ered as presenting no sexual activity. Parameters considered as
the sexual performance of males of J. multidentatawere based
on Bizarra et al. (2000). They are listed below:

Total pursuit time (TP): Time, expressed in seconds, dur-
ing which the male fish pursues the female in order to
access its gonopore.
Total number of pursuits (NP): Number of times that a
male fish pursues a female to access the female’s gono-
pore, making contact with the female through the repeti-
tive chase.
Copulation attempts (CA): Number of times that a male
fish enlarges its gonopodium to make contact with the
female gonopore.
Number of copulations (C): Number of times that a male
fish’s gonopodium made direct contact with the female
gonopore.

The following relative indices were calculated using these
variables, following to Hued et al. (2012) and Roggio et al.
(2014):

Attempts at copulation as a function of the total pursuit
time: CA/TP
Ratio of pursuits involving copulation attempts: CA/NP
Copulations as a function of the total time of pursuit:
C/TP
Ratio of pursuits that ended in copulations: C/NP

Proportion of copulations as a function of total copulation
attempts: C/CA

Gonadosomatic index and Fulton’s condition factor

After the evaluation of male sexual behaviour, fish were eu-
thanized and body weight (BW) (g) and standard length (SL)
(cm) were recorded in order to assess the general condition of
the fish using Fulton’s condition factor (Eq. (1)). Then, the
gonads were dissected and weighed to estimate the
gonadosomatic index (Eq. (2)).

K ¼ BW

SL3

� �
*100 ð1Þ

where K is Fulton’s condition factor; BW is the body
weight and SL is the standard length of the fish. K > 1 means
that fish are growing.

GI ¼ GW

BW

� �
*100 ð2Þ

where GI is the gonadosomatic index; GW is gonad weight
and BW is the body weight of the fish.

Data analysis

Data were expressed as mean ± standard error (SEM).
Comparisons between treatments or between training and test,
in the case of the inhibitory avoidance test, were evaluated by
one-way analysis of variance (ANOVA) followed by the
Tukey test. Normality (Shapiro-Wilk) and homoscedasticity
(Levene’s test) were checked previously. A significance level
of 95% (p < 0. 05) was adopted for all analyses. Statistical
analyses were performed using Sigma-Plot 11.0 software.

Results

During the experiments, there was no mortality, regardless of
the formulation tested. Mean values of glyphosate measured
in water were 0.59 ± 0.07, 0.58 ± 0.14 and 0.56 ± 0.16 mg/L
for RO, RT and RWG, respectively (Sánchez et al. 2018).
Glyphosate was not detected in the control groups. The her-
bicide was measured only in the experiments performed in
Brazil. It was not possible to measure it in Argentina, but the
same stock solution and work solution were used for all the
tests (in both Brazil and Argentina).

Figure 2 shows the behaviour patterns of social interaction,
open field exploration, aggressiveness and LTM. Figure 2a
shows that J. multidentata is a social fish as it preferred to
interact with other fish than to be reclusive. But, RWG caused
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a significant increase in the time of reclusion when compared
to controls and other formulations. With respect to open field
exploration, Fig. 2b shows that the time spent by the fish in the
periphery area was higher compared to time spent in the cen-
tral area. RO and RT increased the time that fish stayed in the
central area, which was considered as behaviour indicative of
depression.

Regarding swimming performance (Table 1), total dis-
tance covered, mobility and exploration were significantly
affected by the herbicides. RWG reduced the distance
travelled with respect to the control group. As for mobility
and space exploration, RWG was the most harmful,
followed by RT and then by the RO. Other variables, such
as speed and freezing, were not significantly affected by
the herbicides.

Figure 2c shows that the period of time spent by the fish at
the side with the mirror, close to the “opponent”, was signif-
icantly higher compared with the side without the mirror
(“avoidance of the opponent”), meaning that J. multidentata
is a naturally aggressive fish species. There were no effects of
herbicides on this behaviour. For the LTM test (Fig. 2d), it
was observed that during the training (after 72 h of exposure),
the length of time spent in the light area, before exploring the
dark area, was lower when compared to the test (after 96 h of
exposure). This means that J. multidentata had developed
LTM. They learned that if they go to the dark side they would
receive a shock. However, RWG significantly reduced the
amount of time spent by the fish on the light side.

Table 2 shows the effects of herbicides on male sexual
activity in J. multidentata. It was observed that 100% of male

Fig. 2 Effects of Roundup Original® (RO), Roundup Transorb® (RT)
and Roundup WG® (RWG), at a concentration of 0.5 mg/L of glypho-
sate, on the behavioural patterns of J. multidentata. a Degree of social
interaction based on the length of time fish spent next to the group of five
fish (interaction area) or that it was reclusive. b Results of anxiety and
depression, based on the preference of fish for the peripheral or central
area in the open field test, respectively. cResults of aggressive behaviour,
given by the time the fish spent close to the mirror (aggressive perfor-
mance) or away from the mirror (passive behaviour). d Period of time

(expressed in seconds (s)) spent by the fish in the light area of the inhib-
itory avoidance apparatus during the training phase (after 72 h of expo-
sure) and the test phase (after 96 h of exposure). Data are expressed as
mean ± standard errors. Capital letters represent significant differences
between treatments. Asterisk (*) indicates differences between fish pref-
erence areas in a, b and c, and differences between training and test
periods in d. Significant differences were assigned by ANOVA and
Tukey as a posteriori test, with p < 0.05
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fish in the control group responded positively to the presence
of a female, but this percentage was reduced by exposure (96
h) to the herbicides, this being a reduction to 85.7%, 75% and
88.5% for RO, RT and RWG, respectively. However, in
Table 2, we include only the fish that responded positively
to the presence of a female for the variables shown. In this
context, RT reduced NP, CA and C and the C/NP ratio (see
item 2.8).

Figure 3 represents Fulton’s condition factor (K) and the
gonadosomatic index (IGS) There was no difference in
Fulton’s condition factor calculated for the groups (Fig. 3a).
However, Roundup formulations reduced GSI (Fig. 3b), and
the largest effect was seen in fish exposed to the RWG for-
mulation, which affected gonadal maturation of males of J
multidentata.

Discussion

In their natural environment, fish are under stressful condi-
tions and they are able to respond to them at different levels,
frommolecular to behavioural. These natural responses can be
affected by the presence of pollutants. They are considered
biomarkers, used to indicate mechanisms of toxicity and

predict effects of pollutants in the environment. Depending
on the compound, the doses and exposure time, pollutants
can be more or less harmful. In this context, the present study
has shown that glyphosate-based herbicides negatively affect
the behavioural patterns and GSI of J. multidentata, at differ-
ent levels, depending on the formulation. This indicates RO,
RT and RWG herbicides exert a neurotoxic action on
J. multidentata since behaviours are processed by the nervous
system. Importantly, the 0.5 mg/L of glyphosate exposure
concentration is considered environmentally relevant, if we
consider data reported for water bodies in Brazil (> 100
μg/L and 1.48 mg/L) and Argentina (0.1–0.7 mg/L) that are
located close to agricultural areas (Silva et al. 2003; Peruzzo
et al. 2008; Tzaskos et al. 2012).

The negative effects of herbicides on swimming perfor-
mance, presented in Table 1, are in accordance with the data
reported by Bridi et al. (2017) who showed that Roundup, at
exposure concentrations of 0.5 mg/L and below, prejudiced
the swimming performance of zebrafish. Decreases in swim-
ming performance were previously associated with the inhibi-
tion of AChE in tissues of J. multidentata exposed to the
insecticides endosulfan (Ballesteros et al. 2009), chlorpyrifos
and cypermethrin (Bonansea et al. 2016). Rao et al. (2005)
also observed that chlorpyrifos inhibited AChE activity in the

Table 1 Swimming performance of J. multidentata acutely exposed (96
h) to three commercial glyphosate-based herbicides: Roundup Original®
(RO), Roundup Transorb® (RT) and Roundup WG® (RWG) at a 0.5-

mg/L concentration of glyphosate contained in each formulation. Results
are present as mean values ± standard errors. Letters indicate a significant
difference between treatments (ANOVA, p < 0.05)

Control RO RT RWG

Total distance (cm/s) 2529.4 ± 132.4a 2424.1 ± 157.9a 2112.6 ± 157.3a 1913.3 ± 105.5b

Av. speed (cm/s) 4.23 ± 0.42a 4.29 ± 0.40a 4.01 ± 0.36a 3.98 ± 0.46a

Tot. time freezing (s) 0.58 ± 0.56a 2.03 ± 2.02a 1.19 ± 0.80a Non-observed

Mobility rate (%) 96.58 ± 0.01a 96.91 ± 0.01b 96.61 ± 0.01c 96.42 ± 0.01d

Exploration rate (%) 86.37 ± 0.03a 83.05 ± 0.05b 81.66 ± 0.02c 78.68 ± 0.03d

Table 2 Sexual activity of males
of J. multidentata acutely
exposed (96 h) to three
commercial glyphosate-based
herbicides: Roundup Original®
(RO), Roundup Transorb® (RT)
and Roundup WG® (RWG) at
concentrations of 0.5 mg/L of
glyphosate. Results are presented
as mean values ± standard errors.
Letters indicate a significant dif-
ference between treatments

Control RO RT RWG

TP 215.91 ± 72.04ab 274.00 ± 80.10a 98.08 ± 24.50b 158.26 ± 42.12ab

NP 43.75 ± 6.12a 40.56 ± 8.67ab 21.38 ± 6.09b 36.78 ± 7.55ab

CA 74.71 ± 18.02a 62.00 ± 12.36a 28.25 ± 10.70b 40.22 ± 9.60ab

C 20.13 ± 6.49a 20.00 ± 4.08a 6.50 ± 1.98b 11.00 ± 2.16ab

CA/TP 0.47 ± 0.16a 0.17 ± 0.03a 0.21 ± 0.06a 0.25 ± 0.04a

CA/NP 1.36 ± 0.45a 1.42 ± 0.22a 0.91 ± 0.23a 0.95 ± 0.14a

C/TP 0.14 ± 0.05a 0.05 ± 0.01a 0.05 ± 0.01a 0.07 ± 0.01a

C/NP 0.41 ± 0.06a 0.45 ± 0.06a 0.22 ± 0.04b 0.27 ± 0.04ab

C/CA 0.29 ± 0.02a 0.29 ± 0.04a 0.20 ± 0.05a 0.27 ± 0.05a

Time taken by pursuits (TP) is expressed in seconds. NP is the number of pursuits, CA is the number of attempts at
copulation and C is the number of actual copulations
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brain of Gambusia affinis and negatively affected its swim-
ming performance. This evidence may indicate a relationship
between swimming and AChE activity. Furthermore,
previous results from Sánchez et al. (2017) showed an inhibi-
tion of the AChE activity in the muscle and brain of
J. multidentata exposed to Roundup formulations (RO and
RT) at 0.5 mg/L for 96 h, the same conditions as this study.
Thus, it could be related to the decrease in the swimming
ability of J. multidentata observed here.

There are several studies showing that glyphosate-based
herbicides cause inhibition of AChE activity in the brain, mus-
cle and gills of fish and other animals (Sánchez et al. 2017;
Sandrini et al. 2013; Modesto and Martinez 2010; Glusczak
et al. 2007). It is well known that AChE is an enzyme that
catalyses the breakdown of the neurotransmitter ACh and
some other cholines in order to stop synaptic transmission at

the neuromuscular junctions and chemical synapses of the
cholinergic type. ACh is a neurotransmitter linked to functions
such as the visual response of optical circuits, as well as gus-
tatory information during feeding, and the processing ofmotor
information. The nicotinic acetylcholine receptors (nAChR)
are related to neurotransmission, neuromodulation and olfac-
tory mechanisms, while the muscarinic acetylcholine recep-
tors (mAChR) are involved in glutamate release and memory
construction. The inhibition of AChE can be related to both
hypoactivity and hyperactivity in the behavioural responses of
fish (Marigoudar et al. 2009).

According to this study, J. multidentata is a social species;
individuals prefer to be with their conspecifics than to be
reclusive. The active preference for companions has been doc-
umented in a number of fish species, including J. multidentata
(Calcagno et al. 2016; Croft et al. 2005; Griffiths 2003; Haro
and Bistoni 2007; Soares et al. 2018; Ward et al. 2002). Social
interaction between animals is often characterized by non-
random partner selection (Whitehead and Dufault 1999), be-
ing influenced by a number of phenotypic, behavioural and
ecological factors. Phenotypic characteristics that may influ-
ence social behaviour include body length, species, colour and
parasite infestation (Krause et al. 2000). Such interactions
may confer important adaptive benefits, including reduced
predation risk through predator confusion, foraging efficiency
(Krause et al. 2000; Ranta and Lindström 1990) and increas-
ing food intake through reduced competition (Utne-Palm and
Hart 2000). The significant effect of RWG on the period of
reclusion can, therefore, affect J. multidentata shoal behaviour
and also the ability of an individual fish to find a partner for
breeding or to protect itself from predators. Mechanisms as-
sociated with the social behaviour of J. multidentata were not
the goal of the present study. However, other studies have
shown that the dopaminergic system is involved in social
preference and shoaling of the zebrafish D. rerio. It has been
proposed that proximity to conspecifics increases the levels of
dopamine (DA) and its metabolite DOPAC in the brain of
zebrafish (Saif et al. 2013). In this context, other experiments
with D. rerio showed that D1-R antagonists (antagonists of
DA receptors) decreased the social preference of this species
(Scerbina et al. 2012). In addition, the hormone vasotocin
(vasopressin like) seems to be implicated in shoaling and so-
cial preference since the administration of a vasotocin antag-
onist in D. rerio decreased these behaviours (Lindeyer et al.
2015).

Concerning the open field test, our results show that control
individuals of J. multidentata prefer the peripheral area of the
apparatus, indicating a natural behaviour of anxiety, perhaps
because they were alone. Nevertheless, RO and RT affected
this performance, increasing the time spent by the fish in the
centre of the open field test apparatus. This may be associated
with a state of depression in the fish and, in turn, could be
related to a reduction in its “alert state” (Kalueff et al. 2014;

Fig. 3 Indices of a Fulton’s condition factor, represented by K and b
gonadosomatic index (IGS) in adult males of Jenynsia multidentata ex-
posed (96 h) to the formulations Roundup Original® (RO), Roundup
Transorb® (RT) and Roundup WG® at a concentration of 0.5 mg/L of
glyphosate. Data are expressed as mean ± standard error. Lowercase
letters represent significant differences between the treatments and the
control group. Uppercase letters represent significant differences between
the treatments. Differences were assessed by one-way ANOVA and
Tukey test, p < 0.05
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Schulte 2014). Anxiety can also be associated with fear; how-
ever, in the present study, the freezing of animals during the
open field test was not observed.

The aggressiveness exhibited by J. multidentata is in accor-
dance with the natural behaviour previously described for this
species, and it is mainly associated with territorial defence and
sexual behaviour (Ortubay et al. 2002; Garcia et al. 2004). RO,
RI and RWG did not affect this behaviour. On the other hand,
tests conducted in the inhibitory avoidance apparatus showed
that fish preferred the dark area; this is to be expected for
J. multidentata since it lives in association with riparian vegeta-
tion in natural environments, which is a protected habitat (Garcia
et al. 2004; Quezada-Romegialli et al. 2009). Also, the present
results showed that all fish consolidated their memory since the
amount of time spent on the light side was significantly lower
during training than during the test. The aversive situation gen-
erated by electric shocks made the fish associate the dark area
with danger. However, exposure to RWG affected the perfor-
mance of memory consolidation since the length of time spent in
the light side was reduced when compared to the other treat-
ments. Themajor mechanism involved inmemory consolidation
is the repeated excitation of hippocampal cells, through the stim-
ulation of glutamate receptors AMPA (α-amino-3 receptors hy-
droxy-5-methylisoxazole-4-propionic) and NMDA (N-methyl-
D-1aspartato) (Izquierdo 2011). It is known that these receptors
regulate excitatory neurotransmission in the brain, playing an
important role in neural plasticity, neural development and neu-
rodegeneration (Nakanishi and Masu 1994). The hippocampus
has been a focus of attention regarding the potential formation of
LTM. Any change in the excitation or inhibition of these recep-
tors may affect memory consolidation. Although we did not
investigate the mechanism that underlies the negative effect of
RWG on LTM in J. multidentata, we suspect that the herbicide
might affect the glutamatergic pathway or glutamate receptors,
as was evidenced by Cattani et al. (2014) in the hippocampus of
rats exposed to Roundup.

J. multidentata shows sexual dimorphism and courting
behaviour that facilitates the identification of males and
females and also the investigation of reproductive activity.
Adult males present a gonopodium (copulatory organ),
constituted by a modification of the anal fin (Galindo-
Villegas and Sosa-Lima 2002), which is introduced into
the female genital pore (gonopore) to achieve copulation.
The mating behaviour is coercive; males approach females
from behind and try to introduce the gonopodium in the
female gonopore (Bizarra et al. 2000). The energy invested
by males in this process is necessary to transfer their genes
and perpetuates the species. Because the reproductive be-
haviour of J. multidentata is well characterized and easy to
view, this species has been indicated as a good model for
the evaluation of contaminants on the reproductive success
of fish (Cazenave et al. 2005; Amé et al. 2009; Hued et al.
2012; Sánchez et al. 2017).

All the herbicides affected the positive response of males
to the presence of females. However, RT was identified as
the most toxic formulation since it was the only formulation
that significantly reduced TP, NP, CA and C and also C/NP.
Results suggest that male fish exposed to RT were less
effective at the time of copulation since they invested
much more energy in pursuing and attempting to copulate
with the female and that effort did not always end
successfully. Our data corroborates the data from Hued
et al. (2012) that reported a decrease in capacity and the
number of copulations of male J. multidentata exposed to
sublethal concentrations of 0.5 mg/L of Roundup Max®
Granular. The success of the male sexual activity is directly
related to levels of testosterone. In this connection, it is
known that cytochrome P450 aromatase is the only enzyme
that converts testosterone (T) into 17β-oestradiol, playing a
pivotal role in testosterone levels. The aromatase activity in
the brain of teleost fish is higher than in other vertebrates,
indicating its importance not only for the maintenance of
testosterone levels but also for all the physiological pro-
cesses involving testosterone (T) and 17 β-oestradiol
(Diotel et al. 2010). In addition, other studies have shown
that exposure to glyphosate-based formulations and co-
adjuvants alters aromatase expression in fish as a result of
toxicity (Defarge et al. 2016; Gasnier et al. 2009; Romano
et al. 2010). Taken together, these pieces of evidence sug-
gest it is possible that some component of RT’s formulation
influences aromatase expression or activity, affecting the
sexual activity of J. multidentata males. However, it was
not measured in this study. In addition, Cortés et al. (2016)
reported that Roundup affected the olfactory bulb of the
fish Piaractus brachypomus and they proposed that the ol-
factory system is a route of herbicide contamination. The
olfactory system is directly involved in vital processes such
as social interaction, feeding, predator defence and repro-
duction (Hamdani and Doving 2007). Another hypothesis
is that perhaps the olfactory bulb of J. multidentatamales is
damaged by exposure to Roundup, affecting the ability of
males to identify female olfactory signals (pheromones).

Finally, all formulations decreased the GSI in relation to
the control group. This effect was greater in fish exposed to
RWG. The GSI is a morphological biomarker that has been
considered by several authors as an indicator of gonadal de-
velopment and maturation in fish (Isaac-Nahum and Vazzoler
1987; Vazzoler et al. 1989; Grier and Taylor 1998). The re-
sults regarding the GSI may be associated with the sperm
quality profile report by Sánchez et al. (2017), who showed
a decrease in motility and sperm concentration in
J. multidentata exposed to RO, RT and RWG. Other studies
focusing on aspects of sperm quality have shown that glyph-
osate and Roundup® in different concentrations, including
some that are environmentally relevant, cause negative effects
on the quality of spermatozoa of D. rerio, Poecilia vivipara
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and J. multidentata (Harayashiki et al. 2013; Lopes et al.
2014; Sánchez et al. 2017). Such effects on the gonads may
be reflected in males’ sexual behaviour since they produce
hormones that control sexual performance and success.

Conclusions

Roundup formulations greatly affect the behavioural patterns
of J. multidentata, which can seriously influence their long-
term survival, considering that this species inhabits areas
where these herbicides are often released into the environ-
ment. Comparison between herbicides indicates that RWG is
the most damaging formulation, taking into account fish social
interaction, space exploration, swimming performance and
consolidation of LTM, while findings regarding sexual behav-
iour in adult males showed that exposure to RT has much
more severe effects. These differences reinforce the idea that
the adjuvants present in the formulations have different targets
of toxicity. Ultimately, this study presents sensitive and eco-
logically relevant endpoints to access the effects of Roundup
exposure.
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