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Abstract
A capability for aggregating risks to aquifers is explored in this paper for cases with sparse data exposed to anthropogenic and
geogenic contaminants driven by poor/non-existent planning/regulation practices. The capability seeks ‘Total Information
Management’ (TIM) under sparse data by studying hydrogeochemical processes, which is in contrast to Human Health Risk
Assessment (HHRA) by the USEPA for using sample data and a procedure with prescribed parameters without deriving their
values from site data. The methodology for TIM pools together the following five dimensions: (i) a perceptual model to collect
existing knowledge-base; (ii) a conceptual model to analyse a sample of ion-concentrations to determine groundwater type,
origin, and dominant processes (e.g. statistical, graphical, multivariate analysis and geological survey); (iii) risk cells to
contextualise contaminants, where the paper considers nitrate, arsenic, iron and lead occurring more than three times their
permissible values; (iv) ‘soft modelling’ to firm up information by learning from convergences and/or divergences within the
conceptual model; and (v) study the processes within each risk cell through the OSPRC framework (Origins, Sources, Pathways,
Receptors and Consequence). The study area comprises a series of patchy aquifers but HHRA ignores such contextual data and
provides some evidence on both carcinogenic and non-carcinogenic risks to human health. The TIM capability provides a greater
insight for the processes to unacceptable risks fromminor ions of anthropogenic nitrate pollutions and from trace ions of arsenic,
iron and lead contaminants.
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Introduction

A study is presented to explore risks to aquifers from the
aggregated geogenic and anthropogenic contaminants, by tak-
ing on board the methodology presented by Nadiri et al.
(2018a), which introduces soft modelling and risk cells.
These are extended further by introducing Total Information
Management (TIM) using five dimensions to the aquifer risk
aggregation problem under sparse data as depicted in Fig. 1
and outlined as follows: (i) a perceptual model by taking an
overview of existing data and extracting relevant information
from past studies; (ii) a conceptual model by studying contam-
inants using both traditional and state-of-the-art techniques
(statistical, graphical, multivariate analysis and geological sur-
vey); (iii) risk cells by delineating the zone of influence of
each contaminant; (iv) ‘soft modelling’ by firming up the
learning from convergences and/or divergences of the above
conceptual techniques; and (v) investigating the processes in
each risk cell through the framework of Origins, Sources,
Pathways, Receptors and Consequence (OSPRC) .The paper
also uses Human Health Risk Assessment (HHRA) intro-
duced by USEPA (1989), as the baseline in terms of existing

risks to encourage further research. As the TIM capability
considers a wide range of processes, a critical procedure is
built in to examine its reliability by different techniques and
not by just one technique. Subsequently, the firmed-up infor-
mation is studied through the OSPRC framework and not just
by sampled data.

Available approaches for identifying the origins and source
processes of contamination are fragmented, as summarised in
Table 1, since they include discrete techniques, each of which
handles a certain aspect. The major features of the ongoing
research activities are presented in the table without dealing
with detailed information about their studies. The table is a
gap analysis and implies that (i) knowledge integration is not
quite feasible and (ii) risk aggregation is yet to be developed as
a structured methodology. Currently, the tendency is to iden-
tify single/multiple contaminants without aggregating the as-
sociated risks. For example, Grassi et al. (2014), Nakaya et al.
(2018) and Javadi et al. (2020) describe the state-of-the-art as
identifying the origin of contaminations in groundwater and
using the results in managing contamination.

Until now, risk to aquifers exposed to multiple contaminants is
carried out by HHRA given by USEPA (1989), which relies

Fig. 1 Five dimensions of Total Information Management for aquifer risk aggregation problems
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broadly on sampling data and prescribed parametric values. The
USEPAmethodology is now a standard approach, but the authors
are incrementally developing the TIM capability to fill the gaps on
aggregating risks from multiple contaminants using the above 5
dimensions, within which knowledge integration is intrinsic. The
concept of risk aggregation was introduced by the authors to ag-
gregate risk indices fromgeogenic origins like fluoride and arsenic
and from anthropogenic origins like nitrate (Nadiri et al. 2017,
2018c; Sadeghfam et al. 2018). Nadiri et al. (2017) employed
qualitatively the concept of risk cells; Nadiri et al. (2018a) devel-
oped the concept to quantitative risk index from diffused sources
of geogenic arsenic and anthropogenic nitrate; and Sadeghfam
et al. (2018) quantified risk index for an aquifer in response to
point-source and diffused contaminants.

The study identifies the above gap and treats them by
employing the TIM framework through the five dimensions as
per Fig. 1. Although these dimensions have been discussed by
the authors in varying details (see Nadiri et al. 2017; Sadeghfam
et al. 2018), these applications are at their infancy, especially
studies dealing with the last three dimensions. TIM provides a
capability to aggregate risk indices of aquifers exposed to multi-
ple contaminants. The paper makes explicit the five dimensions
of TIM unlike authors’ past studies, which are implicit. The
justification for five TIM dimensions is provided in due course
but references may be made to above studies for further details.

Global perspective on risks to aquifers provides better under-
standing to aquifer risk problems that fall within the scope of the
study through the two basic developments since theWorldWar II
as follows: (i) significant increase in livestock and crop production
by the green revolution since the 1950s affected water and soil
quality by unmanaged consumption of nitrate-based fertilisers

(Tilman et al. 2001; Galloway et al. 2008) and (ii) past ad hoc
management procedures were ineffective to control impacts but
policy-driven planning systems capable of putting a grip over
impacts of the green revolution are yet to penetrate globally.
Policy-driven planning systems accompanied by participatory de-
cision-making, e.g. the Aarhus convention, as adopted in Europe
(https://ec.europa.eu/environment/aarhus/legislation.htm) are yet
to be taken up globally.

The Aharchay basin is investigated, which is located in the
East Azerbaijan province, northwest Iran. Notably, planning
and management practices are poor in the study area and the
data availability are sparse. In the absence of a monitoring
program for the aquifer, the study inevitably was carried out
based on recent samples taken by the authors. The paper aims
to clarify impacts of major, minor and trace ions and to take
the advantage of the information derived from the sparse data
to formulate perceptual and conceptual models and to aggre-
gate risk indices for arsenic and nitrate anomalies at the an-
thropogenic and geogenic origins.

Study area

Geographical and geomorphological context

Ahar plain, located in the East Azerbaijan province, is approx.
1000 km2 and the elevation in the study area varies from 1220
to 3123 m (A.M.S.L). The plain is drained by Aharchay (or
Ahar Chayi, the River Ahar) and is embanked by Sattarkhan
dam, located to the west of the historic city of Ahar, the main

Table 1 Review of published research works

Authors Goal Methods OSPRC Contaminants

Cloutier et al. (2008) Hydrochemistry evaluation GM1 and MAM 2 - Major and minor ions
Delgado-Outeiriño

et al. (2009)
Chemistry evaluation GM1 and MAM2 - Major and trace

inorganic elements
Shukla et al. (2010) Identify source and controls of Arsenic Petrological studies S Arsenic
Nadiri et al. (2013) Predict fluoride concentration Artificial intelligence models - Fluoride
Grassi et al. (2014) Identify contaminant Sources GM1 and Stratigraphic log - Boron, Arsenic
NaKagawa et al.

(2017)
Identify source of nitrate-N pollution Use coprostanol as indicator for the

source of pollution
S Nitrate-N

Nakaya et al. (2018) Identify transported elements from river to rice fields Spatial distribution, MAM2 - Arsenic, Cesium,
Cadmium, Lead

Bondu et al. (2018) Geochemical sources and health risks GM1 and Isotopic study S Arsenic
Xing et al. (2019) Identify contaminant source in groundwater Kriging, radial-based

function, LS- SVM
S Conservative

contaminant
Nadiri et al. (2018b) Use OSPRC for detecting Ar and NO3 at GM1, MAM2, OSPRC OSPRC Arsenic and nitrate
Nadiri et al. (2018a) Use OSPRC for detecting arsenic GM1,MAM2, OSPRC& Isotopic study OSPRC Arsenic
Sadeghfam et al.

(2018)
Identify S-P by Kaveh-Soda pollution Point- and diffuse-sources using

numerical modelling
SP3 and

Risk
Major and minor ions

Present study Qualitative risk aggregation from anthropogenic and
geogenic contaminations

GM1, MAM2 and OSPRC
Framework

OSPRC Arsenic, nitrate-N,
Fluoride

GM graphical method,MAM multivariate analysis method, SP source pathways
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city in the study area, 110 km northeast of Tabriz. The annual
rainfall in the basin is 294 mm for the period of 1991–2016.

Sedimentation of alluvial materials along the plain has not
been fully established, as the aquifer is not a wide and deep
single continuum but a series of patchy aquifer units with
significant contributions to water resources. The general slope
of the plain varies from 0 to 8% and increases from the
thalweg of the river towards its upper lands. Since the
1980s, the region is subjected to considerable anthropogenic
activities including mining activities (e.g. Sungun mines at the
northwest of the study area), agricultural activities, animal
farming and livestock and an embankment reservoir at
Sattarkhan dam, all with impacts on the Ahar basin. There is
not much recorded data on hydrology/environmental factors
to relate its status to its past baseline.

Hydrology and hydrogeology of study area

Aharchay, themain river in the study area (see Fig. 2), flows in the
direction fromwest to east and drains the area to the Caspian Sea,
as a tributary of Qarasu, which in turn is a tributary of the River
Araz and that of the River Kur estuary at the Caspian Sea. The
river rises from Pir ShafaMount and is mainly rain-fed and snow-
fed with known overflows in springs. The river has numerous
tributaries including Mustafachay and Kashanchay and is a per-
manent stream but now dries up in summer seasons due to ab-
stractions in its lower reaches.

The aquifer system in the study area is characterised as patchy
for being composed ofmany smaller aquifers scattered throughout

the plain. The aquifer along the main river of Aharchay is rather
extensive than those of its tributaries. The data obtained from the
excavation of 24 exploratory and observation wells indicate that
the overall aquifer is unconfined and themaximum andminimum
value of groundwater elevation in the 24 observation well is 1744
and 1241 m above mean sea level, respectively.

Abstraction of groundwater in the study area is through
wells, springs, and qanat system. The highest thickness of
the alluvium occurs at the south of the study area, which is
approx. 60 m but varies to 30 m away from the river. The
thickness of the alluvium in the eastern half of Aharchay is
less than its western parts, where the minimum thickness is on
the outcrops of the formations of the region and is less than 10
m. The alluvium of the region is a mixture of gravel and sand
and silt and clay, where fine grains are located mostly on the
banks and floodplain, and especially near the city of Ahar. In
Ahar plain, the highest amount of transmissivity occurs at the
western and central parts of the plain and Aharchay, which is
approx. 250 m2/d. The transmissivity decreases gradually to-
wards the outer part of the plain and due to the low thickness
of the aquifer; it reaches less than 100 m2/d near the outcrop
around the plain. Within the city of Ahar, estimated transmis-
sivity is 150 m2/d. The estimated specific yield is at 3–5% as
per grain size of the alluvium in the area.

Geology

Ahar sub-basin is located in the Azerbaijan-Alborz type of
tectonics unit. The oldest deposits in the study area belong

Fig. 2 The study area and locations of withdrawal wells and water resource
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to the upper Cretaceous era. The recent alluvial deposits of
Quaternary are found as glacial deposits in most parts and in
the vicinity of Aharchay, as well as recent alluvial sediments
such as travertine and other alluvial deposits throughout the
study area. Geologically, the lithological units that outcrop in
the study area mainly include igneous rocks, where their water
potentials depend on the aperture of fissures due to

fragmentation and rock solution. Their effects on water re-
sources are often explained in terms of structure, texture and
basic lithological properties. Formations and lithological units
that outcrop in the study area include limestone and
Cretaceous marl to Quaternary igneous rocks. According to
the geological map of 1: 250,000 Ahar (Fig. 3), the main
geological units in the region are as follows, in order of age:

Fig. 3 Geology map of the study area
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Cretaceous

The Cretaceous sequence includes basic volcanic rocks, bor-
derline to acidic, and sedimentary deposits that have a rela-
tively limited number of outcrops in the region. The
Cretaceous sequence in this region includes lithological units
belonging to the Upper Cretaceous.

Palaeocene-Lower Eocene

The outcrops of this sequence mostly include the outer igne-
ous rocks associated with the continental and the shallow ma-
rine environments.

Miocene-Oligocene

The 5 lithological units of the Oligocene-Miocene sequence
consists of only two outcrop units in the study area, one of
which includes Monzonite, Granite and Aplite.

Pliocene

The Pliocene sequence consists of four lithological units with
only two units having outcrops in the study area. One of the
units consists of a conglomerate with poor roundness with the
siltstone unit and is widely found in the northern and southern
highlands overlooking Aharchay, especially in the upper
reaches of the city of Ahar. This formation has a relatively
smoother morphology than the other units in these areas. The
lithology of the other unit comprises ignimbrite with limited
outcrops at the western and southwestern ends of the study
area.

Quaternary

The lithological units and deposits of Quaternary include vol-
canic rocks, altered hydrothermal units, and discontinuous
deposits. Quaternary volcanic rocks include basalt and alka-
line andesite. The discontinuous deposits, seen at the foot of
the heights in the form of the long alluvial terrace and alluvial
fans, are present on both sides of Aharchay. New alluvial
terraces are located at lower levels, which include sediments
containing cobbles spread over a large part of Ahar plain.
Additionally, there are also river sediments in riverbeds and
riversides.

Data availability

According to the East Azerbaijan Regional Water Authority
(EARWA), there are 19 deep wells, 623 semi-deep wells, 99
springs, and 41 qanats in the study area. There are 27 sampled
data taken from springs, qanats, rivers andwells at the study area,
distributed over the entire region shown in Fig. 4a, which is a pie

diagram of the samples over the study area and provides a first-
hand evidence for contaminants. These were taken in 2018 to
measure water quality for the study area.

As can be seen from Fig. 4a, the size of the circles shows
the distribution of the chemical of groundwater in the plain, in
which the circle size is relative to the quantity of total dis-
solved solids (TDS). Further results are displayed in Table 2
and Fig. 4b–c, which show that the study area is impacted by
two sets of contaminations: (i) nitrate: there are nearly 4
hotspots of nitrate pollutions but most of the other observation
wells also suffer from excessive concentrations with respect to
permissible values set by WHO (2004) and hence this risk is
distributed system-wide with variable concentrations; (ii) ar-
senic, lead and iron: there are 4 hotspots of these trace ele-
ments concentrations but each surrounded by rather low
values and hence this risk is currently viewed as local (but
under further investigations).

Methodology

Human Health Risk Assessment (HHRA) by USEPA (1989)
is outlined to serve as a benchmark to argue the need for
exploring further developments through Total Information
Management (TIM). This section presents both and outlines
5 dimensions of TIM, which lays down the approach for ag-
gregating risks to aquifers from multiple contaminants.

EPA Human Health Risk Assessment

Human Health Risk Assessment (HHRA), developed by
USEPA (1989), combines the concepts of human health and
risk to investigate the degree of harm to human body expo-
sures against carcinogenic or non-carcinogenic ions through
inhalation, oral and dermal or other similar ‘pathways’, where
the term pathways here represent quite a different continuum
than those in the OSPRC framework. Four steps are required
to implement HHRA as follows:

(i). Hazard identification identifies the pollutants with ex-
ceedance from allowable contamination level, whether
they are carcinogenic or non-carcinogenic.

(ii). Dose-response assessment establishes a relationship
between the degree of exposure and adverse health re-
sponses. The dose-response relationships are described
in terms of cancer slope factor (CSF) and reference dose
(RfD) for carcinogenic and non-carcinogenic impacts,
respectively. Notably, CSF and RfD values for different
ions are prescribed by (USEPA 2004).

(iii). Exposure assessment measures human exposure to a
pollutant by considering intensity, time and frequency.
Exposure assessment is carried out by considering the
two oral and dermal pathways. Notably, Chronic Daily
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Intake (CDI) and Dermal Absorbed Dose (DAD) quan-
tify exposures in oral and dermal pathways, respective-
ly. CDI and DAD calculations require a set of pre-
scribed parameters as detailed in USEPA (1991, 2004).

(iv). Risk characterisation quantifies the probability of
harmful impacts on humans exposed to a characteristic
pollutant in the form of carcinogenic and non-
carcinogenic risks (USEPA 1989):

NCHQOral ¼
CDI
RfD

; NCHQDermal ¼
DAD
RfD

; NCHQ

¼ NCHQOral þ NCHQDermal ð1Þ
RiskOral ¼ CDI � CSF;RiskDermal

¼ DAD� CSF; Risk ¼ RiskOral þ RiskDermal ð2Þ

where NCHD is non-carcinogenic hazard quotient or non-
carcinogenic risk and Risk is the carcinogenic risk. Notably,
whenNCHQ and Risk exceed 1 and 10-4 respectively, impacts
on health are likely on exposed individuals (Zhang et al.
2019). Risk and NCHQ can be calculated for different ‘recep-
tors’, e.g. adult, children and infants, where the term receptor
here refers to quite a different continuum than those in the
OSPRC framework.

Total Information Management (TIM) under sparse
data

Dimension 1: perceptual model

The term perceptual model is used widely by practi-
tioners, although it does not refer to any explicit proce-
dure. The generic features of the processes include the
identification of past desktop studies, gathering

Fig. 4 Measured ions to form a conceptual model for the study area using the 27 samples: a pie charts of the ions, b OSPRC cells for nitrate minor ions
and c OSPRC cells for trace ions
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observations during site visits, past desktop risk assess-
ment exercises, collecting general-purpose data including
geological formations of the site and any other relevant
information. A perceptual model may identify primarily
building blocks of the new study but without producing
evidence as the aim is to formulate a starting point for the
risk aggregation problem, which may include details of
aquifers and their connections, potential pollutants to
highlight anthropogenic hazards, land use, mineral com-
position to anticipate geogenic processes. Perceptual
models systematise experts’ initial opinions.

Dimension 2: conceptual model

Conceptual models refer to each of the techniques used in
hydrogeochemical studies, which are diverse techniques and
include statistical techniques, graphical techniques, multivar-
iate analysis and geological survey. Normally, all of these
techniques are used by practitioners, who select those to gain
a sufficient insight into a particular problem. Researchers are
often focussed on the state-of-the-art techniques, e.g. multi-
variate analysis. However, the authors promote TIM practices
through soft modelling, as outlined in the ‘Dimension 2: con-
ceptual model’ section 3.2.4. Conceptual models provide

evidence for identifying risk cells for a study area, as outlined
below.

Dimension 3: delineating risk cells

A risk cell defines a complete domain, where appropriate
OSPRC processes take place towards risk exposures and this
builds up on the works by Nadiri et al. (2017, 2018c) and
Sadeghfam et al. (2018). A study area is broken down into
as many risk cells as required, each of which occupies a spatial
layout and may partially coincide with other risk cells but each
allows the passage of information on an individual risk
through the process of OSPRC. One analogy to this is tele-
phone lines, through which different communication lines are
transmitted without interference.

Dimension 4: soft modelling

The trend in existing hydrogeochemical studies is to focus
on the state-of-the-art techniques by investigating samples
of concentrations of ions (statistical analysis, graphical
methods, multivariate analysis or isotope analysis) without
taking the benefit from the full range of techniques. The
problem is that the results of different techniques may

Table 2 Statistical summary of hydrogeochemical characteristics in samples

Ions/

Variables
Type Units Permissible Maximum Minimum Mean Std. Dev. Skewness Kurtosis

Na+

Major 

Ion

meq/L 0.05 21.03 0.59 3.72 3.83 3.83 17.05

K+ meq/L 0.01 2.07 0.01 0.15 0.39 5.02 25.72

Ca2+ meq/L 0.30 13.52 1.28 5.09 2.91 1.43 2.35

Mg2+ meq/L 0.03 10.88 0.48 2.97 2.13 2.18 6.70

HCO3
-/ CO3 

2- meq/L No guideline 9.40 3.20 6.04 1.83 0.33 -1.05

Cl- meq/L 0.25 29.90 0.90 3.72 5.68 4.17 18.76

SO4
2- meq/L 0.25 7.38 0.06 2.56 2.18 0.77 -0.29

NO3
-

Minor 

Ion

mg/L 10.00 177.74 3.38 42.23 39.29 1.99 5.05

F- mg/L 1.50 1.40 0.50 0.87 0.22 0.45 0.37

As
Trace 

Element

mg/L 0.01 0.12 0.00 0.03 0.05 0.90 -0.97

Fe mg/L 0.30 0.90 0.10 0.37 0.21 1.04 0.30

Cu mg/L 2.00 0.01 0.00 0.00 0.00 0.97 -0.93

Pb mg/L 0.01 0.03 0.00 0.01 0.01 1.02 0.81

EC μS cm-1 1000. 4500 373 1190 811.65 2.89 10.56

TDS mg/L 2.00 2880 238. 761 519 2.89 10.55

pH - 8.50 8.50 6.23 7.59 0.56 -0.58 0.21

Colour Code Major Ions Minor Ions Trace Ions Properties Ions exceeding permissible levels

Note 1: Carbonate (CO3
2-) concentration is under determination.

Note 2: Use charge balances of the water samples based on Hounslow (1995) for accuracy analysis.  

Note 3:  Determine the analytical precision for the measurement of ions by calculating the Normalised 

cation - anion
+ -)}.

Note 4: The results for the fractional difference between the total cations and total anions (Edmond et al., 

1995) for all the samples were <5% and hence reliability of their analysis.

Note 5: Permissible concentration refer to values presented by WHO (2004).
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partially converge, but their divergences are also a real pos-
sibility. Soft modelling, introduced by Nadiri et al. (2018a),
uses collectively existing techniques, where the term ‘soft
modelling’ is an adaptation for hydrogeochemical studies
from the analogy with soft systems by Checkland and
Scholes (1999). Each technique studies aspects of the prob-
lem, e.g. dissolutions identify chemical processes (reduc-
tion or oxidation) by ion exchange, reverse ion exchange
to detect their origins. Knowledge integrat ion in
hydrogeochemistry is not topical, but any inherent barriers
can be removed by soft modelling.

Knowledge integration by soft modelling, as introduced
by Nadiri et al. (2018a), is based on classifying the available
techniques into increasing levels of complexity, similar to
the basic idea by Khatibi (2012). Thus, models are sequen-
tially firmed up as outlined in Appendix Table 8, the sum-
mary of which is as follows:Level 0, data are parsed out and
the basis for perceptual/conceptual models are formulated;
Level 1, statistical analysis is carried out using the available
sample data, which provides information on learning inher-
ent processes and chemical dissolutions; Level 2, graphical
diagrams (Hounslow 1995) are constructed from the data,
which are driven by a degree of top-down knowledgebase
and their results identify types and sources of the ions in the
dissolution in aquifers; Level 3, more sophisticated mathe-
matical techniques are used, e.g. multivariate analysis
(Cloutier et al. 2008; Delgado-Outeiriño et al. 2009) and
produce a bottom-up approach to learn from pollutant data.

Research papers often suffice to the Level 3 techniques or
higher, but the paper promotes the full hydrogeochemical
techniques.

Dimension 5: OSPRC risk cells

The OSPRC framework was introduced recently to ground-
water contamination studies by Nadiri et al. (2017, 2018c) and
Sadeghfam et al. (2018), where a framework refers to the
consensual use of each of the dimensions, as there is no the-
oretical or empirical basis for the choice of each dimension.
The ‘Origin’ dimension is their suggestion for the generalisa-
tion of existing SPRC framework, reviewed byKhatibi (2008)
in detail and suggested its suitability for the aggregation of
multiple flood risks. OSPRC is the key to unify the study of
multiple risk processes in risk aggregation problems, and the
authors published works offer a proof-of-concept for aggre-
gating risk from geogenic arsenic anomalies contaminating a
series of patchy aquifers, where the risk was local but trans-
formed into a system-wide risk by an impounding reservoir
(see Nadiri et al. (2017)).

The use of OSPRC risk cells requires a knowledgebase similar
to expert systems to study the processes for each contaminant.
There is no such a system yet, but the authors have put together
one such knowledgebase in a tabular form using their experience
for the contaminants identified in this study, as given below in
Table 3. Risk cells serve as a way to delineate the domains for
each of the contaminants, whereas the OSPRC framework takes

Table 3 OSPRC Framework for minor and trace contaminants

Contaminant Origin Source Pathway Receptor Consequent

Nitrate Anthropogenic activities
(agricultural, animal
manures and domestic
sewage)

Natural occurrences by
oxidising organic matter

(Nakagawa et al. 2017; Bondu,
et al. 2018; Panno et al. 2006)

Point source
Nonpoint source

GW flow
direction

Human
Animal

Plant

Methamoglobinaemia
Gastric problems

Arsenic Anthropogenic
Geogenic or natural such as

basin-fill deposits,
geothermal and volcanic

activities
Biological
(Martin et al. 2017; Nadiri et al.

2018a; Li et al. 2017; Cao et al. 2018)

Leaching from geological
formation 6.5 ≤ pH ≤ 8.5 under
both oxidising and reducing
conditions

GW flow
direction

Human
Animal
Plant

Vascular and
cerebrovascular
diseases,
cancers, infant
mortality,
dermatologic disease

Iron Geogenic or natural such as
basin-fill deposits

Biological
(Blarasin et al. 1999;

Zhang et al. 2020)

Aeration of iron-containing layers
in the soil can affect the quality
of water. The dissolution of iron
can occur as a result of oxidation
and a decrease in pH.

GW flow
direction

Human
Animal
Plant

Haemochromatosis

Lead Anthropogenic activities
(agricultural, gasoline (

Geogenic or natural such as
basin-fill deposits, sulfide minerals

(Nicholson et al. 2003; Ju et al. 2007;
Siegle 1979)

Leaching from geological
formation

GW flow
direction

Human
Animal
Plant

Sarturnism
high blood pressure and

anaemia
harmful to the developing

brains of foetuses and
young children
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on board the processes to study coherently inherent processes. The
SPRC frameworks are normally used as descriptive tools for
linking hazard to consequence of a particular risk and more so
of risk of floods (e.g. see Nathanail et al. 2005; Thorne et al. 2007;
Khatibi 2008). The SPR dimensions refer to the physical process-
es, but consequence is amatter of societal values. It is important to
note that Origin is not analogous to hazard, as these two terms
refer to quite different concepts.

Descriptive and quantitative risk aggregation

If conditions are right, risks from multiple sources over a study
with multiple aquifer types can be aggregated by quantitative
approaches, as follows. The OSPRC framework can be applied
in each risk cell by the further step of dividing each risk cell to
grids. This enables the study of vulnerability at each grid cell to
both anthropogenic contaminants using, say, the DRASTIC
framework and geogenic contaminants using, say, the SPECTR
framework (e.g. for As, Pb and Fe), similar toNadiri et al. (2018b)
and Sadeghfam et al. (2018). These can be transformed into risk
mapping tasks by appropriate changes in themathematical formu-
lations, the proof-of-concept for which has been given by Nadiri
et al. (2018b) and Sadeghfam et al. (2018). However, the quanti-
tative approaches require the continuum to be capable of a system-
wide diffusion of the contaminant. When the latter conditions
cannot be guaranteed, a descriptive TIM is still informative.

Results for the study area

Two sets of results are presented: preliminary results bring
together the analysis at Level 0 through the contribution of
Dimensions 1, 2 and 3 to facilitate the next stage; detailed
results by using the information from the latter four dimen-
sions with the outcome of identifying risk cells and decisions
on risk aggregation.

Results using USEPA

The HHRA framework was implemented through a programma-
ble platform, and the summary of results is presented in Table 4.
The health risk values were calculated for 27 samples within the

study area and include (i) non-carcinogenic risk (NCHQ) for ni-
trate in oral and dermal pathways, (ii) carcinogenic risk (Risk) for
arsenic in oral and dermal pathways, and (iii) carcinogenic risk
(Risk) for lead in oral pathway. Notably, the following values are
not available: CSF for lead in the dermal pathway and CSF and
RfD for iron. The prescribed values are taken from the EPA
publications, particularly USEPA (1989), USEPA (1991) and
USEPA (2004) (Zhang et al. (2019)).

Table 4 provides results that mean values of carcinogenic/
non-carcinogenic risks for 27 samples exceed allowable limits
(10-4 for carcinogenic risk and 1 for non-carcinogenic risk), in
which 70, 52 and 37% of nitrate, arsenic and lead samples
exceed their allowable risk limits. Figure 5 illustrates spatial
distributions of estimated health risk within the study area.
Although the study area is a series of patchy aquifers, mapping
the results by a system-wide distribution contains uncertainty
but may be considered good enough to provide a visual rep-
resentation of spatial pattern of health risk values.

In spite of the flags above on the accuracy of the results in
Fig. 5, they should be fit for indicative observations, as fol-
lows. Risks from individual pollutants are likely to be adverse
near their sources but distributed over larger areas and the
sources for each pollutant are at different locations. Also, ag-
gregated risks would be quite significant over the study area,
but this a simple numerical aggregation of these values, which
are unlikely to be defensible. This justifies the need for TIM.

Preliminary results using TIM

Dimension 1—contextualisation of the study area
by perceptual model

The basis for the perceptual model is the main character-
isation of the study area, presented in the ‘Data availabil-
ity’ section, where the aquifer system is found to be com-
posed of a series of patchy unconfined aquifers often iso-
lated from one another.

Relevant to the perceptual model of the study area is the pre-
liminary knowledge on its baseline, and as such the basin was in a
rural agrarian region up to the 1970s with well-tested balance
between land use and its rural agrarian economywith a sustainable
way of life. However, water records show that there is some

Table 4 Summary of HHRA results

Element Carcinogenic Non-
carcinogenic

Pathway Receptor Variation
range

Mean
value

Standard
deviation

Percent of samples above
allowable limit

Oral Dermal Adult Children

Nitrate ✓ • • ⊗ 0.2 – 11.2 2.7 2.5 70%

Arsenic ✓ • • ⊗ 0 – 0.0043 1.2 ×
10-3

1.6 × 10-3 52%

Lead ✓ • ⊗ 0 – 3.7 ×
10-4

1 × 10-4 9.5 × 10-5 37%
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decline in water table in recent years due to increased pumpage
from the aquifers, and this has given rise to some subsidence
within the plain. There are no known hydrogeochemical investi-
gations on the study area prior to recent years, and no data is
available on the history of geogenic contaminations. However,
there is no notable settlement in the study area to be exposed to
health problems, but the area was thriving, though badly
neglected.

Dimensions 2 and 3—results of conceptual model and risk
cells

A conceptual model (Dimension 2) of the study area draws on
from the data at the 27 samples measured in 2018, as
displayed in Fig. 4 with the map of the pie diagram of the
samples as well as in Table 2. The assessment of data quality

is specified in Table 2, which summarises statistical parame-
ters, including maximum permissible concentrations for natu-
ral water (WHO (2004)).

The above results are indicative of four main contaminants
in the study area, which are nitrate often from anthropogenic
origins, and arsenic, lead and iron, often of geogenic origins,
but these need to be identified. The salient findings from
Table 2 include (i) most of the sampled major ions exceed
their permissible values for drinking water standard (WHO
2004) by a moderate margin but they are not alarmingly high
yet; (ii) hotspots exposed to nitrate pollutions reach asmuch as
17 times the maximum allowed by the World Health
Organisation (WHO 2004) standards at 50mg/L; (iii) hotspots
exposed to arsenic contamination reach 0.12 mg/L, which is
as much as 12 times greater than the World Health
Organisation (WHO 2004) at the permissible limit of (0.01

Fig. 5 Spatial distribution of health risks: a non-carcinogenic risk by nitrate, b carcinogenic risk by arsenic and c carcinogenic risk by lead
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mg/L); (iv) exposures to iron concentration exceed 3 times the
maximum allowed by the World Health Organisation (WHO
2004) standards at 0.3 mg/L; (v) lead contamination is approx.
1.5 times the maximum allowed by WHO standards at 0.01
mg/L; and (vi) the emerging information is essential to delin-
eate risk cells.

The results further shows that electrical conductivity (EC) of
the samples range from 373 to 4500 μS cm-1, in which its high
values notably at central parts of the plain and are associated
with fine-grained particles with a considerable impact on resi-
dence time. The pH values range from 6.23 to 8.5, which indi-
cate that the water in the aquifer changes from neutral to basic.

Delineating risk cells

A closer view of the data presented in Table 2 and Fig. 4
indicates that arsenic, iron and lead concentrations are seem-
ingly local and not overly diffused in the environment. This is
a discontinuity and attributable to the following: (i) the aquifer
system is patchy, (ii) the contaminants are triggered recently
or (iii) contaminants are of local significance even if they are
of an old anomaly due to peculiar formation characteristics. A
side effect of this key finding is that a quantitative application
of the TIM capability to the study area is not feasible at this
stage until further samples are taken to explain the discontinu-
ity in the diffusion of the sample data. Therefore, the paper
suffices to a descriptive application of the TIM capability.

The above are sufficient to delineate risk cells in the basin
using geological formations and these are depicted in Fig. 4b–
c, which comprise four broad risk cells, as follows: (i) Risk
Cell 1 (N1 and T1): exposed to high risk from nitrate, arsenic
and iron located; (ii) Risk Cell 2 (N2 and T2): exposed to low
risk from nitrate, arsenic and iron but exposures to lead are
moderate; (iii) Risk Cell 3 (N3 and T3): exposed to high risk
on lead and moderate risk on nitrate, arsenic and iron; and (iv)
Risk Cell 4 (N4 and T4): exposed to low risk from lead and
iron and moderate risk from nitrate and arsenic. Notably, N
refers to nitrates and T for trace elements.

Detailed results using TIM

Overview

The parsing of the data in the ‘Data availability’ section facil-
itated the delineation of broad risk cells in Fig. 4b–c, which
are the basis to integrate knowledge and study Dimensions 2,
3 and 4 and (see Table 5). In reality there are 16 risk cells, four
for each contaminant.

The information integrated by Table 5 is justified through
the results presented below.

Levels 1–2

Due to the discontinuity in the diffusion of arsenic, iron and
lead concentrations, the TIM capability is applied broadly to
contaminants in each risk cell and outlined below.

Techniques at Level 1: Statistical Analysis

At this level, Pearson correlation, r and scatter diagrams of
binary ions are employed. The bivariate correlation analysis
between pairs of hydrochemical parameters has been used for
measuring the r-values of ions, see Table 6. These are present-
ed in four designated bands associated with the strength of the
r-values. Overall, a positive r-value between two ions is sug-
gestive of their common origins but negative or close to zero
values are of differing origins and processes.

As per Subba (2002), strong correlations of EC with Cl-

(0.94), Ca2+ (0.83), Na+ (0.93) and Mg2+ (0.94) indicate the
trend for chemical activities and this may be explained by (i)
a common trend of groundwater though the flow direction due
to water-rock interactions; (ii) the decline of water table in the
basin due to over-abstraction and a gradual loss of dilution; and
(iii) an increase in residential time of groundwater and water-
rock interactions in low hydraulic conductivity area. As per
Drever (1997) and Mahlknecht (2003), the r-value of 0.93 of
sodiumwith chloride indicates that sources of sodium are halite
solution in groundwater and the r-value of 0.71 and 0.87 of
calcium and magnesium with chloride indicates the groundwa-
ter aquifer system encourages a possible ion-exchange process.

Scatter Diagram of Binary Ions:As can be seen in Fig. 6a
and 6b, four hydrochemical process are detected, which include
(i) dissolutions of calcite and dolomite from limestone formation
(Fisher and Mulican, 1997) and dissolutions of anhydrite or
gypsum from marl and siltstone formation with evaporate inter-
bedded (Kumar et al. 2006) referred to as the simple dissolution
process (Venugopal et al., 2009); (ii) reverse ion exchange in
fine-grained sediments; (iii) ion exchange in fine-grained sedi-
ments; and (iv) halite dissolution from Pliocene Formation.
However, approximately 80% of the water samples have Na+/
Cl− ratios significantly greater or lower than 0.5 indicating exis-
tence of another sodium and chloride source (see Fig. 6b).

Techniques at Level 2: graphical analysis

Piper diagram

As can be seen from Fig. 7a, hydrogeochemical types of
groundwater from qanats, springs, abstraction wells and river
are analysed by the Piper diagram. To distinguish different
types of groundwater, the diamond plot is divided into five
zones (A, B, C, D and E). Each zone is associated with certain
anions and cations associated with an appropriate type (see
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Fig. 7a). The zones in the study area comprise: A (temporary
hardness) and E (mixing zone).

Stiff diagram

Based onHounslow (1995), the Stiff diagram (Fig. II.2b) indicates
that groundwater samples of this study area are from six diverse
origins: (i) Class C1: reverse ion exchange, (ii) Class C2: evapo-
rate formation, (iii) Class C3: dolstone or mafic rock formation,
(iv) Class C4: limestone origin, (v) Class C5: acidic rock, (vi)
Class 6: Mixing origin. According to the above results and those
in Fig. 7, the gradual decrease in the quality of groundwater can be
realised, which is reflected by high EC values in the east part of
Aharchay valley and subsequent increasing residence time.

Expanded Durov diagram

This diagram shows three processes (Fig. 7c): (i) general pro-
cesses of groundwater, which indicate simple solution (water-
rock interaction) or mixing of groundwater with different or-
igins; (ii) ion exchange; and (iii) reverse ion exchange process.

Level 3: hierarchical cluster analysis—HCA

One multivariate technique employed by the paper is hierarchical
cluster analysis (HCA), which clusters the data in convenient clas-
ses (Reghunath et al. 2002) to similar samples. HCA uses 27
samples in terms of concentrations of Ca2+, Mg2+, Na+, K+, Cl-,

SO2−
4 , HCO−

3 , NO
−
3 , EC, F

-, As, Fe, Cu and Pb, as well as chem-
ical properties of EC, TDS and pH. It uses z-transformation to
scale the data and groups them by the Ward’s method (Ward
1963) to calculate similarity among the samples by linkage with
Euclidean distance (Deza and Deza 2009). Figure 8 gives the
dendrogram of HCA results, in which a threshold value of 6.5 is
adopted for the linkage distance, and this value is selected on the
basis of expert opinion. It produces a dendrogram with four clus-
ters, and their cluster analysis shows the influence of EC values on
the classification, where such an analysis is beyond the capability
of the graphical methods. The salient features of each cluster are
outlined, as follows:

Cluster (I). corresponds to 4% of all samples and comprise
Sample 6, in which an examination of the results
show that EC has a value more than 4000 μs/cm
and Cl has its highest value. There is a strong
association between Cluster 1 and nitrate and
Arsenic concentrations.

Cluster (II). corresponds to 7% of all samples and comprises
Samples 4 and 5, in which an examination of the
results shows that chlorine is at a high level.
Cluster II includes samples with EC between
2000 to 3000 μs/cm. There is a strongT
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association between Cluster II and nitrate and
Arsenic concentrations too.

Cluster (III). corresponds to 67% of all samples and com-
prise Samples 1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 16,
17, 18, 19, 20, 21, 24 and 26, in which EC
varies in the range from 1000 to 2000 μs/cm.

There is a strong association between Cluster
III and nitrate and Arsenic concentrations.

Cluster (IV). corresponds to 22% of all samples and com-
prises Samples 13, 15, 22, 23, 25 and 27, in
which EC values are less than 1000 μs/cm
with no nitrate or arsenic contamination.

Table 6 Correlation matrix of the 16 chemical variables

Parameter Ca2+ Mg2+ Na+ K+ HCO3
- ± 

CO3 
2- Cl- SO4

2- NO3
- F-- As Fe Cu Pb EC TDS pH

Ca2+ 1

Mg2+ 0.67 1

Na+ 0.58 0.89 1

K+ 0.12 -0.01 -0.02 1

HCO3
- ± CO3 

2- 0.40 0.34 0.32 0.27 1

Cl- 0.71 0.87 0.93 0.04 0.24 1

SO4
2- 0.57 0.58 0.47 -0.12 0.03 0.39 1

NO3
- 0.62 0.51 0.47 0.07 -0.19 0.64 0.39 1

F-- 0.06 0.04 0.02 0.08 0.32 -0.06 0.18 -0.19 1

As 0.38 0.46 0.26 -0.08 -0.12 0.29 0.52 0.46 -0.10 1

Fe 0.35 0.33 0.08 0.03 -0.12 0.15 0.42 0.41 0.05 0.82 1

Cu 0.46 0.32 0.25 -0.03 0.37 0.35 0.08 0.15 -0.18 0.00 -0.02 1

Pb -0.01 -0.18 -0.13 0.23 0.17 -0.14 -0.11 -0.12 -0.08 -0.13 -0.05 0.06 1

EC 0.83 0.94 0.93 0.07 0.40 0.94 0.58 0.60 0.04 0.38 0.25 0.37 -0.12 1

TDS 0.83 0.94 0.93 0.07 0.40 0.94 0.58 0.60 0.04 0.38 0.25 0.37 -0.12 1.00 1

pH -0.43 -0.27 -0.14 -0.18 -0.05 -0.21 -0.38 -0.27 0.12 -0.37 -0.47 0.08 0.31 -0.31 -0.31 1

* Correlation is significant at the 0.05 level of significance (2-tailed)

** Correlation is significant at the 0.01 level of significance (2-tailed)

Designating bands for r-values at the significance level of 

ρ < 0.05 by Kumar et al. (2006):

Good correlation Band: if r-values approaching ±1 

Strong Correlation Band: if r > 0.8 - the figures are in red

Moderate Correlation Band: if 0.8 ≤r ≤0.7 - the figures are in blue

Significant Correlation Band: if 0.7 ≤r ≤0.5 - the figures are in green

Fig. 6. a Level 1: binary ions (Ca2+ +Mg2+ versus HCO−
3 þ SO2−

4 ). b Level 1: scatter diagrams of binary ions (Na+ versus Cl-)
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Level 3: factor analysis—FA

Factor analysis (FA) seeks effective factors to study hydro-
geochemical impacts and the significance of correlation be-
tween factors and data variables. Table 7 presents the loading
bars of the principal components and their representative var-
iance. The rotated factors are identified by high positive and
negative loadings and near-zero loadings. Following Davis
(1986) and Selvam et al. (2020), maximum variance of the
factors is extracted by the highest range of the positive or
negative loadings. The four Factors explain 71%, of the
variance.

Factor (I) This factor, given in Table 7, is associated with
high positive loadings of Cl-, K+, Ca2+, Na+,
NO3

– and EC. They are suggestive of (i)
water-rock interactions and (ii) a general trend
for dissolutions in groundwater at the study ar-
ea and (iii) Nitrate concentration with anthro-
pogenic origin increase through natural disso-
lution. Nitrate concentration increases in the
groundwater system through the leaching from
fertilisers in agricultural lands, which is related
to infiltrated surface water interacting with geo-
logical formations (i.e. shale, marl, etc.) and

Fig. 7. a Level 2: Piper diagrams to identify types and sources of groundwater. b Level 2: Stiff diagram to identify types and sources of groundwater. c
Level 2: Durov diagram to identify types and sources of groundwater
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cause an increase in groundwater EC. This im-
pacts on groundwater quality and creates con-
taminations stemming from anthropogenic ac-
tivities largely related to agriculture with minor
contributions from domestic sewage. An exam-
ination of detailed results shows that water-

rock interactions through the above ions would
control approximately 34% of the groundwater
chemical processes.

Factor (II) This factor, given in Table 7, is associated with
high positive factor loadings of SO4

2+, As and
Fe. Arguably, the presence of these three ions in
factor II is indicative of sulphate mineral origin at
high concentration of As and Fe, which affects
the dissolution of sulphate minerals contained in
igneous and volcanic rocks. It controls approxi-
mately 18% of the data variance.

Factors III
and IV These factors, given in Table 6, control approximate-

ly 9.6 and 9.1% of data variance, respectively. Factor
III is associated with high positive factor loadings of
F- and factor IV is associated with high positive fac-
tor loadings of Pb. The origin of high fluoride and
lead is not associated with other ions and has special
characteristics which need more investigations.

Overview of mechanism to disperse contaminants

An important focus of the results at Level 2 (graphical
methods) is that groundwater samples in the Ahar basin are
largely located in Zone A associated with ‘temporal’ hardness
and of good quality. This is explained, as follows: (i) Ahar
aquifer is not deep and has low groundwater residence time;
(ii) recharge areas of the aquifer comprise hard rock forma-
tions with minimum water-rock interactions for the infiltrated
water; (iii) high-quality surface water through the plain is in

Fig. 8 Level 3 Outputs: Clusters
I-IV identified by HCA

Table 7 Results of factor analysis for the study area (*loading > 0.5)

Variable Factor I Factor II Factor III Factor IV

Na+ 0.75* 0.37 0.06 0.16

K+ 0.89* 0.27 0.09 −0.04
Ca2+ 0.93* 0.03 0.06 −0.07
Mg2+ −0.01 −0.05 0.05 0.13

HCO3
- + CO3

2- 0.40 −0.21 0.57 0.36

Cl- 0.95* 0.06 −0.11 −0.04
SO4

2+ 0.46 0.61* 0.24 0.09

NO3
- 0.56* 0.42 −0.42 −0.08

F −0.02 0.04 0.89* −0.11
As 0.21 0.87* −0.11 −0.04
Fe 0.05 0.91* −0.01 −0.00
Cu 0.47 −0.10 −0.11 0.53

Pb −0.18 0.01 0.00 0.83*

EC 0.96* 0.21 0.06 0.00

pH −0.18 −0.46 0.08 0.42

Total 5.11 2.7 1.44 1.37

% of variance 34.10 18.0 9.63 9.13

Cumulative % 34.10 52.10 61.73 70.87

Extraction method: principal component analysis.

Note 1: Rotation Method: Varimax with Kaiser Normalisation.

Note 2: The rotation converged in 6 iterations.

Note 3: * Asterisk signifies loadings greater than 0.6

18718 Environ Sci Pollut Res  (2021) 28:18702–18724



interaction with groundwater, where the watercourses contrib-
ute to recharging the aquifer in the eastern, northern and south-
ern parts of the plain, but the aquifer drains to watercourses at
its western parts and thereby reduces its residence time.

Nitrate pollution

The highest nitrate concentration in groundwater occurs at
Samples 5 and 6 in Cell N2; moderate concentrations at Cell
N1 and N3; and low concentrations at Cell N4. The distribution
of nitrate is explained as follows: (i) as agricultural activities are
the main preoccupation in the study area, they give rise to
widespread nitrate at the ground surface due to fertilisers; (ii)
groundwater from the surface at the plain is likely to percolate
uniformly and this would act as a diffuse-source by infiltrating
waters washing high nitrate concentration through percolation.
Notably, final concentration values are outcomes of the follow-
ing intrinsic processes: (i) nitrate concentration at the ground
surface; (ii) amounts of groundwater recharge at the surface,
and, (iii) the characteristics of aquifer media.

Arsenic and iron contamination

Based on the results of multivariate analysis, the origin of arse-
nic and iron contaminants is geogenic and attributable to por-
phyry copper deposits, which differ from that of nitrate. These
are found widely at the Ahar basin and can spread through
joints and faults. They are also activated by hydrothermal ac-
tivities. Arsenic loads are likely to be found at joints and faults
of northern parts of the study area (see OSPRC Cells T1, T 3
and T4). The samples with high arsenic concentration at Cell
T1 show high nitrate, high non-carcinogenic and carcinogenic
health risk and highest EC and TDS (Samples 5 and 6). The
study identifies arsenic concentration hotspots, which do not
seem to be diffused widely in the study area.

Lead contamination

Based on the results of multivariate analysis, the origin of lead
contaminant is geogenic. The highest lead concentration is at
Cells T1, T2 and T 3. Lead loads show random behaviour, but
their hotspots do not seem to be diffusedwidely in the study area.

Dimension 5: OSPRC view of risk cells

The authors have produced proof-of-evidence for quantitative
risk aggregation problem by using the DRASTIC framework
(for nitrate) and the SPECTR framework (for As, Pb and Fe),
similar to Nadiri et al. (2018b) and Sadeghfam et al. (2018).
The basic assumption is that contaminants can be diffused into
the risk cell and/or basin. However, the paper identified a
discontinuity in the spatial distribution of geogenic contami-
nants (As, Fe and Pb), and therefore a quantitative study of

potential risk exposures is not technically feasible until the
domains of contaminants are fully definable. Nonetheless,
the paper presents a descriptive OSPRC assessment of risk
for nitrate, arsenic, iron and lead contaminants for the study
area. This is presented in Table 5, but in reality, it can be
carried out for each risk cell.

Discussion

The initial objective of this research work was to compare the
risk to health from contaminants at the study area by USEPA
procedure (USEPA 1989) with risk mapping by Total
Information Management (TIM) using the five dimensions as
depicted in Fig. 1. However, the preliminary perceptual and
conceptual models revealed the presence of some discontinuity
in the diffusion of contaminant concentrations. Subsequently, a
quantitative risk mapping was not possible. However, the au-
thors aim to carry out further samples to explain the nature of
diffusion to enable risk mapping by TIM. The paper suffices to
a descriptive risk aggregation problem at this stage.

The emerging insight from the study area within the global
context is that although risks to aquifers have been amplified
since the green revolution for the return of increased food avail-
ability (Vitousek et al. 1997; Agren and Bosatta 1988;
Galloway et al. 2008; Bui et al. 2020), planning system have
been put in place to successfully to control impacts
(Sheikhipour et al. 2018; Nerantzis et al. 2020). As the uptake
of planning systems is not global, the amount of nitrogen
transported into the oceans by the rivers in the world has rough-
ly doubled since the nineteenth century, and rates of nitrogen
transport from developed areas have increased 10- to 50-folds
(Meybeck 1982). Arsenic contaminations have been noted
since the 1980s and as per RGS (2008), where arsenic in drink-
ing water was recognised as a serious problem in Argentina,
Chile and Taiwan circa the early 1980s. Research has also
focussed on other trace element, e.g. impacts of Fe on human
health through long-term ingestion of high Fe dosage causing
haemochromatosis diseases, which stem from geogenic or nat-
ural origins (Blarasin et al. 1999; Zhang et al. 2020). Similarly,
Pb exposures are related to both geogenic and anthropogenic
origins, which are toxic ions and noted in different countries
(Nicholson et al. 2003; Ju et al. 2007; Siegle 1979).

Risk exposures to the study area stem from (i) chemical and
organic fertilisers, (ii) uncontrolled or ineffectively controlled
mining practices; and (iii) geogenic contaminations from hy-
drogeochemical processes encouraging the release of
geogenic contaminant such as arsenic, iron and lead. Prior to
the arrival of mechanisation in the area, traditional subsistence
approaches were sustainable, where local anthropogenic
activities did not pose any regional risks. There were no
sampling data available prior to those commissioned by this
study, and therefore the baseline is unknown, but now the
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risks from nitrate, arsenic, iron and lead are real. Table 5 sug-
gests a basic mitigation measure.

As the tailing dam of the Sungun Mines, one of the largest
copper mines in theMiddle East, located in the Ahar basin, the
study does not seem to directly show contaminations from the
mining activities but this sounds peculiar as mining activities
are invariably pollutants. In spite of the location of the tailing
dam being at the Aharchay basin, the mine and mining activ-
ities are outside this basin, where there are no tailing dams and
therefore their impacts ought to be sought in another tributary
of the River Araz.

Management issues

A study of the impacts on the recipients and consequences of
contaminations are outside the remit of this paper. The reported
aquifer contamination problems have not yet been translated into a
remediation project and the response of the appropriate authorities
remains to be seen. This research project is only one stepping stone
towards possible future studies to plan an action plan. Sadeghfam
et al. (2019) discuss a management perspective with a particular
reference to the special procedure for contamination lands in de-
veloped countries. For instance, in the UK, the procedure is to
designate the site with a special status of ‘contaminated land’
and take tiered steps to reduce the risk to an acceptable level, as
follows. Tier 1: Preliminary Risk Assessment; Tier 2: Generic
Quantitative Risk Assessment; and Tier 3: Detailed Quantitative
Risk Assessment. Mitigation projects would be followed by a
requirement for verification, in which information management
is the key with the aim of continually reducing uncertainty, but
these are outside the remit of this paper.

The descriptive risk aggregation problem in the paper is
planned to be transformed into a quantitative risk aggregation
model at the next phase. To this end, further detailed data
sampling will be required to explain inherent discontinuity
in the diffusion of the contaminants. Also, social data will be
needed to study the consequences of the nitrate pollution and
arsenic, iron and lead contaminations, although currently this
may not be likely. Gathering more geological data will also
help to a focus on the distribution of trace element.

Conclusion

Groundwater in the study area serves as the main water re-
sources for 128,000 inhabitants of the Ahar basin for drinking
and agriculture, as well as for industry and mining. The aquifer
is now distressed for the absence of an effective planning sys-
tem, where water table is declining and the paper presents ev-
idence for anthropogenic nitrate contaminations as well as ar-
senic, lead and iron contaminations. The research is driven by
academic goals to understand the scale and scope of the prob-
lem and to produce tools that can help planners in time to

manage risks. The paper used the EPA approach for Human
Health Risk Assessment (HHRA) and provides evidence that
there are both carcinogenic and non-carcinogenic risks to hu-
man health at the study area. However, a greater insight was
sought by exploring the Total Information Management (TIM)
capability on aggregating risks. The TIM capability integrates
several topical research activities together for defensible model-
ling results. The capability was applied to the study area but
owing to some discontinuity in the degree of diffusion of con-
taminants, a quantitative risk mapping was not possible.

A descriptive application of the TIM capability identified 8
risk cells and provided the following insights into the study
area: (i) the baseline prior to 1970 was likely to have been good
quality water; (ii)with respect to major ions, groundwater qual-
ity of the study area now remains acceptable but variations in
EC signifies active hydrochemical processes; (iii) with respect
to minor ions, nitrate pollution originates from intensive agri-
cultural activities and exposes the porous media of, and the
population at the study area to unacceptable risks from
diffuse-source of anthropogenic origins; (iv) with respect to
trace ions, arsenic, iron and lead contaminants are likely to
originate from geogenic processes and expose the porousmedia
of and the population of the study area to unacceptable risks.
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Appendix. Knowledgebase for Soft Modelling

The information content of Table 8 derives from Hounslow
(1995), Nadiri et al. (2018a) and Akram et al. (2020) and

presents them in their traditional sense, but the table com-
pacts their inherent information. The authors are planning to
develop an expert system to capture existing knowledge of
the emerging capability.

Table 8 Essential information of five levels in consolidating soft modelling

Level Key techniques Procedures Outcomes

0 Parse out the modelling data and
geological formations

• Gather data on geological formations,
hydrogeology, aquifer and land use

• Gather chemical data samples and carry out
accuracy analysis by charge balances

• Prepare percentage of major ions
concentration in a TDS and show them on a
location map

• Parse out all the data, highlight possible
patterns, identify telltale signs, draw up
hotspots

Formulate a Perceptual Model (PM)

1 Basic statistical analysis of groups
of ions

Identifies possible chemical processes to study
inherent characteristics of water using:

• Statistical properties in terms of
cross-correlation coefficients between two
ions

• Scatter diagrams for binary ions

Formulate a Conceptual Model (CM) using PM
• Anticipate pollutants, aquifer boundaries, OSPRCs
• Assess hydrogeological properties
• Anticipate hydrochemical processes

2 The techniques at Level 2 provides prescriptive narratives for the sources/origins of dissolutions

Use compound ions as in graphical
methods:

Interpret hydrogeochemical processes to
identify origins through:

• Using knowledgebases of top-down models
invoking deterministic models and

• Using the knowledgebase of graphical
methods

Refine PM and CM
Limitation: unable to analyse such physico-chemical

param. as: heavy metals, SiO2;NO
−
3 , pH, temperature

Binary cross-correlation analysis Identify dominant hydrochemical processes
through:

• Use cross-correlation of total pair ions

Study processes e.g. ion exchange; reverse ion exchange

• Pipers diagram (Piper 1944; Todd
and Mays 2005)

Identify the 5 types of waterbodies (aquifers &
possibly watercourses) at the origin of
pollutions

• Plot major compound ions in a triangular
graphical method

Infer types of groundwater: Type I, Type II, Type 3, Type
4, Type 5

• Stiff diagram (Stiff 1951; Hem
1989; Hounslow 1995)

Infer types of source rocks.
• Plot major ions in Hexagonal grids to

compare analytical data with typical
diagram

Infer types of source rocks

There are techniques of this nature, e.g. Durov diagram and Gibbs diagram but these are not used in the paper.

3 The techniques at Level 3 require narratives to be formulated as per results as this Level is data-driven and nothing is taken for granted

Multivariate analysis, see: Cloutier
et al. (2008); Kim et al. (2014);
and Nadiri et al. (2013)

• Unlike Levels 1 and 2 focussed on
prescribed compounds ions, Level 3 learns
these from the site-specific data to explain
any correlation among a large number of
variables and reduce the number of
variables into a smaller set of factors
without any loss of essential information

• To refine the understanding to provides a
better focus on sources, pathways and
receptors.

Overcome limitations of the graphical method

• Hierarchical Clustering Analysis
(HCA): Ward (1963); Dragon
(2006); Cloutier et al. (2008),
Deza and Deza (2009)

• Use the Euclidean distance (or similarity
measurement) between samples

• Use Ward’s method as a linkage rule.
• Group the data together but use expert

knowledge to define a threshold value for
lower values

Identify hydrogeochemical types and interprets their
origin

• Factor Analysis (FA) (Davis 1986)
(Fitzpatrick et al. 2007); Nadiri

• Map a distribution of factors accounting for
hydrochemical processes

Reveal main effective factor on hydrochemical processes
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