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Abstract
Among the most frequent targets for toxic effects of modern pesticides, namely organophosphates and carbamates, one may find
cholinesterases (ChEs). ChEs exist in a wide variety of animals and have been used actively to discriminate among the environ-
mental effects of different pollutant groups, including the aforementioned pesticides. This study had three purposes, namely (i)
identifying the ChE forms present in tissues (eyes and walking legs muscle) of two crab species, Carcinus maenas and
Pachygrapsus marmoratus; to (ii) determine the in vitro toxicological effects, and (iii) compare the sensitivity of such enzymatic
forms towards commonly used anti-ChE pesticides, namely the organophosphate chlorpyrifos and the carbamate carbofuran. Our
results showed that there was not a clear preference for any of the tested substrates in any of the tissues from both species.
Furthermore, the ChE activity was almost completely suppressed following incubation with eserine and with the specific
inhibitor BW284C51 in all tissues from both species. In vitro exposure to chlorpyrifos promoted a significant decrease in ChE
activity in both species. Furthermore, the ChE activity was completely suppressed following incubation with carbofuran and
chlorpyrifos. These results suggest that the major ChE forms present in tissues of both crab species show intermediate structural
properties and activity patterns, halfway between classic acetylcholinesterase and pseudocholinesterases. However, the sensitiv-
ity of the found forms towards ChE inhibitors was established, and the responsiveness of such forms towards common anti-ChE
chemicals was established. Both tested species seem to be promising test organisms to be used in marine and coastal scenarios of
putative contaminations by anti-ChE chemicals, considering the here reported patterns of response.
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Introduction

ChEs (ChEs) are classified as esterases and have the capacity
of hydrolyzing carboxylic esters. ChEs show a preference for
the hydrolysis of choline esters, therefore they can be differ-
entiated from other esterases (Nunes et al. 2005; Rodrigues
et al. 2011). ChEs hydrolytic activity can be significantly di-
minished by exposure to specific chemical agents, such as
pesticides, namely those from the organophosphate and

carbamate classes. These pesticides form a covalent bondwith
the ChE’s active site, resulting in a stable enzyme-substrate
complex, leading to its inhibition and inactivation (Sanchez-
Hernandez and Walker 2000). This toxic effect occurs not
only in vertebrates but in other organisms, namely aquatic,
that share the same pathway of neurotransmission regulation
(Cooper and Bidwell 2006). However, it is essential to have
detailed and specific knowledge about the types of ChEs that
may simultaneously occur in different species and tissues, and
about the diverse responsiveness of such enzymatic forms;
only by having this knowledge, it is possible to establish a
judicious selection of biomarkers to be used in ecotoxicolog-
ical assays, especially when considering the use of ChE activ-
ity as a biomarker (Jbilo et al. 1994; Nunes et al. 2005; Xuereb
et al. 2007; Nunes 2011; Rodrigues et al. 2011). Indeed, ChEs
can be divided according to their biochemical affinities and
contribution to biological processes: acetylcholinesterases
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(AChEs) are designated as true ChEs and are involved in the
regulation of neurotransmission and neuromuscular function-
ing; and other ChE forms, named pseudocholinesterases, are
butyrylcholinesterases (BChEs) and propionylcholinesterases
(PChE) (Jbilo et al. 1994; Nunes et al. 2005; Xuereb et al.
2007; Nunes 2011; Rodrigues et al. 2011).

Crustaceans, particularly crabs, are key components of es-
tuarine and coastal food webs, since they connect primary
producers and organic detritus with secondary consumers,
promoting nutrient cycling and quality of water (Oliva et al.
2019). In addition, intertidal organisms like Pachygrapsus
marmoratus and Carcinus maenas are considered model spe-
cies by different studies (Madeira et al. 2014; Oliva et al.
2019). However, the number of ecotoxicological studies fo-
cusing on the effects of environmental pollutants on crusta-
ceans, is still somewhat scarce, when compared with studies
on other taxa, such as bivalves. The macroinvertebrate
Carcinus maenas (Linnaeus 1758) is an estuarine and coastal
crustacean that has been frequently used in aquatic ecotoxi-
cology and it is known by its common name, European green
crab. This choice is supported by the fact that with known
biology and ecology, C. maenas is one of the best-studied
estuarine species (Rodrigues et al. 2012; Rodrigues and
Pardal 2014). Pachygrapsus marmoratus (Fabricius, 1787),
generally known as marble crab, is a common species popu-
lating the rough shores of the Mediterranean Sea, the Black
Sea, and the North-Atlantic Ocean, where the entire intertidal
belt is colonized irrespective of its breadth (Oliva et al. 2019).
Considering its strong dispersal ability, this species is a good
model to be used in ecotoxicological research due to its local
abundance and also due to the cumulative knowledge of its
growth, ecology, and genetics (Deli et al. 2016; Oliva et al.
2019). The selection of the two crab species to perform this
research was focused on their normal occurrence and the large
availability, particularly in Ria de Aveiro (Portugal), which
contributes to its easy sampling and availability during the
entire year, which area decisive considerations supporting
their usage in ecotoxicological monitoring and/or testing
(Pacheco et al. 2005). Both species of crabs can be subjected
to a large range of anthropogenic pollutants but remain abun-
dant (Pedersen et al. 1997). This indicates that compensatory
mechanisms that enable these organisms to withstand natural
variations in the environment may also grant some resistance
to contaminant exposure (Hebel et al. 1997; Brown et al.
2004). Additionally, they have the potential to accumulate
diverse pollutants, including heavy metals, PAHs, and PCBs
(Pedersen et al. 1998; Orbea et al. 2002) and, consequently,
both species can be an effective bioindicator of environmental
pollution from such agents.

However, and despite their advantages, the ChEs forms of
these crabs were never previously characterized. This is a
decisive aspect that must be encompassed before their use as
sentinels or test organisms in Ecotoxicology. Consequently,

there are still many gaps in the understanding of their possible
reaction to anticholinesterasic agents, and the biochemical
characterization of their ChEs is now necessary if they are to
be actively included in such experiments. Toxic action of pes-
ticides in exposed organisms occurs via the irreversible inhi-
bition of the AChE enzyme; specific pesticides (organophos-
phates and carbamates, such as chlorpyrifos and carbofuran,
respectively), thereby block the hydrolysis of ACH, leading to
an excessive accumulation of this neurotransmitter, causing a
disruption of nerve function (Peña-Llopis et al. 2003). In ad-
dition to AChE inhibition, pesticides also inhibit pseudocho-
linesterases, like BChE and PChE, which are closely related to
enzymes that hydrolyze some xenobiotics and bind to others.
Organophosphate and carbamate pesticides are common in
coastal environments, such that inhibitory effects on ChEs
are likely to occur in the wild (Lionetto et al. 2003; Peña-
Llopis et al. 2003; Lionetto et al. 2013). Among these pesti-
cides, chlorpyrifos is a priority substance within the European
Water Framework Directive for the protection of aquatic eco-
systems (Directive 2008/105/EC) (Franzellitti et al. 2011), and
previous studies have reported chlorpyrifos water contamina-
tion, with levels up to 17,000 ng/L (Mugni et al. 2012;
Bonansea et al. 2013). Another pesticide, the carbamate
carbofuran, is used as a broad-spectrum insecticide, acaricide,
and nematicide. Vryzas et al. (2011), assessed pesticide load-
ing in drainage canals near the Greek/Bulgarian/Turkish bor-
ders and found levels of this pesticide nearing 0.191 mg/L to
0.229 mg/L. Nonetheless, the number of ecotoxicological
studies focusing on the effects of these pesticides on both
species here presented, and/or other crustacean species, is very
scarce, and even studies with other species assessed different
biomarkers (Narra et al. 2012).

Characterization of the ChEs forms present in a tissue relies
on the differential measurement of the hydrolytic activity of
all ChE forms, by using different substrates and specific in-
hibitors. Eserine sulfate inhibits ChEs in general, providing a
clear indication of the contribution of non-specific esterases to
the measured activity (Eto 1974). True AChE is strongly
inhibited by 1,5-bis-(4-allyldimethyl-ammoniumphenyl)-
pentan-3-one dibromide (BW284C51) at concentrations in
the mM range. Tetramonoisopropyl pyrophosphortetramide
(iso-OMPA) inhibits BChE (Eto 1974; Nunes et al. 2005;
Rodrigues et al. 2011; Ramos et al. 2012; Nunes and
Resende 2017; and Pereira et al. 2019). In light of the signif-
icance of ChEs as environmental biomarkers and the impor-
tance of Carcinus maenas and Pachygrapsus marmoratus as
test organisms and environmental sentinels in ecotoxicologi-
cal monitoring, the present study envisioned to characterize
the ChE forms present in tissues (eyes and walking legs mus-
cle) of both species and determine the in vitro toxicological
effects and comparison of the sensitivity of different ChEs
towards commonly used pesticides, namely the organophos-
phate chlorpyrifos, and the carbamate carbofuran.
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Materials and methods

Chemicals

AChE iodide (≥ 98%; CAS 1866-15-5), BChE iodide (≥ 98%;
CAS 1866-16-6), propionylthicholine iodide (≥ 98%; CAS
1866-73-5), 5,5′-dithio-bis (γ-nitrobenzoic acid) (DTNB; ≥
98%; CAS 69–78-3), physiostigmine salicylate (98%; CAS
57–64-7), 1,5-bis (4-allyldimethyl ammoniumphenyl)–
pentan–3-one dibromide (BW284C51; 97%; CAS 402-40-
4), tetraisopropylpyrophosphoramide (iso-OMPA; 100%;
CAS 513- 00-8), ethanol absolute (≥ 99.8%; CAS 64-17-5),
bovine γ-globulin (≥ 99%; CAS 9007-83-4), acetone (≥
99.5%; CAS 67-64-1), chlorpyrifos (CAS 2921-88-2),
carbofuran (CAS 1563-66-2) were purchased from Sigma-
Aldrich™, USA. Bradford reagent was purchased from
BIO-RAD (Watford, UK).

Test organisms, sample processing, and enzymatic
analysis

Organisms of the two species were manually collected during
low tide in Ria de Aveiro (Aveiro, Portuguese Littoral-
Centre), From the Barra area, Ria de Aveiro, Portugal (40°
38′ 34.5″N 8° 44′ 07.7″W). This location refers to a protected
coastal lagoon away from direct sea action and is the initial
portion of the Mira channel, which is primarily subjected to
naval traffic (Oliveira et al. 2009). Consequently, the known
input of anti-ChE substances does not substantially impact it.

Approximately 15 individuals (males) of each species were
euthanized by hypothermia, and each individual’s eyes andwalk-
ing legs (skeletal) muscle were isolated and homogenized in
phosphate buffer (0.1 M, pH = 7.2), and centrifuged with a
Thermo Scientific Heraeus Megafuge 8R centrifuge at 3300g
for 3 min. The supernatants were retrieved and obtained sepa-
rately to provide a sample of homogenized tissues to be included
in all testing procedures. The enzymatic assay for the assessment
of ChE activity was based on the quantification of ChEs activity
according to Ellman’s protocol (Ellman et al. 1961). This enzy-
matic assay involves monitoring ChEs activity for 15 min, at
room temperature (25 ± 1 °C), by the formation of a complex
by conjugation of thiocholine (resulting from the hydrolytic deg-
radation of AChE by ChEs) with DTNB (5,5′-dithio-bis (γ-
nitrobenzoic acid). This complex absorbs at a wavelength of
414 nm, and the increase in absorbance is proportional to the
enzyme’s activity. The concentration of total soluble protein
was calculated by the process described by Bradford (1976),
adapted to the microplate. pH = 7.2).

Characterization of ChEs

Characterization of ChEs was based on the procedures de-
scribed by Nunes et al. (2005), Rodrigues et al. (2011),

Ramos et al. (2012), Nunes and Resende (2017), and Pereira
et al. (2019). These studies focused on the in vitro study of
hydrolytic sensitivity of ChEs to various substrates, as well as
the use of general and specific enzyme inhibitors. For this
purpose, samples of both tissues from each species were ana-
lyzed using the substrates ASCh, BSCh, and PSCh, utilizing a
previously defined range of concentrations (0.005; 0.01; 0.02;
0.04; 0.08; 0.16; 0.32; 0.64; 1.28; 2.56; 5.12; 10.24; and
20.48 mM). All procedures occurred in triplicate at room tem-
perature (25 ± 1 °C), and pH = 7.2. In order to estimate the
kinetic parameters–maximum rate of hydrolysis reached
(Vmax), and concentration needed to reach one-half of the
maximum velocity (Michaelis–Menten constant, Km)–were
determined.

The next step was to assess the inhibitory profiles of com-
mon and specific inhibitors of ChE, true ChEs, and pseudo-
cholinesterases. At this point, the protocol was performed
using the concentrations of preferential substrate, according
to the previous procedure, that showed the highest enzyme
activity. Therefore, for C. maenas eyes and leg muscle, the
substrates were, respectively, PSCh (5.12 mM) and BSCh
(5.12 mM); for P. marmoratus eyes and leg muscle, the sub-
strates were, respectively, PSCh (2.56 mM) and BSCh
(20.48 mM). In this process, a portion of the homogenized
tissue pool was incubated with eserine (6.25, 12.5, 25, 50,
100, and 200 μM), BW284C51 (6.25, 12.5, 25, 50, 100, and
200 μM), and iso-OMPA (0.25, 0.5, 1, 2, 4, and 8 mM),
utilizing a previously defined variety of concentrations.
Eserine and BW248C51 solutions were formulated in ultra-
pure water, and iso-OMPA was dissolved in ethanol (Nunes
et al. 2005; Rodrigues et al. 2011; Ramos et al. 2012; Nunes
and Resende 2017; Pereira et al. 2019). Following the same
protocol of all previous studies described above, 5 μL of each
concentration of the inhibitor solution was incubated with
495 μL of homogenate from each tissue, at room temperature
(25 ± 1 °C), for 20 min. All these exposures occurred in trip-
licate, and these reactions happenedwith the collected homog-
enized samples in propylene microtubes and were incubated
with each concentration of the three inhibitors. In the case of
iso-OMPA incubation, an extra control group was introduced
to check for potential alterations induced by the solvent, uti-
lizing ethanol. Enzymatic assays and concentrations of pro-
teins were analyzed according to the procedures cited earlier.

Toxicological tests—in vitro assays

Additional incubations similar to those previously mentioned
with the ChE inhibitors were conducted to evaluate the in vitro
effect of both pesticides on the ChE activity (Nunes et al.
2005; Nunes and Resende 2017; Pereira et al. 2019; Ramos
et al. 2012; Rodrigues et al. 2011). The pesticides used were
carbofuran and chlorpyrifos in the following concentrations
range: 12.5, 25, 50, 100, 200, and 400 μM; this range of
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concentrations was based on previous work by Pereira et al.
(2019) for the same chemical classes of pesticides. In the case
of both pesticides’ incubation, a solvent control group was
introduced to check for potential alterations induced by the
solvent, utilizing acetone. All procedures occurred in triplicate
at room temperature (25 ± 1 °C), and pH = 7.2.

Data analysis

The results were statistically evaluated using an ANOVA
followed by Dunnett’s test to test for significant differences
between the responses observed in treated groups compared to
the control treatment. A significance level of 0.05 was always
used to infer statistically significant results.

Results

Our results showed that there was not a consistent preferential
substrate for any of the tissues, from both species. In the eyes
tissue from C. maenas, the preferential substrate—a substrate
that leads to the highest ChE activity—was PSChE (Fig. 1). In
the leg muscle tissue from the same species, BSChE was more
extensively hydrolyzed (Fig. 1). In the eyes tissue of P.
marmoratus, there was an almost nearly equal preference for
PSCh and BSCh, but this last substrate attained higher hydro-
lytic rates at higher concentrations (Fig. 2). In the leg muscle
from the same species, the substrate BSCh was more rapidly
hydrolyzed at higher concentrations of substrate (Fig. 2).
Considering these data, the chosen substrates (those that were
preferentially hydrolyzed, with which higher hydrolysis rates
were attained) were: for, eyes and leg muscle of C. maenas,
PSCh (5.12 mM) and BSCh (5.12 mM), respectively; for
P. marmoratus eyes and leg muscle, respectively, PSCh
(2.56 mM) and BSCh (20.48 mM). An additional important
finding was related to the form of the dose-response curves
(Figs. 1 and 2). These were not curvilinear (as those described
for the typical Michaelis-Menten curves), and a decrease of
the measured enzymatic activities was observed for the
highest levels of the substrates that were preferentially hydro-
lyzed. The kinetic parameters support the hypothesis for each
enzyme preference for both species (Table 1).

Furthermore, the ChE activity was almost completely sup-
pressed following incubation with eserine at all the tested
concentrations, and in both tissues from each species (C.
maenas eyes: F[6, 14] = 9.062; P < 0.001; C. maenas muscle:
F[6, 14] = 22.697; P < 0.001; P. marmoratus eyes: F[6, 14] =
10.489; P < 0.001; P. marmoratus muscle: F[6, 14] = 63.831;
P < 0.001), and also with the specific inhibitor BW284C51 at
all the tested concentrations in both tissues from each species
(C.maenas eyes: F[6, 14] = 11.123; P < 0.001;C.maenasmus-
cle: F[6, 14] = 9.531; P < 0.001; P. marmoratus eyes: F[6, 14] =
9.531; P < 0.001; P. marmoratus muscle: F[6, 14] = 21.163;

P < 0.001), in both tissues from each species. The specific
inhibitor Iso-OMPA elicited significant inhibition at all the
tested concentrations for all tissues except for P. marmoratus
muscle (C. maenas eyes: F[7, 16] = 0.883; P < 0.001; C.
maenas muscle: F[7, 16] = 1.171; P < 0.001; P. marmoratus
eyes: F[7, 16] = 1.172; P < 0.001; P. marmoratus muscle: F[7,

16] = 0.117; P = 0.153) (Fig. 3).
In vitro exposure to the pesticide chlorpyrifos elicited a

significant impairment of ChE activity in both species, at all
the tested concentrations for both tissues of C. maenas and
eyes of P. marmoratus; in P. marmoratus muscle it elicited a
significant impairment of ChE activity in the three highest
concentrations (C. maenas eyes: F[6, 14] = 6.139; P < 0.001;
C. maenas muscle: F[6, 14] = 10.705; P < 0.001; P.
marmoratus eyes: F[6, 14] = 8.584; P < 0.001; P. marmoratus
muscle: F[6, 14] = 18.068; P < 0.001). Carbofuran elicited a
significant impairment of ChE activity in both species for all
tested concentrations (C. maenas eyes: F[6, 14] = 3.646;
P < 0.001; C. maenas muscle: F[6, 14] = 10.374; P < 0.001; P.
marmoratus eyes: F[6, 14] = 3.712; P < 0.001; P. marmoratus
muscle: F[6, 14] = 12.276; P < 0.001) (Fig. 4). A summary of
all inhibition results can be seen in Table 2.

Discussion

Our results showed that there was not a preferential substrate
that was common to any of the tissues and species. In the eyes
tissue from C. maenas, the preferential substrate—a substrate
that leads to the highest ChE activity—was PSCh (Fig. 1). In
the leg muscle tissue from the same species, BSCh was more
extensively hydrolyzed (Fig. 1). In the eyes tissue of P.
marmoratus, there was an almost nearly equal preference for
PSCh and BSCh, but this last substrate attained higher hydro-
lytic rates at higher concentrations (Fig. 2). In the leg muscle
from the same species, the substrate BSCh was more rapidly
hydrolyzed at higher concentrations of substrate (Fig. 2). It is
known from the literature that different ChE forms may ex-
hibit overlapping hydrolytic capabilities (Rodrigues et al.
2011), justifying that in some cases, ChEs in different tissues
from the same species did not show the same preferential
substrate. Consequently, and considering this potential varia-
tion, the use of ChE inhibition as effect criteria in environ-
mental monitoring requires the full characterization of the en-
zymatic form present in exposed organisms, especially in
terms of its hydrolytic preference, and to know the normal,
physiological range of enzymatic activity in non-exposed or-
ganisms (Lieberman 2002; Olson and Christensen 1980). This
variation in terms of substrate preference may be the conse-
quence of the nature of ChEs, including their genesis and
conformation. Several studies showed that ChEs are polymor-
phic in a great number of species, and distinct forms of ChEs
likely show distinct sensitivity to anti-ChE agents (Lieberman
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2002; Olson and Christensen 1980). In practice, it is crucial to
determine which type of ChE is most abundant in a model
organism, because this will distinguish which substrate is the
most suitable for monitoring purposes (Ramos et al. 2012).

As stated before, both species of crabs used in this study
can be subjected to a large set of anthropogenic pollutants, but
without any clear population effect, thereby the species re-
maining abundant even in contaminated sites (Pedersen et al.
1997). This indicates that compensatory mechanisms that en-
able these organisms to withstand natural variations in the
environment may also grant some resistance to contaminant
exposure (Hebel et al. 1997; Brown et al. 2004). Additionally,
they have the potential of accumulating various pollutants,
including heavy metals, PAHs, and PCBs (Pedersen et al.
1998; Orbea et al. 2002) and, consequently, both species can
be an effective bioindicator of environmental pollution from
such agents.

To date, only a few studies have characterized ChEs in
marine crustaceans. The characterization of ChEs in the ner-
vous tissues of aquatic vertebrates, namely fish is, in general,
marked by a strong preference for ASCh as a substrate

(Table 3). The studies by Arufe et al. (2007) with Sparus
aurata; Garcia et al. (2000) with Poecilia reticulata; Leticia
and Gerardo (2008) with Haemulon plumieri; Monteiro et al.
(2005) with Pomatoschistus microps; Nunes et al. (2005) with
Gambusia holbrooki; Pereira et al. (2019) with Astyanax
altiparanae, Phalloceros harpagos, and Pterygoplichthys
pardalis; Rodríguez-Fuentes and Gold-Bouchot (2004) with
Oreochromis niloticus, Limanda limanda, and Platichthys
flesus; and Sturm et al. (1999) with Serranus cabrilla, showed
that the nervous system of most both marine and freshwater
fish species have ChE forms that hydrolyze preferentially
ASCh. Analogously, the muscle tissue of many fish species
also seems to show a similar pattern. Additionally, similar
behavior has also been shown for some invertebrates, such
as the cockle Cerastoderma glaucum, and the grass shrimp
Palaemonetes pugio (Key and Fulton 2002; Ramos et al.
2012). Despite some exceptions, this is a consistent trend. In
our case, namely when considering the results for the species
C.maenas, a significant finding was the variable preference of
the analyzed ChE forms as a function of the level of the sub-
strate. The here obtained results regarding the hydrolytic

Fig. 1 ChE activity in the eyes
and leg muscle of C. maenas for
three alkylated substrates
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activity of muscle and eye tissues showed that PSCh was the
most hydrolyzed substrate (when in low levels), but higher
levels of BSCh attained higher hydrolytic activities. Eyes tis-
sue of P. marmoratus also showed a similar tendency, while
muscle tissue of this species exhibited a clear preference for
BSCh. This was a distinctive feature of the here tested species
concerning the majority of the already tested species for their
ChE forms. The biological meaning of these differences is,
however, still uncertain.

In general, the substrates attaining the highest hydrolytic
rates were also prone to an opposite effect, when present in
high levels. From the here obtained results, it was clear that the
highest hydrolytic activities were not attained with the highest
levels of substrates. It seems that high levels of the substrate
may contribute to a competitive inhibitory mechanism, with
significant effects on the efficacy of the hydrolytic process, as
evidenced by Kato et al. (1972), and Pohanka et al. (2011). In
fact, and according to the mechanistic study by Colletier et al.

Fig. 2 ChE activity in the eyes
and leg muscle P. marmoratus for
three alkylated substrates

Table 1 Values of the maximal
velocity (Vmax), Michaelis–
Menten constant (Km) and the
catalytic efficiency (Vmax/Km)
of the ChEs in eyes and muscle of
C. maenas and P. marmoratus

Tissue C. maenas P. marmoratus

ASCh BSCh PSCh ASCh BSCh PSCh

Eyes Vmax (nmol min−1 mg protein−1) 7.85 16.09 64.92 1.86 14.75 15.35

Km (μM) 43 3430 2330 330 3270 4110

Vmax/Km 183.53 4.69 27.85 5.64 4.51 3.74

Muscle Vmax (nmol min−1 mg protein−1) 2.76 8.61 3.90 2.77 21.90 2.74

Km (μM) 5.5 2700 900 5.9 10,880 6.1

Vmax/Km 501.96 3.18 43.48 492.87 2.01 462.97

14686 Environ Sci Pollut Res (2021) 28:14681–14693



(2006), high levels of the substrate ASCh were able to impair
the hydrolytic activity of AChE in the fish Torpedo
californica, by preventing the prompt exit of the degradation
product (acetate) of this isomer of acetylcholine. This effect
resulted in a significant reduction in the hydrolytic rate, sim-
ilarly to what was observed in our study. Similar results were
also found for fish, such as Poecilia reticulata (Garcia et al.
2000); Gambusia holbrooki (Nunes et al. 2005); Phalloceros
harpagos and Astyanax altiparanae (Pereira et al. 2019). It
thus seems that similar to what has been reported described for

other aquatic organisms, ChE forms present in tissues of C.
maenas and P. marmoratus are likely to be saturated at high
levels of substrate.

Despite the differences in terms of substrate preference,
inhibitors tests yielded similar results for all tissues and spe-
cies, since eserine and BW284C51 obtained almost full inhi-
bition with the lowest tested dose; on the contrary, ISO-
OMPA only resulted in partial inhibition, and, in the case of
P. marmoratus muscle tissue, did not cause any significant
inhibition. In fact, in P. marmoratus muscle tissue, it did not

Fig. 3 Effects of specific inhibitors (eserine, BW284C51, and ISO-
OMPA) on cholinesterase activity of eyes and leg muscle homogenates
of C. maenas and P. marmoratus. The substrate for C. maenas eyes was
propionylthiocholine (5.12 mM) and butyrylthiocholine (5.12 mM) for
l eg musc le ; the subs t ra t e fo r P . marmora tus eyes was

propionylthiocholine (2.56 mM) and butyrylthiocholine (20.48 mM) for
leg muscle. Values are the mean of three replicate assays of a pool of
tissue from 15 specimens of each species and corresponding standard
error bars. *Significant differences, P ≤ 0.05
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inhibit its ChE activity. Despite this difference, it is consistent
with the results obtained for other crustaceans. Varó et al.
(2002) obtained similar results for two different Artemia spe-
cies; Artemia salina ChEs preferred ASCh at low concentra-
tions, however, at high substrate concentrations, it hydrolyzed
PSCh at a higher rate. Besides, the ChEs of this anostracan
species are also relatively insensitive to ISO-OMPA, similarly

to most vertebrate AChE forms. Artemia parthenogenetica
also shows miscellaneous characteristics since it prefers
PSCh (instead of ASCh), its ChEs are not inhibited by high
concentrations of substrate, and it is also susceptible to ISO-
OMPA. Nevertheless, A. parthenogenetica ChE is also
inhibited by BW284C51. The results obtained by Varó et al.
(2002) are in agreement with previous studies carried out with

Fig. 4 In vitro effects of carbofuran and chlorpyrifos on cholinesterase
activity of eyes and leg muscle homogenates from C. maenas and P.
marmo ra t u s . T h e s u b s t r a t e f o r C . maena s e y e s wa s
propionylthiocholine (5.12 mM) and butyrylthiocholine (5.12 mM) for
l eg musc le ; the subs t ra t e fo r P . marmora tus eyes was

propionylthiocholine (2.56 mM) and butyrylthiocholine (20.48 mM) for
leg muscle. Values are the mean of three replicate assays of a pool of
tissue from 15 specimens of each species and corresponding standard
error bars. *Significant differences, P ≤ 0.05

Table 2 Concentrations at which
significant dose dependant effects
on ChEs responses were observed
in each tissue from both species

Tissue Carcinus maenas Pachygrapsus marmoratus

Eyes Eserine (μM) 6.25, 12.5, 25, 50, 100, 200 6.25, 12.5, 25, 50, 100, 200

BW284C51 (μM) 6.25, 12.5, 25, 50, 100, 200 6.25, 12.5, 25, 50, 100, 200

ISO-OMPA (mM) 0.25, 0.5, 1, 2, 4, 8 0.25, 0.5, 1, 2, 4, 8

Chlorpyrifos (μM) 12.5, 25, 50, 100, 200, 400 12.5, 25, 50, 100, 200, 400

Carbofuran (μM) 12.5, 25, 50, 100, 200, 400 12.5, 25, 50, 100, 200, 400

Muscle Eserine (μM) 6.25, 12.5, 25, 50, 100, 200 6.25, 12.5, 25, 50, 100, 200

BW284C51 (μM) 6.25, 12.5, 25, 50, 100, 200 6.25, 12.5, 25, 50, 100, 200

ISO-OMPA (mM) 0.25, 0.5, 1, 2, 4, 8 –

Chlorpyrifos (μM) 12.5, 25, 50, 100, 200, 400 100, 200, 400

Carbofuran (μM) 12.5, 25, 50, 100, 200, 400 12.5, 25, 50, 100, 200, 400
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other invertebrates that indicated the complexity of using the
ChE vertebrates classification to invertebrate species (Varó
et al. 2002). ChEs from invertebrates, displaying intermediate
particularities when compared with analogous vertebrate en-
zymes, could represent the transitional stage of a molecular
evolution starting from a hypothetical ancestral enzyme.
Kinetic and molecular aspects of this hypothetical enzyme
could survive in zoological groups of very ancient phyloge-
netic origin such as the class of Crustacea (Talesa et al. 1992).
Other studies point to this possibility. Forget and Bocquené
(1999) found that although results indicate the presence of a
single ChE form in the copepod Tigriopus brecornis, it is
unclear whether this enzyme is a ChE or a non-specific ester-
ase that also metabolizes acetylcholine. Antó et al. (2009)
reported that both AChEs and pseudoChEs were present in
the muscle tissues of the crustaceans Aristeus antennatus and
Nephrops norvegicus. The classification of invertebrate ChEs
is more ambiguous; in insects, for example, a single ChE form
metabolizes acetylcholine and BChE (Forget and Bocquené
1999).

Other non-crustacean invertebrates show ChE forms that
do not have the greatest affinity for AChE, unlike most verte-
brates studied. Nunes and Resende (2017) also obtained un-
expected data for Solen marginatus, which indicates the pres-
ence of an atypical form of ChE: the hydrolytic profile shows
a preference for PSCh, yet the discrimination by the use of
specific inhibitors revealed that AChE is probably the pre-
dominant form (Nunes and Resende 2017).

The here-obtained results showed that the in vitro exposure
to carbofuran completely inhibited the ChE activity of the two
crab species. Carbamates bind to the active site and exert a
reversible inhibition of ChEs (Nunes 2011). Nevertheless, this
effect is temporary and can be reverted by hydrolysis of the

carbamate-enzyme complex, allowing the ChE activity to re-
cover to typical physiological values (Xiao et al. 2017). The
inhibition of the in vitro ChE activity has already been report-
ed for other carbamates, for instance, carbaryl for Astyanax
altiparanae, Phalloceros harpagos, and Pterygoplichthys
pardalis (Pereira et al. 2019); carbofuran in the fish
Colossoma macropomum (Assis et al. 2010); bendiocarb,
methomyl, propoxur, fenobucarb, and carbosulfan in the spe-
cies, Astyanax jacuhiensis (Gonçalves et al. 2018), Carassius
auratus (Bretaud et al. 2000), Cherax destructor (Pham et al.
2017), Cyprinus carpio (Wang et al. 2015), and Tor
tambroides (Ahmad et al. 2016). The here obtained results
are in line with the previous findings, showing that both au-
tochthonous marine crab species are also sensitive to such
chemicals and may be successfully used in future biomonitor-
ing programs assessing putative contamination of coastal wa-
ter by this class of pesticides.

Besides carbamates, organophosphates are typical inhibi-
tors of ChE activity. The results of the present study revealed
that the in vitro exposure to chlorpyrifos inhibited the ChE
activity of the two crab species, following a clear dose-
response pattern. Prior in vitro studies with aquatic inverte-
brates have demonstrated their sensitivity to these pesticides.
Individuals of the bivalve Corbicula fluminea exposed to
chlorfenvinphos; the snail Potamopyrgus antipodarum
(Gagnaire et al. 2008) was sensitive to chlorpyrifos; the ma-
r i n e c r u s t a c e an s Ar t em ia s a l i na and Ar t em ia
parthenogenetica were sensitive to chlorpyrifos and dichlor-
vos;Gammarus pulex, and Palaemon serratus; the freshwater
crustaceans Daphnia magna and Cherax destructor; the
midge Chironomus riparius, showed to have their ChE activ-
ity significantly inhibited after the exposure to organophos-
phates, such as, malathion, dichlorvos, parathion, piriminfos-

Table 3 Michaelis–Menten
constant (Km) of cholinesterase
activity of some aquatic inverte-
brates and respective preferential
substrate

Species Km (μm) Reference

Atyaephyra desmarestii 197 (ASCh) Quintaneiro et al. 2014

Chasmagnathus granulata 280 (ASCh) Monserrat and Bianchini 1998

Chironomos riparius 640 (ASCh) Pérez et al. 2013

Daphnia magna 16 (PSCh) Diamantino et al. 2003

Echinogammarus meridionalis 9.1 (ASCh) Quintaneiro et al. 2014

Eurytemora affinis 32 (ASCh) Forget et al. 2002

Lepeophtheirus salmonis 72 (ASCh) Walday and Fonnum 1989

Maia verrucosa 44 (ASCh) Talesa et al. 1992

Murex brandaris 46 (PTCh) Talesa et al. 1990

Mytilus galloprovincialis 30 (ASCh) Mora et al. 1999

Palimurus vulgaris 4.1 (PSCh) Talesa et al. 1992

Paracentrotus lividus 130 (ASCh) Cunha et al. 2005

Squilla mantis 78 (PSCh) Talesa et al. 1992

Tigrinus brevicornis 20 (ASCh) Forget et al. 2002
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methyl, chlorpyrifos-oxon (Sturm et al. 1999; McLoughlin
et al. 2000; Varó et al. 2002; Frasco et al. 2005; Ramos
et al. 2012; Pham et al. 2017). These authors concluded that
these particular species could be useful for assessing pesticide
contamination in saltwater, an assumption that may also be
made for the here two tested species.

The recommended preferential substrates for each species,
according to our data, are: for Carcinus maenas eyes and leg
muscle, respectively, PChE (5.12 mM) and BChE (5.12 mM);
for Pachygrapsus marmoratus eyes and leg muscle, respec-
t ively, PChE (2.56 mM) and BChE (20.48 mM).
Nevertheless, as we stated in our results, the dose-response
curves (Figs. 1 and 2) are not curvilinear as the typical
Michaelis-Menten curve. Rozengart et al. (2000) stated that
out of all diversity of aspects of ChE substrate specificity, the
most physiologically important seems to be the inhibition of
enzyme activity by high concentrations of substrate. They
have sown that the substrate participates in ChE catalysis not
only as a passive target of the enzyme action (Rozengart et al.
2000). Both activation and inhibition of enzymatic activity by
high substrate concentration have been long known, depend-
ing on the nature of ChE forms, which varies from one species
to the other. In ChE reactions with reversible and irreversible
inhibitors, the substrate performs the so-called protective ef-
fect (Rozengart 1996; Rozengart et al. 2000; Rozengart &
Basova, 2000; Basova and Kolesov 2000; Basova et al. 2000).

Conclusion

In conclusion, the present research described the prevailing
ChEs in two crab species’ eyes and leg muscle tissues, paving
the way for their possible use as model organisms in ecotox-
icological monitoring and ecotoxicological testing. However,
this research made clear the presence of small variations (hy-
drolytic activity, preference for substrates and inhibition pro-
files) between the C. maenas ChE types and those found in P.
marmoratus. Furthermore, the findings of this research help to
demonstrate the complexity in classifying such enzymes sole-
ly on the basis of pre-existing classifications used for verte-
brates, such as AChE or BChE, because ChEs of invertebrates
often exhibit intermediate characteristics between the two
forms. Important in vitro effects of both pesticides, chlorpyr-
ifos, and carbofuran, on ChE activity, have been identified for
both organisms. This finding is of considerable significance as
it highlights both organisms as useful alternatives for aquatic
coastal ecotoxicological monitoring and/or testing while eval-
uating the existence and effects of anti-ChE compounds. The
results reported here also show that the two selected species
were highly susceptible to the compounds being examined,
supporting their use as research organisms in ecotoxicology,
to detect the existence and effects of specific pollutants that
impair cholinergic neurotransmission.
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