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Abstract
The rising water pollution from anthropogenic factors motivates further research in developing water quality predicting models.
The available models have certain limitations due to limited timespan data and the incapability to provide empirical expressions.
This study is devoted to model and derive empirical equations for surface water quality of upper Indus river basin using a 30-year
dataset with machine learning techniques and then to determine the most reliable model capable to accurately predict river water
quality. Total dissolve solids (TDS) and electrical conductivity (EC) were used as dependent variables, whereas eight parameters
were used as independent variables with 70 and 30% data for model training and testing, respectively. Various evaluation criteria,
i.e., Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE), coefficient of determination (R2), and mean absolute error
(MAE), were used to assess the performance of models. The data is also validated with the help of k-fold cross-validation using
R2 and RMSE. The results indicated a strong correlation with NSE and R2 both above 0.85 for all the developed models. Gene
expression programming (GEP) outperformed both artificial neural network (ANN) and linear and non-linear regression models
for TDS and EC. The sensitivity and parametric analyses revealed that bicarbonate is the most sensitive parameter influencing
both TDS and EC models. Two equations were derived and formulated to represent the novel results of GEP model to help
authorities in the effective monitoring of river water quality.

Keywords Surface water quality . Machine learning algorithms . Regression . Sensitivity and parametric analyses . k-fold
cross-validation

Introduction

Surface water is a vital resource that is necessary for all as-
pects of life. The quality of water is affected by pollutants and
its distribution with the flow (Kargar et al. 2020). Due to lack
of facilities and infrastructure in developing countries, major

portion of the liquid waste is deposed to various surface water
bodies. Moreover, the rapid industrialization and population
growth adversely affect the quality of surface water bodies.
The term water quality is used to define the condition of water
covering its physical, chemical, and biological properties
(Alizadeh et al. 2018). The quality of water gets contaminated
due to some natural processes such as inputs from atmosphere
or climatic conditions (Al-Mukhtar and Al-Yaseen 2019).
Human activities are considered to cause major pollution to
water (Azad et al. 2019), which needs quick mitigation
actions.

The water quality assessment is considered a difficult task
due to involvement of certain human and environmental fac-
tors (Tung and Yaseen 2020). The water pollution is a major
issue in the effective management of aquatic environment
(Salami et al. 2016). The substantial water quality parameters
include total dissolved solids (TDS) and electrical conductiv-
ity (EC). TDS is composed of salts and organic matter per-
centage dissolved with soil coming as a source of pollutant in
rainwater. Other sources of TDS are weathering of rocks
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resulting in salts that released minerals over the time. The
presence of TDS determine the use of water for specific pur-
poses, and high TDS content adversely affect the natural re-
sources and human health (Najah et al. 2013; Nasr and Zahran
2014). The EC is linked with water quality and the dilution
effect of stream water. The alteration in EC is an indication of
discharge to stream from some pollution source (Najah et al.
2013). Generally, both TDS and EC are directly linked with
the salt content in water; therefore, high values of these pa-
rameters indicate poor water quality.

The effective management of river water quality is facing
issues due to unavailability of reliable data. The conventional
sample collection and laboratory testing are time-consuming,
labor-intensive, and costly (Sattari et al. 2016). Moreover,
lack of technological and financial resources restricts the wa-
ter pollution control and management (Crocker and Bartram
2014). The water quality-related data is much challenging to
design due to the complexity involved in terms of nonlinear-
ity, imprecise properties, and non-stationary features. The un-
derlying issue is due to human interferences and intermittent
natural changes which consequently, resulting in noisy and
poor quality data (Tung and Yaseen 2020). Therefore, ad-
vanced and reliable assessment techniques are needed to re-
duce the workload and overcome the underlying data problem
for valuation of water quality (Aryafar et al. 2019; Bozorg-
Haddad et al. 2017). Models with a wide range of parameters
are desirable for the purpose to model multiple water quality
variables (Gholampour et al. 2017). Previously, the water
quality predictions were usually carried out with hard comput-
ing methods encompassing stochastic, statistical, determinis-
tic, and numerical techniques. However, due to complex struc-
ture, insufficient accuracy, and detailed information compul-
sions, such models are difficult and costly to obtain and there-
fore leave a gap to try alternate methods (Khare and Warke
2014). The use of machine learning and artificial intelligence
(AI) techniques is well-known in solvingmany environmental
engineering problems (Liu and Lu 2014; Mustafa et al. 2014;
Pal et al. 2014; Seyam et al. 2020; Shamshirband et al. 2019).

Different studies were conducted to estimate the water
quality by various modeling techniques. Bozorg-Haddad
et al. (2017) considered the combination of least square sup-
port vector regression (LSSVR) and genetic programming
(GP) for estimating Na, K, Mg, SO4, EC, pH, EC, and TDS
in the Sefidrood River, Iran. The R2 was above 0.9 for all the
estimated parameters. (Al-Mukhtar and Al-Yaseen 2019) pre-
dicted TDS and EC with the help of adaptive neuro fuzzy
inference system (ANFIS), artificial neural network (ANN),
and multiple linear regression model (MLR) in Abu-Ziriq,
Iraq. It was observed that chloride, nitrate, magnesium, calci-
um, sulfate, and total hardness were the most effective input
parameters. The best results were obtained by using the
ANFIS for estimating the water quality. (Sarkar and Pandey
2015) utilized ANN technique for assessing dissolved oxygen

(DO) concentration in river water at three different locations.
Flow data, pH, temperature, DO, and biochemical oxygen
demand (BOD) were used as the parameters for the analysis.
The correlation value up to 0.9 was observed between
predicted and measured data. Zhang et al. (2019) used hybrid
ANN model developed from combination of ANN and GP to
predict drinking water production fromwater treatment plants.
The results revealed strong performance of the developed
model in predicting the water treatment plant capacity. The
performance of the model rose expressively by feeding more
datasets during model training. Chen et al. (2020) used ten
different machine learning models comprised of seven tradi-
tional and three ensemble models to compare the water quality
prediction capacity using a large dataset. The results exposed
that better performance of the models can be achieved by
using a large dataset for water quality estimation.

Considering the aforementioned discussion, most of the
modeling techniques have limited capacity to estimate differ-
ent water quality parameters due to the availability of limited
duration data. Moreover, no such techniques were adopted
that provide empirical mathematical expressions for accurate
prediction of water quality. Therefore, the main goal of this
study was to apply various machine learning and regression
techniques to predict surface water quality in Upper
Indus Basin (UIB) at Bisham Qilla gauging station.
Subsequently, to select the best model to be used in
deriving empirical equations for forecasting the quality
of water. The objectives of this study were achieved by
applying gene expression programming (GEP), artificial
neural network (ANN), and linear and non-linear regres-
sion (MLR and MNLR) to model TDS and EC of the
monthly water quality data available for almost 30
years. The developed models were challenged by com-
puting various performance statistical indicators. The
formulation of such a model that accurately estimates
the concentration of TDS and EC by utilizing minimum
number of parameters significantly reduces the time and
cost required for water quality monitoring. As per au-
thor’s knowledge, the water quality modeling is rarely
performed previously by researchers in the study region.
Therefore, it is imperative to select proper modeling
techniques to derive representative and applicable equa-
tions using data collected for long-term periods.

Materials and methods

Models selection and development

Different data-driven approaches were employed to de-
velop formulation for prediction of TDS and EC in
surface water quality, including machine learning (GEP
and ANN) and regress ion (MLR and MNLR)
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approaches. The proposed formulation of TDS and EC
are meant to be presented as a function of the following
predictors, as shown in Eqs. 1 and 2, respectively.

TDS ¼ f Ca;Mg;Na;Cl; SO4;HCO3; pH ; Tyear
� � ð1Þ

EC ¼ f Ca;Mg;Na;Cl; SO4;HCO3; pH ; Tyear
� � ð2Þ

Gene expression programming (GEP)

Genetic programming (GP) is a form of machine learning
technique which is based on genetic evaluation process. GP
works on the principle of neural and regression techniques.
Due to empiric formulization, the neural network-based for-
mulations are often too complex to develop (Gholampour
et al. 2017). The GP algorithm provides a computer-based
solution of complex problems considering the Darwin princi-
ple. The process for solving the required problems by genetic
approach is given in Fig. 1.

The GP is a valuable technique due to its ability to create
simple expressions without considering the base form.
Initially, some regression-based functions need to be defined.
GP has the capability to increase or delete some parameters or
its combination given the fitness with experimental outcome
(Abdollahzadeh et al. 2017). The enhanced and distinguished
version of GP with encoded linear fixed chromosomes and
parse tree-like structures is known as gene expression pro-
gramming (GEP) (Azim et al. 2020). GEP uses simple condi-
tions to develop genetic variety and solve the complex pro-
grams due to its multigene behavior. The various forms and
sizes of non-linear entities are expressed as a parse tree and are
termed as expression trees (ETs), as shown in Fig. 2.

Figure 3 presents a schematic diagram of GEP algorithm.
The GEP process starts by creating a fixed length chromo-
some for a single individual. Afterwards, the chromosomes
are represented by expression tress and fitness is evaluated.
At last, the reproduction process starts and the assessment is
done through fitness functions.

Artificial neural networks (ANN)

ANNs are algorithms that roughly replicate and simulate the
microstructures of the biological nervous system, where the
artificial neuron is the basic building step of ANN. The non-
linear and complex functions can simply be represented by
ANN with various parameters or variables that are trained in
a way where the output of ANN match the measured output
based on a known data set. The three forms of layers, i.e., an
input layer, hidden layers, and output layers, are incorporated
in each network. A broad network of hidden layers is distrib-
uted between the input and output layers. Figure 4 presents a
typical neural network architecture with an input layer, output
layer, and hidden layers. A significant amount of data is re-
quired for training ANN models that have the ability to repli-
cate output from previously unseen inputs. Recently, these
neural operations have been extended to environmental engi-
neering applications of groundwater prediction, atmospheric
temperature prediction, hydrological processes, and water
quality prediction and monitoring (Azamathulla et al. 2018;
Najah et al. 2013).

Multiple linear and non-linear regression

Linear and non-linear regression models are able to generate
regression equations that can further be used in various engi-
neering fields. The multiple linear regression (MLR) model
provides a linear association between independent and depen-
dent variables, while nonlinear relationship is assumed inmul-
tiple nonlinear regression (MNLR) based on a single or more
predictor variables (Adamowski et al. 2012). Different func-
tions such as quadratic, cubic, exponential, and logarithmic
were used to determine the optimum relation in MNLR. In
the present study, the statistical package for social sciences
(SPSS) was used to develop MLR and MNLR models. A
range of statistical analysis can be easily performed from basic
to complex one using SPSS. All the acquired datasets were
evaluated prior to perform linear and non-linear regression.

√

+

BA

Fig. 1 Genetic programming (GP) model representation

Fig. 2 Example of expression tree (ET)
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Study area and water quality data

Description of the study area

Indus River is among the major rivers in Asia with a length of
2880 km. It drains an area of about 912,000 km2 and also
spreads in areas of China, Afghanistan, Pakistan, and India
(Ali et al. 2015). The upstream portion of Indus River above
Tarbela Dam is called the Upper Indus Basin (UIB). The total
length and drainage area of UIB are nearly 1150 km and
165,400 km2, respectively (Khan et al. 2014; Khan and
Koch 2018; Shah et al. 2020). Large part of UIB is glacial

ice with 2174 km3 ice reserves, and the elevation varies from
455 to 8611 m (Tahir et al. 2011). The effect of the summer
monsoon is least, and almost 90% area lies under the rain
domination of Himalayas (Khan and Koch 2018). The annual
precipitation ranges from 100 to 200 mm (Ali et al. 2015).
About 70–80% snow is collected in winter, and only 10–
15% remains in melting period (Tahir et al. 2011). Both the
glaciers melt and storm runoff are responsible to generate the
water flow in the basin. Being a mountainous and glacierized
region with a great variation in altitude, the direct and field
measurement of water quality parameters such as TDS and EC
are challenging. Therefore, it is imperative to adopt the

Execute

Creation chromosomes of initial 

population

Express Chromosomes as 

Expression Tree(s)

Execute Expression Tree

Estimate Fitness

Prepare new Chromosomes for next 

generations

Genetic Modification

Replication

End

Select best tree(s)

Iterate

Terminate

Terminate or 

Iterate?

Fig. 3 Schematic diagram of
GEP algorithm (Ferreira 2006)

Fig. 4 Structure of a multi-layer
feed forward ANN model (Sarkar
and Pandey 2015)
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modeling techniques in order to measure water quality accu-
rately and easily. A graphical description of the study area is
given in Fig. 5.

Water quality data

A large and continuous water quality dataset of 30 years
contained 321 monthly records measured at Bisham Qilla out-
let from year 1975 to year 2005 is used in this study. The data
was collected from water and power development authority
(WAPDA), Pakistan. Each record of the collected data includ-
ed ten variables, namely, calcium (Ca2+), magnesium (Mg2+),

sodium (Na+), chloride (Cl-), sulfate (SO4
2-), bicarbonates

(HCO3
-), pH, TDS, EC, and year effect (Tyear). A statistical

summary of the water quality variables is shown in Table 1.
It is known that the performance of the proposed model

considerably depends on the number of data points
(Gholampour et al. 2017). For this purpose and to check the
suitability of the used datasets, Frank and Todeschini (1994)
proposed that 5 is a reasonable ratio between the number of
data points and the selected input variables. In the current
study, this ratio is 40.1 (321/8) which surpasses the reasonable
criteria set.

The input parameters were selected based on Pearson corre-
lation. The correlation matrix among the water quality variables
is presented in Table 2. It is evident from literature survey that
including toomuch inputs that may have low correlationwith the
targeted output reduces the model performance and increases its
complexity (Abunama et al. 2019; Ansari et al. 2018). Therefore,
eight parameters were used for the model development as pre-
dictors of the dependent variables (EC and TDS). In the model-
ing process, the complete dataset (321 monthly samples x 8
variables) was divided as training (221 monthly samples x 8
variables) and testing (100 monthly samples x 8 variables).
Therefore, the total data covers 70 and 30% for the model train-
ing and testing, respectively.

Further, the fit goodness test was conducted using the nor-
mal probability curve as presented in Fig. 6 for TDS and EC
concentrations, respectively. A distribution is said to be nor-
mal when the probability curve is symmetrical and positioned

Fig. 5 Brief description of the
study area and outlet station

Table 1 Statistical summary of the water quality dataset (n = 321
months)

Parameters Unit Range Min. Max. Mean SD

Ca2+ meq/l 1.84 0.61 2.45 1.46 0.32

Mg2+ meq/l 2.61 0.03 2.64 0.63 0.33

Na+ meq/l 8.95 0.05 9.0 0.53 0.69

Cl- meq/l 4.15 0.05 4.2 0.28 0.28

SO4
2- meq/l 3.1 0.1 3.2 0.55 0.37

HCO3
- meq/l 7.1 0.3 7.4 1.73 0.63

TDS ppm 200 60 260 139.87 38.64

EC μS/cm 358 92 450 242.65 67.49

pH - 1.22 7.08 8.3 7.83 0.65

Tyear - 30 0 30 - -
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around the mean of a data series (Abunama et al. 2019;
Ramzan et al. 2013).

Cross-validation using k-fold method

The k-fold cross-validation is performed for the purpose to
reduce the random sampling biases and overfitting problem.
Kohavi (1995) suggested that the tenfold cross-validation al-
gorithm provided the enhanced computational time along with
reliable variance. In the current study, the k-fold algorithm
was adopted in order to judge the performance of the models
which distributed the data sample into ten subclasses. Among
all the ten rounds of model formation and validation, it con-
siders a separate subclass for training and testing the models
with other datasets. The test subclasses are then utilized to
check the accuracy of the model as given in Fig. 7. The accu-
racy of the final algorithm is further expressed as a mean
accuracy attained by the ten models in ten validation rounds.

Models evaluation criteria

Various performance evaluation indicators were selected for the
assessment of the model including Nash-Sutcliffe efficiency
(NSE), coefficient of determination (R2), mean absolute error
(MAE), and root mean square error (RMSE) (Abunama et al.
2019; Montaseri et al. 2018). These statistical parameters were
used to differentiate the model accuracy and performance. NSE
values range between −∞ to 1, where 1 is a perfect match. NSE
value greater than 0.65 depicts a very good correlation (Ansari
et al. 2018). R2 values lie from 0 and 1, and the higher values
indicate less errors. RMSE and MAE are error index parameters
commonly used for evaluating the yielded modeling errors.
Lower values for both criteria indicating better modeling perfor-
mance. The mathematical expressions of NSE, R2, RMSE and
MAE are shown in Eqs. 3–6, respectively. The above selected
indicators are frequently used in various studies (Abunama et al.
2019; Montaseri et al. 2018).

EC (µS/cm)TDS (ppm)

Fig. 6 Normal probability curves of EC and TDS data

Table 2 Correlation matrix among the water quality parameters

Parameters Ca2+ Mg2+ Na+ HCO3
- Cl- SO4

2- TDS EC pH Tyear

Ca2+ 1

Mg2+ 0.019 1

Na+ −0.003 0.471 1

HCO3
- 0.036 0.532 0.741 1

Cl- 0.023 0.503 0.704 0.529 1

SO42- 0.021 0.541 0.485 0.274 0.369 1

TDS 0.745 0.700 0.862 0.817 0.741 0.629 1

EC 0.641 0.665 0.842 0.855 0.692 0.574 0.962 1

pH 0.002 0.073 0.041 0.054 0.056 −0.044 0.032 0.034 1

Tyear 0.004 0.005 0.045 0.008 0.056 0.034 0.085 0.076 0.067 1
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NSE ¼ 1−
∑
n

i¼1
Mi−Pið Þ2

∑
n

i¼1
Mi−Mi

� �2
ð3Þ

R2 ¼
∑
n

i¼1
Mi−Mi

� �
Pi−Pi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Mi−Mi

� �2
∑
n

i¼1
Pi−Pi

� �2r
ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Pi−Mið Þ2
N

s

ð5Þ

MAE ¼ 1

n
∑n

i¼1 Pi−Mij j
ð6Þ

where n = number of inputs, Mi = measured values, Pi =
predicted values, Mi = average of measured values, and Pi =
average of predicted values.

Results and discussion

GEP-based model development for TDS an EC

GEP modeling was employed to develop TDS and EC
models. The optimal setting of the general parameters, genetic
operators, and numerical constants used in GEP modeling are
given in Table 3. Basic function sets such as addition, subtrac-
tion, and division were set along with structural association of
chromosomes prior to GEP algorithm. The GEP models for
TDS and EC were selected after running a set of GEP algo-
rithms started from the smallest head size with a single gene
chromosome. Upon choosing basic operators, smallest head
size and lowest number of chromosomes, one can get simplest
final mathematical expressions. Moreover, the modeling pro-
cess becomes simple and less time-consuming. Table 3 lists

the optimal setting parameters that led to the best possible
GEP structure.

Initially the GEP process starts by creating a population of
the most viable solutions. Afterwards, the best possible solu-
tion could be attained through an iterative process from one to
another generation. GEP iterations continued until no changes
occurred between the fitness function and the associated cor-
relation values. The results of developed GEP modeling for
both TDS and EC are presented in Fig. 8 (a) and (b) respec-
tively. The proposed GEP models successfully simulated the
TDS and EC records, with high R2 results of above 0.90 for
both training and testing phases as shown in both sub-figures.

ANN-based model development for TDS and EC

In ANN technique, the feed forward propagation algorithm is
used to train the TDS and EC models. As there is no common
rule to get the optimum ANN structure and lowest error, so an

Table 3 Summary of the general, genetic operators, and numerical
constants setting for GEP

Parameter Setting

No. of chromosomes 30

No. of Genes 4

Head size 10

Gene size 26

Linking function Addition

Function sets + , , x , ÷ , ^2 , 3√
Mutation rate 0.0138

Inversion rate 0.00546

IS transposition rate 0.00546

RIS transposition rate 0.00546

One point recombination rate 0.00277

Two point recombination rate 0.00277

Gene recombination rate 0.00755

Gene transposition rate 0.00277

Constants per gene 10

Data type Floating type

Upper and lower bounds ± 10

Fig. 7 k-fold cross-validation algorithm
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optimization routine was adopted to search for optimum
number of neurons by simultaneously changing the neu-
rons from hidden layers (Basant et al. 2010; Najah et al.
2013; Ouma et al. 2020). The performance of the network
is highly influenced by the number of neurons. The de-
sired results cannot be attained by neural network using a
limited number of neurons. Similarly, too many neurons
make the process lengthier and sometime result in
overfitting of the model (Najah et al. 2013). Figures 9
(a) and (b) graphically demonstrate the results of ANN
model prediction against the measured values of TDS
and EC, respectively. In both sub-figures, there is a strong
correlation of the actual versus predicted water quality
values as depicted from statistical indicators. In TDS
model, the yielded R2 results for training and testing
phases were 0.89 and 0.86, respectively, while, in EC
model, both values were 0.88 and 0.82, respectively.

MLR and MNLR model development for TDS and EC

Both MLR and MNLR models were developed to simulate
TDS and EC, and their results are graphically shown in Figs.

10 and 11, respectively. Comparing with actual data, both
models showed good estimation for both water quality param-
eters. For EC, R2 results were low in the testing dataset com-
pared with the training one, while, for TDS model, R2 results
were above 0.80 in both training and testing phases.

Models cross-validation results

In order to evaluate the performance and ensure the desired
accuracy of any model, the validation is of utmost important.
The cross-validation is performed to enhance the robustness of
the developed models with the help of k-fold cross-validation
algorithm. The cross-validation is applied to all the models in
each tenfold, and representation of results is illustrated in Fig.
12 and Fig.13 for TDS and EC models, respectively. A fluc-
tuation in the results for individual can be observed, although
it maintained a high level of accuracy. For TDS models, the
mean R2 obtained values through cross-validation are 0.82,
0.71, 0.60, and 0.67 for GEP, ANN, MLR, and MNLR, re-
spectively. The minimum and maximum R2 value for TDS
models are attained as 0.72 and 0.92, respectively. Similarly,
the mean RMSE values, i.e., 6.29, 9.92, 9.35, and 11.43, are
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observed for GEP, ANN,MLR, andMNLR, respectively. The
method is also applied to EC developed models. The
cross-validation results for EC give the mean R2 values
of 0.8, 0.85, 0.56, and 0.65 for GEP, ANN, MLR, and
MNLR models, respectively. Meanwhile, the k-fold out-
put for EC revealed lowest and highest RMSE values
ranges from 10 to 13 and 30 to 35, respectively.
Summarizing the results of k-fold cross-validation, the
aforementioned statistics confirm the generalized capa-
bility and accurate performance of the developed
models. As discussed in last sections, the cross-
validation outcome also recognized the superior and ac-
curate performance of GEP model.

Model comparison

The comparison based on R2 results is not sufficient to distin-
guish and identify the optimum performance. Therefore, the
above-mentioned developed models were challenged by var-
ious statistical indicators to analyze their robustness. Table 4
lists the results of these performance measure indicators in-
cluding NSE, MAE, and RMSE. The RMSE errors are

squared which means a much larger weight is assigned to
the larger errors.

In both TDS and EC modeling, GEP technique showed the
lowest error values represented by MAE and RMSE values.
GEP outperformed the other modeling methods with RMSE
of only 6.82 and 9.65 for both TDS and EC models, respec-
tively. The superior performance of GEP was reported in var-
ious research studies (Azamathulla et al. 2011; Liu and Wang
2019; Martí et al. 2013; Mehdipour et al. 2017). Furthermore,
from the previous figures, it was clear that in both TDS and
EC prediction, the performance of ANN models during train-
ing was superior as compared with testing phase. This can be
referred to the modeling with overfitting, which is considered
one of the drawbacks of ANN. TheANN is considered a black
box model as it adopts the numerical approach only without
taken into account the underlying principles and mechanism
(Juditsky et al. 1995). The neural networks have limited abil-
ity to clearly identify and portray the possible relationship.
Moreover, the neural network models are very prone to
overfitting problem due to complexity of the network structure
(Tu 1996).

Nevertheless, GEP results showed the lowest MAE errors
as well as the highest values of R2 and NSE for the overall
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dataset. For TDS model, both R2 and NSE values were 0.92
and 0.91, respectively, while in EC model they were same
(0.93). These results indicate that the developed models using
GEP modeling were better than the other techniques. The
most reliable and accurate results can be adequately obtained
by the GEP.

Summarizing the above discussion and the performance
comparison of all the developed models, the performance of
GEP model outclass all other models. Therefore, GEP models
were employed to formulate an applicable equations which
can be easily used to estimate TDS and EC values, as de-
scribed in the following section. The comparative results of

the developed models for TDS and EC parameters are graph-
ically presented in Fig. 14.

Proposed formulation for TDS and EC

Using the results of the developed models by GEP, the fol-
lowing Es. 7 and 8 are proposed to predict TDS and EC,
respectively. These equations were derived from the devel-
oped expression trees (ETs), as shown in Appendix. The re-
sults are TDS and EC estimation in both equations,
respectively.

TDS ¼ 23895

Ca

� �1
3

−45HCO3

 !
� SO4−45HCO3ð Þ13 þ 1

83HCO3
1
3 � ln 8:14Cl−1:11ð Þ2

þ 4:15þ Nað Þ � 25−Na� 76HCO3−
28

Ca
Mg � Cl � 1:17þ SO4

1:03

� �
� 51−7:33Clð Þ

ð7Þ

EC ¼ 9:6Cl þ 5:1SO4−lnHCO3ð Þ � 4:9−H45CO3ð Þ2 þ SO4 � PH � 2:6−
32:7

7CA

� �
−5:8

	 

� 4HCO3

þ N65aþ HCO3 � 10:4−SO4 � Clð Þ � 45:63
ð8Þ

Sensitivity and parametric analyses

The sensitivity analysis is carried out for the purpose to
know the influence of the inputs on the targeted output,
since there are uncertainties associated with model in-
puts, model parameters, or model structure (Chen and
Chau 2019). A model can provide accurate results for
training and testing data, but its accuracy is not certain
on different datasets. Therefore, sensitivity analysis is

essential for the optimization of input parameters and
relative contribution of each parameter on the models
outputs (TDS and EC). In this study, the developed
method by Gandomi et al. (2013) and Javed et al.
(2020) was adopted. This method considered the effect
of a single parameter on model output. By this method,
it is very easy to elaborate and verify the results with
actual data. The same method has been adopted in var-
ious research studies (Azim et al. 2020; Iqbal et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

GEP ANN MLR MNLR

R
2

k-fold

(a)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

GEP ANN MLR MNLR

R
M

S
E

k-fold

(b)

Fig. 12 k-fold cross-validation
results of TDS models based on
(a) R2 (b) RMSE

13211Environ Sci Pollut Res  (2021) 28:13202–13220



2020). The following Eqs. 9 and 10 were used to find
out the contribution by each input variable to the model
output.

Ni ¼ f max xið Þ− f min xið Þ
ð9Þ

Si ¼ Ni

∑
n

j¼i
N j

� 100

ð10Þ

where fmax(xi) and −fmin(xi) is the maximum and minimum
of the estimated output over ith output.

The sensitivity of input parameters essential for
modeling the water quality, i.e., TDS and EC, was iden-
tified as graphically shown in Fig. 15. The results indi-
cated that bicarbonates (HCO3) is the most sensitive
parameter followed by magnesium (Mg) for TDS

concentration in water, with 26.10 and 18.92% relative
contribution, respectively. In contrast, pH has no effects
on TDS concentration. Similarly, the sensitivity analysis
results for EC were mostly affected by HCO3 content.
The second most sensitive parameter for EC estimation
was SO4. However, both magnesium (Mg) and pH have
a little or no effect on EC estimation. The effect of year
(Tyear) is least in both TDS and EC models. The relative
contribution of Tyear is 1.01 and 1.92% to TDS and EC
models, respectively.

Secondly, parametric analysis is performed aiming at
further verifying the robustness of the proposed models.
This test was performed by changing the values of a
single input parameter while keeping the rest of the
variables constant in order to enhance the modeling ac-
curacy. This process measures the competence of the
model and helps to recognize the performance of the
system being modeled. The values of the input variable
were changed with a specific increment for all input
variables. Respectively, Figs. 16 and 17 show the
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Table 4 Comparison of the developed models’ goodness of fit for all dataset

Parameter Technique R2 NSE MAE RMSE R2 NSE MAE RMSE

Training Testing

TDS GEP 0.92 0.91 5.67 6.53 0.94 0.91 4.45 7.12

ANN 0.89 0.87 8.17 11.47 0.86 0.81 9.56 11.76

MLR 0.81 0.80 9.42 8.92 0.80 0.82 8.22 8.25

MNLR 0.85 0.80 8.76 10.56 0.84 0.82 6.67 12.76

EC GEP 0.93 0.93 7.55 10.54 0.95 0.94 4.45 8.76

ANN 0.88 0.84 12.80 39.62 0.82 0.80 13.65 33.56

MLR 0.81 0.80 14.44 21.23 0.82 0.80 18.76 15.56

MNLR 0.85 0.82 10.96 19.31 0.85 0.79 9.11 16.54
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prediction capacity of GEP models for simulating TDS
and EC with the variation in input variables, i.e., Ca2+,
Mg2+, Na+, Cl-, SO4

2-, HCO3
-, pH and Tyear. The results

of the parametric analysis revealed that the concentra-
tion of TDS and EC varies linearly (with an increasing
trend) with all the input variables, where TDS concen-
tration is constant with the increase of pH values. It can
also be observed from Figs. 16 and 17 that the TDS
and EC values remain the same with addition of suc-
cessive years (Tyear). As it is known that both TDS and
EC are affected by ion and salt concentration in water.
The input variables, i.e., Ca, Mg, Na, HCO3, Cl, and
SO4, are basically ion and salt concentration. Therefore,
any change in the input variables directly affects TDS
and EC levels. Various research studies reported the
influence on TDS and EC with a variation in ions and
salts (Al-Mukhtar and Al-Yaseen 2019; Montaseri et al.
2018). Maedeh et al. (2013) reported that the TDS con-
centration can be controlled by limiting the amount of
ion and salt contents in water. The aforementioned stud-
ies are much in line with results of this study, which
justified the modeling outcome of the current study.

Conclusion

This study presents the application of data-driven models, i.e.,
GEP, ANN, MLR, and MNLR, for estimating the TDS and
EC in the upper Indus river basin. Despite the largely un-
known factors responsible for the variation of the river’s water
quality, the developed models were trained and tested on a
monthly data set of TDS and EC measured over a period of
almost 30 years (i.e., 1975–2005). The performance of the
models was challenged using NSE, R2, MAE, and RMSE.
The data is also validated with k-fold cross-validation using
R2 and RMSE. All the models exhibited an excellent correla-
tion for observed and simulated data. It was found that the
GEP model is superior and outperformed all the other tech-
niques. The developed GEP empirical equations for both TDS
and EC could be confidently used for estimating water quality
parameters. The novel GEP technique evaluates suitable con-
nections portrayed the physical processes and does not assume
prior solution, thus making it superior to others. Both the GEP
and ANN models are capable of estimating TDS and EC in
river water for a given set of inputs. However, the perfor-
mance of ANN reduced during model testing and may be

due to data overfitting, limited ability of neural networks,
and complexity of the network structure. Moreover, the pro-
posed formulated equations for TDS and EC could assist and
help policy makers and engineers to devise a strategy for suc-
cessful and sustainable management of the water quality.

The work presented in this study has certain limitations. An
extensive dataset is essential for modeling studies particularly
for data-driven models. The dataset included in this study was
for larger duration, i.e., 30 years, but limited up to 2005.
Indeed, research on more recent data should be done to know
the situation that is important for environmental perspective.
Furthermore, the temporal variation is not included in the
current study.

It is recommended that further research studies should be
spread to surrounding catchments with extensive databank.
The spatiotemporal analysis should also be taken in to ac-
count. Additionally, some deep learning machine learning al-
gorithm should be considered such as convolution neural net-
work (CNN), multi expression programming (MEP), and re-
current neural network.
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Appendix. A Expression tree diagrams

Fig. 18 Expression tree of the
developed GEP model for TDS
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