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Abstract
Managed aquifer recharge (MAR) is an important approach to address water security, water quality decline, ground subsidence,
and aquifer degradation. In this study, the large-scale recharge experiments were conducted in a natural river with multiple water
sources. The MAR with multi-source water was investigated by developing an improved matter-element model under a limited
recharged quantity and period in Jinan, China. Results showed that the background levels (BL) of groundwater quality before
recharge was relatively good. However, the use of different water sources would cause a significant increase in the content of
some groundwater quality indexes, which might further induce deterioration of regional groundwater quality. And the water
quality in porous and karst aquifer displayed deteriorating trends during different water source recharge. Additionally, the adverse
effects of recharge water sources on regional groundwater quality in turn was South-to-North Water Diversion Project (SN) >
Yellow River (YR) > Wohushan Reservoir (WR). Meanwhile, the high-risk indexes in groundwater quality were presented
during different water source recharge. Accordingly, relevant suggestions and measures were then put forward to optimize the
MAR with multi-source water and explore the high-efficiency and low-risk recharge mode.

Keywords Managed aquifer recharge . Artificial recharge . Multi-source water . Improvedmatter-element model . Groundwater
quality

Introduction

Managed aquifer recharge (MAR) was an increasingly com-
mon measure for increasing urban water supply and sustain-
ing water resilience (Dillon 2005; Rodríguez-Escales et al.
2017). Excess water was stored in the aquifers for future
consumption by MAR. And the major methods used for

MAR include bank filtration, well injection, rainwater har-
vesting, and infiltration ponds (Ebrahim et al. 2016; Ganot
et al. 2017). MAR provided a series of technical solutions to
sustainably manage water resources by not only recharging
groundwater but also displaying an integrated vision of wa-
ter resources, following the EUWater Framework Directive
approach (Escalante et al. 2019). The groundwater level
dropped rapidly over 10 m per year in China. And ground-
water overexploitation had occurred in 164 areas of China’s
31 provinces, affecting more than 180,000 km2 (Werner
et al. 2013). Groundwater funnel formed gradually and ex-
panded by the groundwater depletion, which caused fre-
quent land subsidence, water quality deterioration, and sea-
water intrusion. To alleviate the abovementioned issues, a
series of water management measures had been carried out
in China, such as improving irrigation technology and water
efficiency, implementing water price reforms, and water use
rights. However, the lack of detailed information on the
amount of groundwater extracted, and limited groundwater
monitoring wells, as well as complex recharge water
sources, make groundwater management still face severe
challenges.
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Water security associated with groundwater overexploita-
tion was increasingly becoming a critical environmental con-
cern. Growing studies had indicated that MAR could effec-
tively improve water supply and surface water quality.
Rainwater quality after being treated by constructed wetlands
and MAR was studied in urban catchments (Page et al. 2010).
The mechanism of excessive air formation during MAR (nat-
ural bank filtration) was investigated in Berlin (Massmann and
Sültenfuß 2008). Leonard et al. (2015) analyzed the possibil-
ity of MAR-treated rainwater for potable and non-potable.
Mankad et al. (2015) qualitatively studied the acceptance of
MAR-treated urban rainwater for household use combined
with psychological and policy-related factors. MAR risks
were revealed using fault tree and probabilistic assessment
methods at six recharge sites in the Mediterranean Basin
(Rodríguez Escales et al. 2018). Fiorillo et al. (2019) analyzed
the features of MAR in the Caposele Spring area, southern
Italy, using a daily recharge model. MAR projects of two
demonstration sites were studied according to the monitoring
data in the Guadiana Basin, Spain (Fernández Escalante
2015). The 150,000-m3/day MAR project was proposed as
an economic solution to solve the water supply and ground-
water quality issues in Southwestern Florida, USA (Missimer
et al. 2017). Dillon et al. (2019) assessed the efficacy of MAR
and illustrated the development of MAR at the global scale
over the past 60 years. To investigate the hydrodynamics of
unsaturated flow and recharge efficiency, Liang et al. (2018)
proposed a mathematical method for MAR induced by a
Vadose zone infiltration well. Groundwater quality during
MAR was sampled and monitored regularly at the
Krasnohorska karst system in Slovakia (Malík et al. 2020).
Urrutia et al. (2019) investigated the contribution of
snowmelt and rainfall to aquifer recharge in the Andean
Cordillera of northern Chile. Yin et al. (2011) analyzed the
sustainable yield of karst water in Huaibei, China, using an
artificial neural network model. The MAR system in karst
spring catchment was simulated using the latest research ver-
sion of MODFLOW-CFP (Xu et al. 2015). The influences of
an inter-basin surface water transfer project on the MAR sys-
tem and groundwater ecosystem were evaluated using a nu-
merical simulation model in arid northwestern China (Zhu
et al. 2018). Gong et al. (2016) developed a salt balance model
in Badain Jaran Desert, China, to evaluate the salt accumula-
tions in the groundwater-fed lakes. Lysimeter measurement
and soil moisture models were used in the Huaihe River plain,
China, to estimate groundwater recharge caused by precipita-
tion and groundwater loss (Chen et al. 2008). The effects of
clogging and dissolution in the MAR system were explored
using hydrogeochemical and numerical simulation methods
(Du et al. 2013; Ye et al. 2019).

Jinan is famous for its spring water and has been hailed as
“Spring City.” The abundant spring water resources have
made tremendous contributions to the socio-economic

development in Jinan. Recently, the contradictions between
water supply and demand have become increasingly promi-
nent, with the rapid urbanization and increasing urban popu-
lation (Jiao et al. 2017). In this case, Jinan has to exploit local
groundwater to address the current situation of water short-
ages. However, a continuous decrease has occurred in ground-
water level and free outflow rate of springs due to long-term
overexploitation of urban groundwater resources (Wang et al.
2019). This situation has progressively become major threats
to the protection of spring water resources and the safety of
urban water supply in Jinan (Wang et al. 2017a, b). To realize
the sustainable management of groundwater resources, it was
urgent to carry out the MAR project in Jinan.

The aquifer system in Jinan spring catchment is a hetero-
geneous system, and the relationship between replenishment
and discharge is extremely complex (Wang et al. 2015a, b;
Gao and Tian 2018). And numerous empirical studies associ-
ated with groundwater management had been conducted in
Jinan. The three-dimensional geological models were
established to investigate the hydrogeological structure and
groundwater flow characteristics in Jinan (Wu and Xu 2005;
Kang et al. 2011; Wang et al. 2016; Luo et al. 2020). Qi et al.
(2016) used the wavelet analysis method to predict the
groundwater table in the Jinan spring catchment and then pro-
posed sustainable groundwater extraction. To optimize the
layout of groundwater recharge and extraction, the hydraulic
connectivity in the Jinan spring catchment was explored
(Wang et al. 2017a, b; Zhang et al. 2018). Hydrochemistry
ions were used to study the recharge and discharge controls
and groundwater flow paths in the Jinan spring catchment
(Zhang et al. 2017b; Xing et al. 2018). Environmental isotope
tracer tests were employed to investigate the main recharged
water source for the Jinan spring catchment (Yin et al. 2017;
Gao et al. 2014).

The aforementioned studies had achieved promising results
and laid the foundation for optimizing regional MAR opera-
tions and maintaining water resilience. Although numerous
micro and macro studies onMAR have been conducted, some
investigations associated with multiple recharge water sources
were scarce during the MAR process. Additionally, most cur-
rent researches focus on the hydrogeochemistry of groundwa-
ter, almost ignoring the change in the state of groundwater
quality. And there were few quantitative studies on the com-
bination of comprehensive evaluation and high-risk indexes in
groundwater quality. Therefore, it was necessary to investi-
gate the impact of MAR with multi-source water on ground-
water quality, especially in Jinan with groundwater depletion.

To achieve sustainable management of groundwater
in Jinan, this study quantitatively investigated the im-
pact of multi-source MAR on groundwater quality and
high-risk indexes. The large-scale recharge experiments
using multiple water sources were conducted in a natu-
ral river that the riverbed has high permeability.
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Groundwater and recharge water sources were sampled
and tested to quantify the adverse effects of different
recharge water sources on local groundwater quality,
under a limited recharged quantity and period. An im-
proved matter-element model was developed to imple-
ment a comprehensive assessment of groundwater qual-
ity, and the high-risk indexes in groundwater quality
were determined during different water source recharge.
The combination of two methods provides a new ap-
proach to investigate the MAR with multi-source water
from multiple angles (the overall situation and high-risk
indexes in groundwater quality). We hope this method
could be extended to other MAR with multi-source wa-
ter to optimize the operation of groundwater replenish-
ment and reduce the damage of the recharged water
source on the local aquifer system. Accordingly, the
effects of MAR with multi-source water were assessed
from the perspective of groundwater quality control, and
countermeasures were then developed to provide a basis
for formulating the high-efficiency and low-risk MAR
mode.

Study area

Jinan spring catchment and Yufu River

Jinan’s terrain slopes from the south to the north with an
elevation difference of more than 500 m (Yu et al. 2014).
This unique geological structure makes the surface water
and groundwater in Mount Tai flow into the northern urban
area. Large quantities of groundwater are blocked by imper-
meable igneous rocks to form the high water pressure zones in
northern Jinan (Xie 2017). After that, the groundwater flows
out to form the Jinan spring groups under the action of strong
water pressure (Fig. 1). As a symbol of Jinan’s social culture,
the Jinan spring groups have made a historical contribution to
the economic prosperity (Zhang et al. 2017a).

To alleviate the pressure of spring water protection and
urban water supply, the MAR projects in Yufu River have
been carried out in Jinan. And the surface water in the
Wohushan Reservoir (WR), the Yellow River (YR) and the
South-to-North Water Diversion Project (SN) are used as the
water sources for MAR, respectively. These MAR projects
have played important roles in replenishing local groundwater
and maintaining higher groundwater level of the Jinan spring
groups. Although the MAR projects have been gradually im-
plemented, there are still some challenges and obstacles. Due
to the different recharge water sources and relatively compli-
cated geological structure in Jinan, how to efficiently replen-
ish local groundwater, avoid groundwater pollution, and sus-
tain water resilience are the critical links.

Existing MAR projects in Yufu River

Yufu River is located in western Jinan. It originates from the
mountain streams of Jinxiu, Jinyang, and Jinyun in the moun-
tainous area of southern Jinan (Fig. 2). The rainfall and moun-
tain streams are collected into the Wohushan Reservoir, and
the Yufu River is then formed by the Wohushan Reservoir
release (Hou et al. 2016). The study area is located in the upper
reaches of the Yufu River. The riverbeds and river floodplains
are mainly composed of loose Quaternary sediments (gravel,
sand, and clay) with a thickness of about 24 m. And the strata
are mainly Cambrian limestone with a thickness of about 150
m. This part of the Yufu River has a high perviousness based
on its fully developed karst conditions. Consequently, the
Yufu River plays an important role in groundwater replenish-
ment and urban water supply in Jinan. Currently, the MAR
projects in the Yufu River mainly include the following: (i)
Yufu River is replenished by the WR release, and the water
source of this MAR project is the local surface water in WR;
(ii) surface water from YR is transferred to the upper reaches
of Yufu River through the pumping station, and water source
of this MAR project is from the YR; and (iii) surface water
from the Jiping Main Canal is transported into the upper
reaches of Yufu River employing water pipes, and water
source of this MAR project is from the SN. The aforemen-
tioned MAR projects in Yufu River are shown in Fig. 2.

The water source and recharge quantity of MAR
projects

As shown in Table 1, the water sources ofMARwere from the
WR, YR, and SN, respectively. The water quality and quantity
of recharge water sources are two main reasons for ground-
water quality changes after MAR. The recharge quantity was
1120–1170 (104m3) and the recharge period was from
December to March of the next year in 2015–2018.
Recharge quantity and period were well controlled in this
study. So, the groundwater quality changes after recharge
were mainly subjected to the water quality of recharge water
source.

Monitoring wells and groundwater sampling

Eightmonitoringwells (W1–W8) along the upper reaches of
Yufu River were selected to monitor the groundwater quali-
ty. These monitoring wells consisted of three wells (W1–
W3) in porous aquifer and fivewells (W4–W8) in karst aqui-
fer (Fig. 3).Thedepthofmonitoringwellwas24mand150m
inporousmedium formation andkarst formation, respective-
ly. To determine the background level (BL) of groundwater
quality, the groundwater in each monitoring well was sam-
pled to test its water quality before MAR. Groundwater was
directly sampled from a specific depth using the Discrete
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Interval Sampler, Model 425 (Solinst Canada Ltd.,
Georgetown, Ontario, Canada), and collected water could
be highly representative of groundwater surrounding the
monitoring well at that level (Parker and Clark 2004). The
Discrete Interval Sampler was a passive sampler and was
pressurized when lowered and upon retrieval to prevent wa-
ter mixing at different levels (Dermatas et al. 2015).
Furthermore, the water quality conditions of recharge water
sources (WR, YR, and SN) were obtained through the sam-
pling analysis.

Materials and methods

Index system

Groundwater quality data from eight monitoring wells were
served as the evaluation indexes. Environmental Quality

Standards for Groundwater, China (GB/T14848-2017), were
used as the evaluation standards. The groundwater quality was
regularly sampled and tested from 2015 to 2018 during dif-
ferent water source recharge process. The test results showed
that some water quality indexes in pore and karst water were
detected, including total hardness (TH), nitrite nitrogen (NO2-
N), nitrate nitrogen (NO3-N), ammonia nitrogen (NH4

+), chlo-
rides (Cl−), fluoride (F−), sulfate (SO4

2−), sodium ions (Na+),
permanganate index (CODMn), pondus hydrogenii (PH), tur-
bidity (TUB), and total dissolved solids (TDS). Previous re-
search in Yufu River indicated that other groundwater quality
indexes listed by Environmental Quality Standards for
Groundwater, China (GB/T14848-2017), had less content or
had not been detected in the study area, in addition to the
above twelve groundwater quality indexes (Li et al. 2017b).
So, the index system of groundwater quality was constructed
using the above twelve indexes. The grades of groundwater
quality were divided into five classifications (I, II, III, IV, and

Fig. 1 Jinan spring catchment and Yufu River (Zhang et al. 2018)
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V) based on Environmental Quality Standards for
Groundwater, China (GB/T14848-2017). Classifications of
evaluation indexes are displayed in Table 2.

Improved matter-element model

Matter-element model was presented by the Chinese re-
searcher Cai Wen in 1983 (Cai 1999). Rules and
methods for solving specific problems were qualitatively
and quantitatively investigated according to the formal-
ized logic tools (Li et al. 2017a; Liu et al. 2019). The
matter-element method was the theoretical foundation,
the logical unit was the matter-element, and a matter-
element model was then developed by the characteristics
and characteristic values of the evaluation object (Liu
and Zou 2012). This model can quantify qualitative

indexes and also deal well with the diverse and ambig-
uous evaluation objects.

Determination of the classical field, controlled field,
and matter-element

The evaluation objectNhas a characteristiccwith the val-
ue of v. The ordered tripleR = (N, c, v) is composed of
N, c, and v, which serves as the basic element for de-
scribing things. R is called the matter-element, and the
three elements N, c, and v are used to establish the
basis for matter-element theory. Assume that the object
N can be described by m characteristics c1, c2, ⋯, cm,
and the corresponding characteristic values are v1, v2,
⋯, vm. At this point, R is an m-dimensional matter-
element, and defined as follows:

Fig. 2 Existing MAR projects in Yufu River

Table 1 Recharge water source
and quantity in Yufu River from
2015 to 2018

Year Recharge water source Recharge period Sampling time Recharge quantity (104m3)

2015–2016 YR December to March
of next year

March 2016 1170

2016–2017 WR December to March
of next year

March 2017 1120

2017–2018 SN December to March
of next year

March 2018 1140
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R ¼ N ;C;Vð Þ ¼
R1

R2

⋮
Rm

2
664

3
775 ¼

N c1 v1
c2 v2
⋮ ⋮
cm vm

2
664

3
775 ð1Þ

where R is the matter-element, Ri is the sub-matter-
element of R, N is the evaluation object, C = [c1, c2,
⋯, cm] is the eigenvector, V = [v1, v2,⋯, vm] is the value
corresponding to the eigenvector.

Fig. 3 The monitoring wells in Yufu River

Table 2 Grades of groundwater
quality in Environmental Quality
Standards for Groundwater,
China (GB/T14848-2017)

Index Unit Grades of groundwater quality

I II III IV V

TH (C1) (mg/L) (0, 150) (150, 300) (300, 450) (450, 650) ≥ 650

NO2-N (C2) (mg/L) (0, 0.01) (0.01, 0.1) (0.1, 1) (1, 4.8) ≥ 4.8

NO3-N (C3) (mg/L) (0, 2) (2, 5) (5, 20) (20, 30) ≥ 30

NH4
+ (C4) (mg/L) (0, 0.02) (0.02, 0.1) (0.1, 0.5) (0.5, 1.5) ≥ 1.5

Cl− (C5) (mg/L) (0, 50) (50, 150) (150, 250) (250, 350) ≥ 350

F− (C6) (mg/L) (0, 1) (0, 1) (0, 1) (1, 2) ≥ 2

SO4
2− (C7) (mg/L) (0, 50) (50, 150) (150, 250) (250, 350) ≥ 350

Na+ (C8) (mg/L) (0, 100) (100, 150) (150, 200) (200, 400) ≥ 400

CODMn (C9) (mg/L) (0, 1) (1, 2) (2, 3) (3, 10) ≥10
PH (C10) 1 (6.5, 8.5) (6.5, 8.5) (6.5, 8.5) (8.5, 9) (9, 14)

TUB (C11) (NTU) (0, 3) (0, 3) (0, 3) (3, 10) ≥ 10

TDS (C12) (mg/L) (0, 300) (300, 500) (500, 1000) (1000, 2000) ≥ 2000
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Suppose:

Rj ¼
N j c1 v j1

c2 v j2
⋮ ⋮
cn vjn

2
664

3
775 ¼

N j c1 aj1;bj1
� �

c2 aj2;bj2
� �

⋮ ⋮
cn ajn;bjn

� �
2
664

3
775 ð2Þ

where Nj represents j evaluation grades, c1, c2, ⋯, cn are the
characteristics of Nj, vj1, vj2, ⋯, vjn are the value ranges cor-
responding to the c1, c2, ⋯, cn, and vji(vji = [aji,bji]) is called
the classical field.

Similarly,

RP ¼
P c1 vp1

c2 vp2
⋮ ⋮
cn vpn

2
664

3
775 ¼

P c1 aP1; bP1½ �
c2 aP2; bP2½ �
⋮ ⋮
cn apn; bpn

� �
2
664

3
775 ð3Þ

where P is all the grades in evaluation objects, vp1, vp2,⋯, vpn
are the value ranges corresponding to the c1, c2,⋯, cn, and vPi
(vpi = [api,bpi]) is called the controlled field of P.

The evaluation objects are represented by the matter-
element.

R0 ¼
P0 c1 v1

c2 v2
⋮ ⋮
cn vn

2
664

3
775 ð4Þ

where R0 is the matter-element to be evaluated, v1, v2,
⋯, vn are the specific data of P0 about c1, c2, ⋯, cn.

Calculation of the combined weights

The conventional combined weighting methods include mul-
tiplication and linear normalization. And they often have some
limitations, such as the multiplication normalization method is
only applicable to the cases where the number of indexes is
large and the weight distribution between indexes is relatively
uniform (Wang et al. 2009; Tang and Zhang 2013). It is dif-
ficult to determine accurately the preference coefficient of the
linear weighting method, and it is usually applied based on
experiences (Liu et al. 2020a, b; Zhang and Li 2020). To
overcome these primary imperfections of conventional
weighting methods, we propose a new combined weighting
method based on the advantages of the subjective and objec-
tive weighting methods. There are two issues needed to be
considered behind this combined weight. In the first place,
the decision-makers’ preference for index attributes should
be considered. The other point is that the information content
provided by data itself should be used as much as possible. In
view of this, the combined weighting method was proposed to
make the weights and decision results becomemore reliable in
the decision-making process. Detailed steps were as follows.

(i) Definition of ideal solution
Assume that the weights of evaluation indexes obtain-

ed by subjective weighting method (analytic hierarchy
process (AHP)) are u = (u1, u2,…, un), and the weights
obtained by objective weighting method (information en-
tropy) are h = (h1, h2,…, hn), along with the combined
weights obtained by the ideal solution method are
w = (w1,w2,…,wn).

(ii) Deviations of different weighting methods
Unitization of weight vectors can be expressed as:

u
0
j ¼

u jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u21 þ⋯þ u2n

p ; h
0
j ¼

hjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h21 þ⋯þ h2n

q ;

w
0
j ¼

wjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1 þ w2

1 þ⋯þ w2
n

p
ð5Þ

(iii) Calculation of combined weight

w
0
1;w

0
2;⋯;w

0
n can be obtained according to Eq. (6).

w
0
j ¼

u
02
j þ h

02
j

2

" #1
2

ð6Þ

Normalizing w
0
1;w

0
2;⋯;w

0
n to get the combined weight wj,

the formula can be expressed as:

wj ¼
w

0
j

∑
n

j¼1
w0

j

; j ¼ 1; 2;⋯nð Þ ð7Þ

A detailed derivation process of the above model is de-
scribed in the Supplementary Material.

Calculation of variable eigenvalues

The distance between matter-element and classical field is
derived with Eq. (8).

ρ x0;vjið Þ ¼ x0−
1

2
aji þ bji
� �����

����− 1

2
bji−aji
� � ð8Þ

where ρ x0ð ; vjiÞ is the distance between matter-element and

classical field, x0 is the point value on the real axis, aji and bji
are the left and right endpoints of interval vji, respectively.

(i) Calculation of the comprehensive correlation degree
(CCD)
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The correlation function between evaluated matter-
element and each grade can be established by Eq. (9).

K j x0ð Þ ¼

ρ x0;vjið Þ
ρ x0;vPið Þ−ρ x0;vjið Þ

x0∉vji

−
ρ x0;vjið Þ
vji
�� �� x0∈vji

8>>><
>>>:

ð9Þ

where Kj(x0) expresses the value of correlation function for
evaluated index x0 related to the jth grade, ρ x0;vjið Þ represents
the distance between the evaluated matter-element of index x0
and the interval vji in the classical field, ρ x0;vpið Þ is the distance
between the evaluated matter-element of index x0 and the
interval vpi in the controlled field, and |vji| (|vji| = |bji − aji|) is
the value range of the jth grade in the classical field.

Correlation function Kj(xi) is replaced by CCD.

K j P0ð Þ ¼ ∑
n

i¼1
wiK j xið Þ ð10Þ

where Kj(P0)expresses the CCD of evaluated matter-element
P0 related to the jth grade, wi is the combined weight of eval-
uated indexes, Kj(xi) is the correlation function of the ith eval-
uated index related to the jth grade.

(ii) Grade rating and variable eigenvalues calculation
If Kj0(P0) = maxKj(P0), (j = 1, 2,…,m), then we con-

clude that the evaluated matter-element P0 belongs to the
grade j0.

The comprehensive grade of the evaluation object can

be determined by K j P0ð Þ set.

K j P0ð Þ ¼
K j P0ð Þ− min

1≤ j≤m
K j P0ð Þ

max
1≤ j≤m

K j P0ð Þ− min
1≤ j≤m

K j P0ð Þ ð11Þ

where K j P0ð Þ is the CCD corresponding to the jth
grade, min

1≤ j≤m
K j P0ð Þ and max

1≤ j≤m
K j P0ð Þ are the minimum

and max imum va lues o f CCD in a l l g r ades ,
respectively.

The variable eigenvalue (VE) of matter-element P0 is:

j* ¼
∑
m

j¼1
j � K j P0ð Þ

∑
m

j¼1
K j P0ð Þ

ð12Þ

where j is the evaluated comprehensive grade, j∗ is the VE of
matter-element P0, and j∗ can be used as a reference for

distinguishing the degree of the evaluated matter-element tend
to adjacent grade.

Results

Hydrochemical types in MAR water source and BL of
groundwater

The main ion compositions in MAR water source and BL of
groundwater were analyzed using the Piper diagram (Fig. 4).
The most abundant ions in BL of pore and karst water were
Ca2+ that accounted for 60–70% of the total cation content,
and HCO3

− that was up to 70–80% of the total anion content.
Accordingly, the hydrochemical type in BL of groundwater
was of the HCO3-Ca type. This indicated that the ion compo-
sitions of groundwater were single before MAR, and the BL
were relatively good in the study area. Compared with the ion
compositions of BL, the ion changes inWR and YR primarily
included that the Ca2+ and HCO3

− content was decreased, and
the Mg2+ and SO4

2− content was increased. In light of this, the
hydrochemical type in WR and YR was of the HCO3·SO4-
Ca·Mg type. When the SN was used as MAR water source,
the most abundant cation was Na+ that accounted for 50–60%
of the total cation content, and the relatively abundant anions
were HCO3

−, Cl−, and SO4
2−. So, the hydrochemical type was

of the SO4·HCO3·Cl-Na·Ca type in SN. Overall, the
hydrochemical types of pore and karst water were similar,
and of the WR and YR were also close. However, the ion
compositions in SN were quite different from the BL, WR,
and YR.

Groundwater quality indexes and weights

The groundwater quality indexes (C1–C12) were sampled and
tested from 2015 to 2018 during different water source re-
charge process. And the data of groundwater quality indexes
are shown in Fig. 5. The mean and distribution range of
groundwater quality indexes were the smallest in BL, com-
pared with the groundwater quality during WR, YR, and SN
recharge. This indicated that the BL of groundwater quality
was relatively good, and the changes of BL were small before
MAR. Overall, an obvious upward trend appeared in ground-
water quality indexes during WR, YR and SN recharge pro-
cess, and the groundwater quality gradually deteriorated dur-
ing MAR. Moreover, the weights of the groundwater quality
index were determined by AHP and information entropy
method, respectively. The combined weights were then calcu-
lated according to Eqs. (5)–(7). Finally, the improved matter-
element model was developed using combined weights. The
combined weights of groundwater quality indexes are shown
in Fig. 6.
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Evaluation of groundwater quality during different
water source recharge

The CCD of evaluated matter-element

The CCD of evaluated matter-element related to the classifi-
cations standard was calculated during different water source
recharge. If the CCD associated with the comprehensive grade
was the largest, the evaluation object belonged to this grade.
The largest CCD of BL appeared in grades I and II (Fig. 7a). In
light of this, the comprehensive grades of BL belonged to
grades I and II. The CCD decreased in grade I, and gradually
increased in grades II and III, during the WR recharge process
(Fig. 7b). It showed that the groundwater quality of monitor-
ing wells was getting worse, and its comprehensive grade was
gradually approaching grades II and III. When the YR was
used as the source of MAR, the CCD continuously decreased
in grade I and increased in grades III and IV (Fig. 7c), meaning
that a continuing downward trend occurred in groundwater
quality. Compared with BL, WR, and YR, the CCD increased
significantly in grades III, IV, and V, during the SN recharge
process (Fig. 7d), that is, the comprehensive grade of ground-
water quality was changing from grades I and II to grades III,
IV and V. Overall, the CCD decreased in grades I and II,

increased in III, IV, and V, when the sources of MAR were
WR, YR, and SN.

The comprehensive grade and VE of groundwater quality

The comprehensive grade of groundwater quality could be
judged according to the CCD. Meanwhile, the trends in
groundwater quality were further revealed by the changes in
VE. Based on this, the influence of surface water sources on
regional groundwater quality was evaluated in different water
source replenishment processes. The higher the comprehen-
sive grades and VE were, the poorer the groundwater quality.
As shown in Figs. 8 and 9, the comprehensive grades were all
grade II in BL, except monitoring well W6 was grade I.
Moreover, the VE ranged from 2.050 to 2.064 with a mean
value of 2.056 in porous aquifer (W1–W3) and ranged from
1.940 to 2.005 with a mean value of 1.979 in karst aquifer
(W4–W8). In summary, the BL were relatively good, and
karst water quality was slightly better than pore water quality.

When the WR was as source of MAR, the comprehensive
grades in W1 and W6 were increased to grades III and II,
respectively, and the significant changes did not occur in the
remaining wells. The VE ranged from 2.184 to 2.220 with a
mean value of 2.205 in the porous aquifer, and ranged from

Fig. 4 The ion compositions in
MAR water source and BL of
groundwater
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2.054 to 2.118 with a mean value of 2.098 in the karst aquifer.
Overall, the VE in pore and karst water quality showed an
upward trend after WR recharge, which indicated that a slight-
ly deteriorated trend existed in groundwater quality.

During the YR recharge, the comprehensive grade
was grade III in the porous aquifer, and was grade II
in the karst aquifer. In addition, the VE ranged from
2.308 to 2.328 with a mean value of 2.321 in porous
aquifer, and ranged from 2.208 to 2.258 with a mean
value of 2.229 in the karst aquifer. Comparing with the
BL and WR, the VE gradually increased. These indicat-
ed that the deteriorating trend occurred relative to the

BL during the YR recharge process. Meanwhile, the YR
had a greater adverse impact on regional groundwater
quality than WR.

The comprehensive grades in porous and karst aquifer were
all grade III, when SN was the recharge source. The VE
ranged from 2.472 to 2.508 with a mean value of 2.488 in
the porous aquifer, and ranged from 2.308 to 2.378 with a
mean value of 2.330 in the karst aquifer. The comprehensive
grades and VE were the largest during the SN recharge pro-
cess, compared with WR and YR. These meant that the ad-
verse impact of the SN on regional groundwater quality was
greatest relative to WR and YR.

Fig. 5 Groundwater quality indexes
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Above knowable, the comprehensive grades and VE of
groundwater quality increased in turn and the local groundwa-
ter quality showed a deteriorating trend, when the water
sources of MAR were WR, YR, and SN, respectively.
Meanwhile, the adverse effects of different recharge water
sources on regional groundwater quality were SN > YR >
WR. Moreover, the VE of pore water quality was slightly
larger than that of karst water quality during different water
source recharge. This indicated that the karst water quality
was better than the pore water quality.

Discussion

The dynamic evolution of VE

The dynamic evolution of VE was investigated based on
Gaussian kernel density estimation (Fig. 10). A distribution
curve with a single peak occurred in BL and double peaks
appeared in WR, YR, and SN. The left peak of the bimodal
distribution curve represented the karst aquifer (W4–W8), and
the right peak was porous medium aquifer (W1–W3). The
distribution curve changed from a single peak to double peaks,
and the right part of curve extended to the right. In addition,
the peak width gradually increased, and both the agglomera-
tion center and right peak had a right-shift trend. These fea-
tures indicated that the groundwater quality showed a down-
ward trend during different water source recharge. Notably,
the difference in groundwater quality between the porous me-
dium aquifer and karst aquifer increased significantly after the

SN recharge. The right-shift distance of the distribution curve
in turn was SN > YR >WR > BL. Overall, the adverse effects
of different recharge water sources on regional groundwater
quality were SN > YR > WR > BL.

The high-risk indexes in groundwater quality

The grades corresponding to the maximum content of ground-
water quality index in porous aquifer (W1–W3) during differ-
ent water source recharge are shown in Fig. 11a. The pore water
quality in BL was all grades I and II, except TDS. The contents
of TH and NO3-N increased to grade III after WR recharge. An
upward trend occurred in contents of TH, SO4

2−, and TUB after
the YR recharge, wherein the TUB increased significantly to
grade IV relative to the BL. TH, NO3-N, SO4

2−, TUB, and TDS
all presented an upward trend, when SN was used as the re-
charge water source. And the contents of TH, TUB, and TDS
increased significantly, compared with the BL.

As shown in Fig. 11b, the karst water quality in BL was
generally good, and the grades of groundwater quality indexes
were all grades I or II, and grade III was not presented. This
indicated that the BL of karst water quality were generally
better than that of pore water quality. The contents of NO3-
N, NH4

+, and TDS increased to grade III after WR recharge.
TH, NH4

+, SO4
2−, and TDS showed an upward trend during

the YR recharge, the contents of them increased to grade III.
During the SN recharge, TH, NO3-N, NH4

+, SO4
2−, and TDS

displayed a growth trend, wherein the content of TDS had a
huge rise to grade IV.

Fig. 6 Weights of groundwater
quality index based on different
weighting methods. And uj, hj,
and wj were the weights obtained
by the AHP, information entropy,
and ideal solution methods,
respectively
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With the rapid socio-economic development, large-scale
wastewater and fertilizers generated by production and living
were discharged into natural waters, increasing the contents of
TH and N in the rivers and lakes (Zhang et al. 2018).
Therefore, the content of TH, NO2-N, NO3-N, and NH4

+ in
pore and karst water might be increased, when WR, YR, and
SN were used as MAR water sources. F− and CODMn were
less affected by the recharge water sources, the main reason
was that the Quaternary sediments (sand and gravel) had a
strong adsorption effect on F− and CODMn (Li et al. 2017b).
Due to the high content of Cl−, SO4

2−, and Na+ in YR and SN,
these ions in pore and karst water had an upward trend during
the YR and SN recharge process. The TUB in groundwater is
affected by the suspended solids in the recharged water
source. TUB in pore water represented an increasing trend,
while that in karst water had not changed significantly after
YR and SN recharge. Additionally, an obvious upward trend

appeared in the TDS of pore and karst water, especially after
the SN recharge, due to the use of recharge water sources with
high TDS.

In summary, a significant increase had occurred in the con-
tents of some groundwater quality indexes during different
water source recharge, which might further induce deteriora-
tion of regional groundwater quality. According to the afore-
mentioned analysis, TH, NO3-N, NH4

+, and TDS were the
high-risk indexes of groundwater quality when the WR was
used as the recharge water source. The high-risk indexes were
TH, NH4

+, SO4
2−, TUB, and TDS in the YR recharge process.

And TH, NO3-N, NH4
+, SO4

2−, TUB, and TDSwere the high-
risk indexes during the SN recharge. Accordingly, these high-
risk indexes should be monitored emphatically to reduce the
adverse effects on the regional aquifer system, when local
groundwater was replenished using the aforementioned sur-
face water sources.

Fig. 7 The CCD of evaluated matter-element. a BL. b WR. c YR. d SN
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Fig. 9 The VE of groundwater
quality during different water
source recharge

Fig. 8 The comprehensive grades
of groundwater quality during
different water source recharge

10884 Environ Sci Pollut Res  (2021) 28:10872–10888



Measures and suggestions

An efficient and low-risk mode for multi-water source re-
charge was explored by combining the aforesaid results with
the existing MAR projects in Jinan. The following measures
and suggestions were put forward.

1. The surface water in WR should be used preferentially to
replenish the local groundwater resources when the water
storage capacity of WR was sufficient. In contrast, if the
water storage capacity of WR was insufficient, the YR
should be preferentially used as recharge water source.
Surface water in SN was considered to use, only when
insufficient water supply exists in WR and YR.

2. Whether the replenished water sources were from the
WR, the YR, or the SN, the regional groundwater quality
will all be affected adversely during the recharge process.
These may also lead to the accumulation of some poten-
tial high-risk indexes in the aquifer. Therefore, it is nec-
essary to control strictly the proportion of total recharge

quantity to regional groundwater resources. The contents
of high-risk indexes in recharge water sources should be
reduced as much as possible before recharge, and the
abovementioned high-risk indexes in regional groundwa-
ter should be monitored emphatically during recharge
process.

Study limitations

Due to the restricted spatial variability of the karst aquifer
system and availability of data, this study also has some lim-
itations. We only used the groundwater quality data of eight
monitoring wells to evaluate the trends in groundwater quality
during different water source recharge process, due to the
limitation of the number of monitoring wells in the study area.
In addition, as a seasonal river, the Yufu River without MAR
generated surface runoff only in the flood season (July to
August each year), and no surface runoff in the remaining
months. During non-flood seasons, the groundwater level

Fig. 10 The Gaussian kernel
density estimation of VE

Fig. 11 Grades of the maximum
content of groundwater quality
index. a Grades of groundwater
quality index in porous aquifer. b
Grades of groundwater quality
index in karst aquifer
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dropped below the bottom of the porous aquifer, and wells in
porous medium formation were usually in a dry state.
Therefore, this study focused on the investigation of ground-
water quality when the groundwater level was higher than the
bottom of the porous aquifer during MAR. Possible future
researches based on this study include the following: (i) in-
creasing the number of monitoring wells according to the
detailed hydrogeological and geophysical investigations; (ii)
increasing the types of groundwater quality indexes (such as
heavy metals and antibiotics); (iii) adjusting the layout of
monitoring wells combining with monitoring sites in pore
and karst water; and (iv) investigating the hydrogeochemistry
and seasonal variation of groundwater quality based on the
regular monitoring of the karst aquifer.

So far, the study area still had not established a MAR
scheme to achieve the conjunctive use of surface water and
groundwater, and the joint management of water quality and
quantity. Therefore, the dynamic changes between water qual-
ity and quantity cannot be combined effectively in the MAR
with multi-source water. In future researches, the trends in
groundwater quality should be investigated dynamically in
conjunction with the recharge quantity of different water
sources.

Conclusion

In this study, the Yufu River with multiple water sources was
used as the research area to carry out large-scale recharge
experiments. Under a limited recharged quantity and period,
the water quality of groundwater and recharge water source
was sampled and tested to study quantitatively the adverse
effects of different recharge water sources on local groundwa-
ter quality. Meanwhile, the trends in regional groundwater
quality were compared and analyzed to investigate the MAR
with multi-source water. An improved matter-element model
was developed to execute a comprehensive assessment of wa-
ter quality, and the high-risk indexes in groundwater quality
were determined during different water source recharge. The
conclusions obtained were as follows.

The hydrochemical type in pore and karst water was of the
HCO3-Ca type before recharge, which indicated that the ion
composition was relatively simple, and the BL were relatively
good. Furthermore, the hydrochemical type of the WR and
YR were relatively close, both of which were of the
HCO3•SO4-Ca•Mg type. The hydrochemical type of the SN
was quite different from the BL, WR, and YR, and was of the
SO4•HCO3•Cl-Na•Ca type. Overall, the water quality of the
recharge water source was worse than the BL, and the SNwas
worst inMARwater sources. Under a limited recharged quan-
tity and period, the adverse effects of different recharge water
sources on regional groundwater quality were SN > YR >

WR. Therefore, the long-term and large-scale use of three
recharge water sources to replenish groundwater resources
might deteriorate the groundwater environment quality and
damage the aquifer system.

The combination of improved matter-element model and
groundwater quality high-risk indexes provides a new ap-
proach to investigate the MAR with multi-source water from
multiple perspectives (the overall situation of groundwater
quality and the high-risk indexes). We hope this method could
be extrapolated to other MAR with multi-source water to op-
timize the operation of groundwater replenishment and reduce
the damage of the recharge water source on the local aquifer
system.
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