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Abstract
Increasing groundwater salinity has recently raised severe environmental and health concerns around the world. Advancement of
the novel methods for spatial salinity modeling and prediction would be essential for effective management of the resources and
planning mitigation policies. The current research presents the application of machine learning (ML) models in groundwater
salinity mapping based on the dichotomous predictions. The groundwater salinity is predicted using the essential factors (i.e.,
identified by the simulated annealing feature selection methodology) through k-fold cross-validation methodology. Six ML
models, namely, flexible discriminant analysis (FDA), mixture discriminant analysis (MAD), boosted regression tree (BRT),
multivariate adaptive regression spline (MARS), random forest (RF), support vector machine (SVM), were employed to ground-
water salinity mapping. The results of the modeling indicated that the SVMmodel had superior performance than other models.
Variables of soil order, groundwater withdrawal, precipitation, land use, and elevation had the most contribute to groundwater
salinity mapping. Results highlighted that the southern parts of the region and some parts in the north, northeast, and west have a
high groundwater salinity, in which these areas are mostly matched with soil order of Entisols, bareland areas, and low elevations.
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Introduction

Importance and sole dependency on the groundwater in an
arid oasis of the globe is magnified due to the scarcity of
the other freshwater resources. Furthermore, due to the
recent severe effects of climate change on the expansion
and devastation of the long-term droughts, and the ever-
increasing surface water pollutions, this dependency has
become even more visible and the need for the groundwa-
ter is continuously growing worldwide (Kundzewicz and
Doell 2009; Stoll et al. 2011; Stuart et al. 2011; Gallardo
2013; Alberti et al. 2016). Thus, groundwater plays an
essential role in reducing vulnerability and enhancing re-
silience to climate change (Lipczynska-Kochany 2018;
Mas-Pla and Menció 2019; Yihdego et al. 2017; Khan
et al. 2008).

Groundwater overdraft, salinity, and industrial and agri-
cultural pollutions are among the significant challenges for
maintaining groundwater quality (Davoodi et al. 2019;
Tavakoli-Kivi et al. 2019; Odeh et al. 2019). The formation
and travel time of groundwater in a natural water cycle is
very long. This cycle, depending on the depth and charac-
teristics of aquifers, may vary from centuries to millennia.
Thus, survival and sustainable development in arid areas
directly depend on effective management for maintaining
a healthy quality and acceptable level of groundwater
(Hosseini et al. 2019). Increasing groundwater salinity has
recently raised severe environmental and health concerns
around the world such as destroying the soil structure, re-
ducing the biodiversity and agricultural production, water
pollution, and problems for human health (Naser et al.
2020; Li et al. 2019; Xiao et al. 2019; Banda et al. 2019;
Sang et al. 2018; Sofiyan Abuelaish and Camacho Olmedo
2018). Thus, the development of the novel approaches for
salinity modeling and prediction has been seen as an essen-
tial approach for effective management of the resources and
mitigation policies (Chien and Lautz 2018; Chowdhury
et al. 2018; Aydin et al. 2017; Suzuki et al. 2017;
Giannoccaro et al. 2017).

The literature includes a different range of statistical, nu-
merical, hydrological, and physically based models for
groundwater salinity prediction (Masciopinto et al. 2017;
Bourke et al. 2017; Pauw et al. 2017; Levanon et al. 2017;
Delsman et al. 2017; Gil-Márquez et al. 2017). However, re-
cently, the availability and the abundance of hydrochemical,
hydrogeochemical, and electrochemical datasets have moti-
vated using advanced data-driven methods (Haselbeck et al.
2019; Duque et al. 2019; M’nassri et al. 2019; Delsman et al.
2018). The data-driven methods are based on a model of brain
cell interaction which is introduced in 1949 by Donald Hebb
(Hebb 1949) and developed by Samuel (1959). The main
advantages of these models can be summarized as (i) easily
identifies the trends and patterns of variables; (ii) can identify

implicit relationships in data-sets; (iii) automatically adapta-
tion with the dynamic system and environment without hu-
man intervention; (iv) handling multi-dimensional data; (v)
wide applications; and (vi) saving both time and money (Lu
1990; Yu and Liu 2003; Wuest et al. 2016; Alpaydin 2020).
Among them, artificial neural networks (ANN) have been
particularly popular for modeling groundwater salinity
(Alagha et al. 2017; Haselbeck et al. 2019; Nozari and
Azadi 2019). Nevertheless, the research for spatial modeling
of salinity and susceptibility mapping has been limited
(Amiri-Bourkhani et al. 2017).

Although the application of novel machine learning
methods has already been established in various aspects
of groundwater modeling, salinity has been left behind,
despite its importance. Consequently, the contribution of
this paper has been set to investigate the application of
various machine learning in groundwater salinity mapping
for the first time. A comparative analysis has been designed
to study the performance of the essential and ensemble ma-
chine learning methods. In this study, single machine learn-
ing methods, i.e., flexible discriminant analysis (FDA),
multivariate adaptive regression spline (MARS), support
vector machine (SVM), mixture discriminant analysis
(MAD), and also ensemble machine learning methods,
i.e., random forest (RF) and boosted regression tree
(BRT), have been used to build the models.

Material and methods

Study area

The study case is the Karaj watershed which is placed between
50° 43′ 07′′ to 51° 35′ 18′′ E and 35° 06′ 19′′ to 35° 58′ 31′′ N
with an area of 2144 km2 and surroundings of 50 km on the
southern section of Alborz Mountain range. The maximum
elevation of the watershed is about 3294 m above mean sea
level (a.m.s.l) in the northern region, and the lowest is 805 m
a.m.s.l in the southern region (Fig. 1). The average daily tem-
perature is about 15.8 °C, and the average yearly precipitation
of the region is about 260mm for the years from 1985 to 2017.
Thus, the climate of the region is mostly arid/semi-arid, in
which the amount of precipitation is less than one-third of
the annual average rainfall of the Earth (Tabari and
Aghajanloo 2013). Due to the climate of the region, the
level of surface water is not adequate to meet all require-
ments, so there is a heavy reliance on groundwater as a
freshwater resource that increases the concerns on its quan-
tity and quality (Heidarnejad et al. 2006). Cities of Karaj,
Shahriar, Eslamshahr, and Robat Karim, with a total popu-
lation of 2,500,000 people, are located in this watershed
that the primary source of drinking water in these cites is
groundwater (about 80%) (Statistical Center of Iran 2016).
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Also, the temporal variations of the electrical conductivity
(EC) for the watershed indicate a gradually increasing trend
that increases the concerns of the water-management com-
munities (Fig. 2).

Modeling process

The groundwater salinity modeling in this study is based on
the dichotomous (yes/no) predictions by six machine learning
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(ML) models. ML modeling is done based on the dependent
and independent variables. The EC data, as the real and best
way to express salinity (Rodríguez-Rodríguez et al. 2018;
Song et al. 2019; Ali et al. 2017; Burger and Čelková 2003),
was considered as the dependent variable, and the groundwa-
ter salinity influencing factors (GSIFs) were considered as
independent variables. According to the national water stan-
dard of Iran (No. 1053) the maximum allowable EC is equal to
1500 μS/cm (ISIRI 2010; Amouei et al. 2012), so this thresh-
old was considered to determine the saline and non-saline
wells respectively by assigning values of 1 and 0 (as the de-
pendent variable using the mean yearly EC values in each
well). After that, the groundwater salinity was predicted using
the important factors (identified by the feature selection).
Description of the dataset, feature selection methodology, ap-
plied ML models, and performance analysis is presented as
follows:

Dataset

Salinity data The EC data were obtained for 114 groundwater
monitoring wells (Fig. 1) from 2003 to 2017 from the Iranian
Water Resources Management Company (IWRMC). The
mean annual values of EC during the period for each well
are considered in this study, because data sampling was not
regular during the years, and most of the months and some
of the seasons not had any samples in a year, and this status
was different during the different years. In Fig. 1, the spa-
tially amount of mean EC for each well is presented. The
lower EC values are mostly in the central parts, while the
higher values are in the southern, north, and northwest parts
(Fig. 1). Also, temporal variations of the EC for the water-
shed are presented in Fig. 2. The minimum and maximum
average of EC is equal to 1388 and 1676 μS/cm for 2010
and 2012. Although there is fluctuation during the years, a
gradually increasing trend of EC is observable during the
period (Fig. 2).

Groundwater salinity influencing factors (GSIFs) The consid-
ered GSIFs in this study are categorized into four groups,
including topographic, hydro-climate, groundwater, geologic,
and land cover factors:

– Topographic factors: The considered topographic factors
were including elevation, slope, aspect, curvature, and
topographic position index (TPI) (Fig. 3a to e), which
are calculated using the ASTER digital elevation model
(DEM) 30 × 30 m in ArcGIS software. Factors of eleva-
tion, curvature, and TPI have an inverse relationship with
groundwater salinity, as the accumulation of salinity in
low elevations, lower curvatures (i.e., concave areas),
and valleys’ floor (i.e., lower TPI) is more than other
regions due to groundwater drainage and washing the

soil by surface runoff (Madyaka 2008; Shafapour
Tehrany et al. 2013; Mosavi et al. 2020a). Different
slopes and aspects can create different microclimate
conditions (due to different sunlight, precipitation,
evaporation, soil humidity, etc.) that affect the expan-
sion of vegetation, generation, and infiltration of run-
offs, and finally, other effects on groundwater.

– Hydro-climate factors: The considered hydro-climate fac-
tors were including distance from stream (DFS), precipi-
tation (PCP), evaporation (Eva), and topographic wetness
index (TWI) (Fig. 3f to i). The area near to streams and
rivers can increase the groundwater recharge, but the in-
creasing or decreasing groundwater salinity in this area is
related to the dissolved materials during the infiltration.
An increase in the amount of precipitation has an inverse
impact on groundwater salinity, while an increase in
evaporation has a direct impact on it (Newman and
Goss 2000; Gholami et al. 2010). The TWI is a factor
demonstrating the spatial pattern of soil moisture
(Moore and Burch 1986). It shows the relation between
the surface slope of the terrain and the amount of moisture
at the surface (Pourghasemi and Beheshtirad 2014).
However, the TWI influences the groundwater recharge
and groundwater level.

– Groundwater factors: Two factors of withdrawal dis-
charge and groundwater level (GWL) are considered
(Fig. 3 j and k). There is a direct relationship between
groundwater salinity and withdrawal discharge of
groundwater, while reduction of groundwater level may
lead to leaching the saline water into the aquifer and
therefore increasing the salinity of groundwater
(Gholami et al. 2010).

– Geologic factors: The geologic factors were including
distance from fault (DFF), lithology, and soil order (Fig.
3l to n). The fault and distance to it may affect the
quality of groundwater through conjunction with sur-
face water (Mosavi al., 2020a). Geologically, most of
the area is covered by the Quaternary formations (i.e.,
low- and high-level pediment fan and valley terrace
deposits; fluvial conglomerate, piedmont conglomer-
ate, and sandstone). However, other formations such
as Karaj formation (i.e., well-bedded green tuff and
tuffaceous shale), Upper red formation (i.e., red marl,
gypsiferous marl, sandstone, and conglomerate), and
Oligocene andesitic lava flows (Oav), andesitic volca-
nics (Eav), basaltic volcanic tuff (Ebvt), calcareous
shale with subordinate tuff (Ek.a), and Gypsiferous
marl (Murmg) are the main geological formations of
the watershed (Fig. 3n). Different lithologies and soils
control the amount of penetration, leaching of soil ma-
terials, and recharge of groundwater which affects the
groundwater quality (Gowd 2004; Yun et al. 2011;
Mosvi et al. 2020).
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– Land cover factors: The land use types and distance
from road (DFR) were the land cover factors in this
study (Fig. 3 o and p). Drainage and infiltration of
surface water into groundwater in different land uses
such as agriculture, bareland, and urban areas have dif-
ferent impacts on groundwater quality. Also, changing
the natural landscapes by humans, such as roads, where
roads intersect saline geologic formations, can increase
dissolving the saline materials into the surface water
and groundwater (McRobert and Foley 1999; Liu
et al. 2006). Moreover, other human activities such as
de-icing of road surfaces using the salt pose serious
risks through draining via runoff and seeping into
groundwater.

Feature selection

Feature selection (FS) is a procedure for decreasing the num-
ber of input variables when the dimension of the input vari-
ables is large. It is a promising method to decrease the training
times, dimensionality, and overfitting problems during the
modeling (Bermingham et al. 2015). Two main categories of
the FS methods are filters and wrappers (Lualdi and Fasano
2019). Filters are divided into univariate filters (such as correla-
tion, information gain ratio) and multivariate filters (such as
factor analysis, principal component analysis) which select the
important variables based on a score or correlation function
(Lualdi and Fasano 2019; Azzellino et al. 2019; Busico et al.
2018), but wrappers apply machine learning models using some
search strategies such as genetic algorithms and simulated an-
nealing (SA) (Lualdi and Fasano 2019). Since it has been em-
pirically demonstrated that wrappers show better performance
(Jović et al. 2015; Lualdi and Fasano 2019), so, in the present
research, feature selection was conducted using the SA algo-
rithm. The SA is a metaheuristic global optimization method
in a large search space based on the minimum energy configu-
ration theory (Bertsimas and Tsitsiklis 1993; Choubin et al.
2019; Sajedi Hosseini et al. 2020), whereby a solid is gradually
cooled such that its structure is frozen (Choubin et al. 2020;
Mosavi et al. 2020b). In this study in the feature selection pro-
cess, the random forest is used as the estimator. The R environ-
ment was used to implement the SA method through the Caret
package (Kuhn 2015).

Model description

Six machine learning (ML) models, namely, flexible discrim-
inant analysis (FDA), multivariate adaptive regression spline
(MARS), boosted regression tree (BRT), random forest (RF),
support vector machine (SVM), mixture discriminant analysis
(MAD), were employed to groundwater salinity mapping

through k-fold cross-validation methodology by the SDM R
package (Naimi and Araújo 2016). A brief description of each
ML model is presented as follows:

The FDA model is an assortment model that depends on a
combination of linear regression models, which utilizes opti-
mal scoring to transform the response variable so that the data
are in a better formation for linear separation, and multiple
adaptive regression splines to produce the discriminant sur-
face. Applying the FDA with standard linear regression yields
Fisher’s discriminant vectors (Hastie et al. 1994).

The MARS model is a non-parametric regression way that
creates numerous linear regressions between the ranges of
predictor amounts. By separating the dataset for feeding the
linear regression model on every individual division, MARS
provides a unique modeling capability. The MARS creates no
suppositions about the connection between the dependent and
the independent variables. It forms a set of basic functions
(BF), which in this manner, the range of predictor amounts
is separated into multiple groups. A separate linear regression
is shaped for each group. The relations among the different
regression lines are called knots. The MARS procedure at-
tempts for the best spots to put the knots. Each knot has a pair
of essential functions. These functions explain the connection
between the independent and dependent variables (Leathwick
et al. 2006).

The RF model is an ensemble learning manner for regres-
sion, classification, and further applications that acts by
manufacturing plenty of decision trees at calibrating time
and creation the class, which is the mode of the classes
(classification) or average forecast (regression) of the exclu-
sive trees (Ho 1995, 1998). The RF amends the problematic
habit of decision trees, such as overfitting, and yields a low
bias (Hastie et al. 2008). The RF can be utilized to rank the
importance of variables in a classification or regression prob-
lem in a natural manner.

The BRT model is a robust algorithm and operates very
well with the big dataset. BRT model is a composition of two
methods: decision trees and boosting methods (Elith et al.
2008). Like the RF model, the BRT frequently fit plenty of
decision trees to enhance the model accuracy. The major dif-
ference among the approaches is the strategy of choosing the
decision trees. Either of the models picks a random subset of
the entire dataset for every recently available tree. The RF
model utilizes the bagging approach, which assures that every
incidence has an equivalent probability of being chosen in
future samples. In contrast, the BRT model applies the
boosting approach in which the input data for the future trees
is weighted. This strategy of managing the weights ensures
that data that was poorly modeled by former trees has a higher
probability of being chosen in the recent tree (DeAth 2007).

The SVM model is extremely preferred by plenty, as it
generates considerable accuracy with less calculation pow-
er. SVM can be used for both regression and classification
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Fig. 3 Groundwater salinity influencing factor a elevation, b slope, c
aspect, d curvature, e topographic position index (TPI), f distance from
stream (DFS), g precipitation (PCP), h evaporation (Eva), i topographic

wetness index (TWI), j discharge, k groundwater level (GWL), l distance
from fault (DFF),m lithology, n soil order, o landuse, and p distance from
road (DFR)
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tasks. However, it is extensively used in classification pur-
poses. The purpose of the algorithm is to obtain a hyper-
plane in N-dimensional space (N—the number of features)
that separately assorts the data points. To discrete the two
classes of data points, many feasible hyperplanes could be
selected. Our purpose is to find a plane that has the maxi-
mum border (i.e., the maximum extent between data points
of both classes). Maximizing the border extent supplies
some amplification so that subsequent data points can be
categorized with more reliance (Evgeniou and Pontil
2001).

For MAD, there are classes, and each class is supposed to
be a Gaussian mixture of subclasses, where each data point
has a possibility of depending on each class. Equalization of a
covariance matrix, among classes, is still supposed. The mod-
el formulation is generative, and the posterior probability of
class membership is applied to categorize an unlabeled obser-
vation. Each subclass is supposed to have its mediocre vector,
but all subclasses share the same covariance matrix for model
parsimony (Bashir and Carter 2005; Hastie and Tibshirani
1996).

Performance evaluation

Evaluation of the models’ performance was conducted
using some important metrics in dichotomous (yes/no) pre-
dictions, including accuracy (Eq. 1), kappa (Eq. 2), proba-
bility of detection (POD) (Eq. 4), false alarm ratio (FAR)
(Eq. 5), critical success index (CSI) (Eq. 6), and Heidke
skill score (HSS) (Eq. 7). Accuracy is the proportion of
the number of correct predictions to the collected amount
of input samples. The accuracy ranges from 0 to 1
(Pourghasemi et al. 2012). Kappa is between 0 and 1, where
0 shows the value of agreement that can be expected from
random chance, and 1 shows complete agreement between
the raters (Cohen 1960; Marston 2010). POD is the ratio of
the amount of miss data to the total amount of observed
occurrences. It confines from 0 to 1. For this statistic 1 is
the perfect score (Wilks 1995). FAR is the proportion of the
total false alarms (FA) to the total anticipated events (H +
FA). The FAR can be improved by consistently forecasting
scarce events. It ranges from 0 to 1, and the desired score is
0 (Barnes et al. 2007). CSI supplies no individual confir-
mation information since it is a function of both FAR and
POD; understanding its conduct can aid in identifying
which component would be more useful to purpose in an
alarming strategy. Its range is 0 to 1, with a value of 1
showing a perfect forecast (JWGFVR 2009). The HSS is a
popular metric because it is relatively ordinary to calculate,
and probably because of the standard anticipation, chance,
is relatively easy to beat. The HSS calculates the fractional
improvement of the anticipation over the standard anticipa-
tion. The range of the HSS is −1 to 1.

Accuracy ¼ Hþ CN

Hþ FAþMþ CN
ð1Þ

Kappa ¼ Accuracy−Pe
1−Pe

ð2Þ

Pe ¼ Hþ FAð Þ HþMð Þ þ Mþ CNð Þ FAþ CNð Þ
Hþ FAþMþ CNð Þ2 ð3Þ

POD ¼ H

HþM
ð4Þ

FAR ¼ FA

Hþ FA
ð5Þ

CSI ¼ H

HþMþ FA
ð6Þ

HSS ¼ 2 H� CNð Þ− FA�Mð Þ½ �
HþMð Þ Mþ CNð Þ þ Hþ FAð Þ FAþ CNð Þ½ � ð7Þ

where H, FA, M, and CN are cells of the contingency table
respectively indicating the number of hits, false alarms, mis-
ses, and correct negatives.

Results

Feature selection results

A trial and error (100 runs) were conducted to select the best
number of features during each resampling fold (k). Figure 4
shows the variation in accuracy based on the number of fea-
tures (size) and k-resampling folds and based on 100 iterations
and k = 10 folds. For better understanding, Fig. 5 indicates the
best number of features in each resampling which is deter-
mined based on the higher accuracy during 100 iterations.
For example, Fold 5 had the best performance with a number
of 10 features as input. As Fig. 5 shows, the best number of
variables varies between 7 and 12 variables among 10-fold
resamples. Therefore, the allowable minimum and a maxi-
mum number of features were respectively 7 and 12 variables.
Finally, to select the best number of features, the occurrence
frequency of variables in k-fold resample (%) was investigat-
ed. We decided eight variables (including GWL, PCP,
Landuse, DFS, soil order, withdrawal discharge, elevation,
and lithology) with occurrence frequency equal or more than
50% in 10-fold resamples (Table 1). Therefore, these variables
were used for groundwater salinity mapping.

Model performance evaluation

The performance of the models is shown in Table 2. Although
all of the models have an accuracy greater than 0.82, the SVM
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model has higher accuracy (0.88) than others. The
Kappa values vary between 0.64 and 0.76, respective-
ly, for the BRT and SVM models, which indicate the
good performance for the models (0.55 < kappa <0.85;
Monserud and Leemans 1992). POD index is higher
respectively for FDA, SVM, MARS, MDA, BRT, and

RF (respectively equal to 0.94, 0.89, 0.83, 0.83, 0.78,
and 0.78). Given the FAR, the RF and SVM models
have lower false alarms. Also, the SVM model had
higher CSI (CSI = 0.80) and HSS (HSS = 0.76) rather
than other models (Table 2).

Generally, according to the metrics of accuracy, kap-
pa, CSI, and HSS, the SVM model specified that had
superior performance than other models. To the best of
the authors’ knowledge, there are no references for com-
parison which used machine learning for spatial mapping
of groundwater salinity. However, like the results of this
study, previous literature such as Alagha et al. (2017)
and Isazadeh et al. (2017) have demonstrated the good
potential of the SVM model in the time series (not spa-
tial) prediction of the groundwater salinity.

Variable importance

Significance of the variables was analyzed through the
Jackknife test (Efron 1982), and the decrease in area
under the ROC curve (DAUC) (Choubin et al. 2019)
was calculated after excluding each variable from the
modeling process. Fig. 6 indicates the outcome of the
sensitivity analysis for the best model (i.e., SVM), in
which the greater DAUC indicates greater importance.
According to the SVM results, the variables of soil order
and withdrawal discharge with DAUC 27.7% and 13.4%
were the most important variables that had a higher con-
tribution in the groundwater salinity mapping. Also, the
precipitation (PCP) (DAUC = 8.5%), land use (DAUC =

Fig. 4 Variation in the accuracy vs the number of features in resampling folds

Table 1 Selected features using the SA method

Selected features Occurrence frequency in k-fold resam-
ple (%)

Groundwater level (GWL) 90

Precipitation (PCP) 80

Landuse 70

Distance from stream (DFS) 70

Soil order 70

Withdrawal discharge 60

Elevation 50

Lithology 50

Curvature 30

Evaporation 30

distance from road (DFR) 20

Topographic wetness index
(TWI)

20

Topographic position index
(TPI)

20

Slope 10

Aspect 10

Distance from fault (DFF) 10
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8.1%), and elevation (DAUC = 7.8%) indicated a moderate
importance (Fig. 6; Table 3). The results of the sensitivity
analysis for other models are summarized in Table 3.

Groundwater salinity mapping

The pixels’ value of predictor variables for the whole
region was used as input to spatial mapping the ground-
water salinity using the calibrated models. Therefore, a

predicated map with cell size 30 × 30 m was produced
for each model. Figure 7 shows the groundwater salinity
maps predicted by the models, which were classified into
three classes of low, moderate, and high regions based on
the Natural Breaks method. This classification method is
based on the Jenks optimization approach that identifies
classes based on the minimum difference within classes
and the maximum difference between classes (Brewer and
Pickle 2002). Also, in other studies of groundwater
quality/potential mapping (e.g., El-Hoz et al. 2014; Guru
et al. 2017; Miraki et al. 2019; El-Meselhy et al. 2020;
Barilari et al. 2020; Garewal et al. 2020) this method has
been used. As can be seen, the high groundwater salinity
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Table 3 Importance of the variables based on the DAUC (%)

Variable SVM FDA RF BRT MARS MDA

Soil order 27.7 34.2 9.3 5.5 42.9 53.5

Withdrawal discharge 13.4 17.4 24.9 68.3 27.4 27.7

Precipitation (PCP) 8.5 44.4 5.0 1.5 49.1 22.5

Landuse 8.1 10.4 1.9 0.6 2.9 4.0

Elevation 7.8 7.1 6.8 1.9 26.4 12.8

Distance from stream (DFS) 4.3 0.5 0.9 0.7 0.2 4.7

Groundwater level (GWL) 3.2 0.2 1.9 1.6 28.6 1.7

Lithology 3.1 3.8 0.5 0.0 1.0 8.2

Table 2 Performance of the models

Metric FDA RF BRT MARS SVM MDA

Accuracy 0.85 0.85 0.82 0.85 0.88 0.85

Kappa 0.69 0.70 0.64 0.70 0.76 0.70

POD 0.94 0.78 0.78 0.83 0.89 0.83

FAR 0.19 0.07 0.13 0.12 0.11 0.12

CSI 0.77 0.74 0.70 0.75 0.80 0.75

HSS 0.69 0.70 0.64 0.70 0.76 0.70

Fig. 6 Result of DAUC (%) for the SVM model
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regions are mostly located in the southern parts and some
parts of the north, northeast, and west regions. However,
the middle of the region has a low groundwater salinity

(Fig. 7). The high susceptibility regions mainly corre-
spond to soil type of Entisols, bareland areas, and low
elevations.

Fig. 7 Groundwater salinity map
by a SVM, b FDA, c MDA, d
FDA, e BRT, and f MARS
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Discussion

Monitoring the groundwater quality and vulnerability assess-
ment are the fundamental practices, especially in the arid and
semi-arid areas where the access to the freshwater recourses
are limited (Ben Ammar et al. 2020; Nahin et al. 2019). In this
study using the potential of machine learning models, the sus-
ceptibility of the groundwater salinity in the Karaj watershed
was modeled. The predicted high susceptibility regions in this
study mainly correspond to bareland areas and low elevations.
In the bareland areas, there is a significant salt in the soil that
penetrates the groundwater during the recharge periods (He
et al. 2014; Thiam et al. 2019). Also, high salinity in low lands
is because of washing the soil materials by surface runoff and
accumulating them in these areas that penetrate groundwater
(Madyaka 2008; Shafapour Tehrany et al. 2013; Mosavi et al.
2020).

Intra-annual and inter-annual changes of the EC data are
the main concern of the study that may affect the susceptibility
mapping. In this study because of data monitoring conditions
(i.e., irregular data sampling and lack of continuous samples
for months and seasons), the mean annual values of EC during
2003–2017 for each well are considered, so, considering the
inter-annual and intra-annual variations was not possible. To
address the intra-annual concerns, susceptibility mapping for
dry and wet seasons (i.e., discharge and recharge seasons) is
recommended for future studies. Also, for addressing climate
variability effects and inter-annual concern in future studies,
dividing the period into equal sub-periods and spatial model-
ing for each sub-period can be a proper solution (Mosavi et al.
2020).

On the other hand, considering the land use and climate
changes mostly for a long-term dataset is of utmost impor-
tance. Change in climate has been recently contributing in
irregularity in temperature and precipitation that affect the
groundwater, too; which has substantially increased the uncer-
tainty of the predictive models (Akbari et al. 2020;Wang et al.
2019; Waqas et al. 2019; Geng and Boufadel 2017). Also,
land use changes such as changing the rangelands to agricul-
tural areas, and increasing the bare lands result in high salt
concentrations in the soil. However, considering the effects
of climate and land use changes during the long period dataset
(and also for predictions of future salinity) is essential in the
susceptibility mapping.

Conclusion

The application of six important machine learning methods
for the first time has been evaluated in spatial modeling of
the groundwater salinity. The modeling process indicated that
the variables of soil order, groundwater withdrawal, precipi-
tation, land use, and elevation were the most important

variables that had the most contribute to the groundwater sa-
linity mapping. Although all of the models had an accuracy
greater than 0.82, the results highlighted that the SVM model
had a superior performance than other models. The superior
models of this study have potential value for water resource
managers for identifying the vulnerable locations to plan and
enforce effective policies to control and reduce the salinity of
groundwater. For future research advancing hybrid machine
learning methods are strongly proposed to identify an optimal
model with a higher level of adaptivity, accuracy, and gener-
alization ability.
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