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Abstract
Novel coronavirus (SARS-CoV-2) causing COVID-19 disease has arisen to be a pandemic. Since there is a close association
between other viral infection cases by epidemics and environmental factors, this study intends to unveil meteorological effects on
the outbreak of COVID-19 across eight divisions of Bangladesh from March to April 2020. A compound Poisson generalized
linear modeling (CPGLM), along with a Monte-Carlo method and random forest (RF) model, was employed to explore how
meteorological factors affecting the COVID-19 transmission in Bangladesh. Results showed that subtropical climate (mean
temperature about 26.6 °C, mean relative humidity (MRH) 64%, and rainfall approximately 3 mm) enhanced COVD-19 onset.
The CPGLM model revealed that every 1 mm increase in rainfall elevated by 30.99% (95% CI 77.18%, − 15.20%) COVID-19
cases, while an increase of 1 °C of diurnal temperature (TDN) declined the confirmed cases by − 14.2% (95% CI 9.73%, −
38.13%) on the lag 1 and lag 2, respectively. In addition, NRH and MRH had the highest increase (17.98% (95% CI 22.5%,
13.42%) and 19.92% (95% CI: 25.71%, 14.13%)) of COVID-19 cased in lag 4. The results of the RF model indicated that TDN
and AH (absolute humidity) influence the COVID-19 cases most. In the Dhaka division, MRH is the most vital meteorological
factor that affects COVID-19 deaths. This study indicates the humidity and rainfall are crucial factors affecting the COVID-19
case, which is contrary to many previous studies in other countries. These outcomes can have policy formulation for the
suppression of the COVID-19 outbreak in Bangladesh.
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Introduction

Novel coronavirus (SARS-CoV-2) causing COVID-19 dis-
ease has arisen to be a pandemic and a dangerous component
in strategic planning, critical policymaking, and time-worthy
decisions in public health sectors worldwide. One of the sig-
nificant challenges fighting against the COVID-19 virus was
to understand the infective agent and its environmental behav-
ior effectively. Climatological and atmospheric factors are the
crucial considerations that might have influenced the tenden-
cies of respiratory infectious diseases leading to epidemics
(Ma et al. 2020; Wu et al. 2020).

However, the consequence of meteorological variables on
COVID-19 remains debatable (Wu et al. 2020). For illustra-
tion, countries in temperate regions, epidemic peak timing,
and intensity precision exceed 50% at 4 and 2 weeks before
the forecasted epidemic peak, respectively, whereas the
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tropics and subtropics, epidemic forecasts are significantly
less accurate for both peak timing and intensity (Kramer and
Shaman 2019). Seasonally and spatially, the surges of influ-
enza rise during the monsoon season in tropical climates,
while during the dry and cold months of winter in temperate
climates (Peci et al. 2019).

Low humidity and temperature enhance many types of flu
virus transmission; its impact on mortality remains unclear
(Kudo et al. 2019). A study on influenza viruses revealed that
humidity was found to be a controlling factor. For example, in
temperate areas of the world, the seasonality of influenza virus
attack along with the survival of the virus is strongly related to
the decline in humidity (Barreca and Shimshack 2012; Kudo
et al. 2019).

A recent study reported that absolute humidity (AH) is
more significant than relative humidity (RH) in regulating
observed climate patterns (Marr et al. 2019). AH was a
critical factor of observed influenza mortality, even after
governing for temperature. Temperature modestly affected
influenza mortality as well, although outcomes were less
robust (Barreca and Shimshack 2012). The blending of
temperature and RH is likewise acceptable as AH as a
predictor, as upper levels of AH are only potential at
elevated temperatures. At elevated temperatures, it is
established that virus decline is swifter. In climatological
data, outside AH substitutes for inside RH in temperate
climate regions during the winter period (Marr et al.
2019). Furthermore, recently, the influenza epidemic
might be associated with environmental air pollution and
low temperature, and the outcome is an excess of mortal-
ity in Milan, Italy (Murtas and Russo 2019). Likewise, in
temperate regions, the risk of influenza frequency was
significantly heightened with low daily temperatures of
0–5 °C and low (30–40%) or high (70%) RH. A strong
correlation between diurnal temperature and influenza in-
cidence was found in South Korea (Park et al. 2020).
From the Chinese study, it shows that both low AH and
high AH are the reasons for other viral diseases such as
pneumonia and influenza-related deaths among the elderly
(Qi et al. 2020a).

Studies related to COVID-19 deaths and the relationship
among meteorological and environmental factors are increas-
ing, and at the same time, are crucial. Several cited works have
been found concerning COVID-19 infection, mortality, and
environmental factors. For instance, Wu et al. (2020) stated
that the temperature and RH were both negatively associated
with daily new cases and mortality. A 1 °C increase in tem-
perature and a 1% increase in RH is related to 3.08% death
rate reduction and 0.85% reduction of daily new cases of
COVID-19 infection (Wu et al. 2020). Qi et al. (2020b) used
the generalized additive model (GAM) to compute the
province-specific relations among climatological factors and
daily cases of COVID-19 in China. The study found that

temperature and humidity presented negative associations
with COVID-19, while a significant association between tem-
perature and humidity existed. Temperate countries and re-
gions with low humidity should be taken more considerate
(Qi et al. 2020b). Ma et al. (2020) established a daily number
of COVID-19 death with meteorological variables and air
pollutant datasets in Wuhan, China, which was the starting
point of the global pandemic. Another study conducted by
Zhu et al. (2020) from 122 cities across China, established
the epidemiological and experimental research on ambient
temperature and COVID-19 infectious disease. Surrounding
temperature is an essential factor affecting the transmission
and survival of coronavirus (Zhu and Xie 2020). The mecha-
nisms by which meteorological factors increase the rates of
COVID-19 confirmed cases are still overlooked. Based on the
available literature, it can be said that the concrete conclusion
is yet to be drawn on the potential role of meteorological
factors on COVID-19 worldwide. Therefore, it warrants more
research on this topic in different regions of the world, includ-
ing Bangladesh.

Bangladesh is a subtropical country of high population
density that ranks 10th in the world and a climate-
vulnerable country in the world (Bodrud-Doza et al.
2020; Shammi et al. 2020a). The first COVID-19 infection
case was reported in Bangladesh on March 08, 2020
(IEDCR 2020; Shammi et al. 2020b). From then on
September 01, 2020, the confirmed cases of infection and
deaths are increasing exponentially (Fig. 1). However, we
do not know the potential impacts of meteorological fac-
tors on the disease transmission and mortality in this coun-
try. Thus, the objectives of the current study were to inves-
tigate the effects of meteorological factors on COVID-19
confirmed cases and deaths in Bangladesh using com-
pound Poisson generalized linear modeling (CPGLM), a
unique approach across the eight divisions of Bangladesh
along with the Monte-Carlo method and random forest (RF)
model. The findings will add some unique insights into the
possible correlations between the COVID-19 and meteorolog-
ical factors. The uniqueness of the study is the first report from
Bangladesh on the potential relationships between meteoro-
logical factors and COVID-19 confirmed cases.

Data and methods

Study area

Bangladesh is a low-lying riverine deltaic country that is po-
sitioned in South Asia (Islam et al. 2020a). Most of the land
surface (about 80%) is a floodplain, except for some parts in
the northeastern and southeastern portions (Hills, hillocks).
Bangladesh experiences a subtropical monsoon humid climate
with distinct spatial variation (Islam et al. 2020b). Three main
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seasons prevail in this country that are the pre-monsoon, mon-
soon, and post-monsoon. The monsoon is a crucial driver of
climatic variability in Bangladesh (Rahman and Islam 2019).
Most of the precipitation (more than 50%) occurred in this
season. The average maximum, minimum temperatures, and

relative humidity over the nation are 29.94 °C, 21.39 °C, and
80%, respectively. The spatial distribution of the number of
COVID-19 cases (at district level) up to September 01, 2020
where there are now more than 250,000 COVID-19 cases in
Bangladesh (Fig. 2).

Fig. 1 The confirmed cases of the COVID-19 in Bangladesh until August 31, 2020
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Data sources

Bangladesh Meteorological Department (BMD) has 43
weather stations across the country. The daily minimum tem-
perature (Tmin) (°C), maximum temperature (Tmax) (°C), day
relative humidity (DRH) (%), night relative humidity (NRH)
(%), and rainfall (mm) datasets of 43 stations fromMarch 8 to
April 30, 2020 were collected from BMD (Islam et al. 2019,
2020a). Diurnal temperature (TDN) (°C) and mean tempera-
ture (MT) were calculated from Tmin to Tmax. Mean relative
humidity (%) (MRH) was also derived from day and night
relative humidity (%). There were no missing data in the

climatic datasets of March and April data (2020). At first, 43
stations meteorological data were collected from BMD. Then,
these aggregated station-wise datasets were demarcated into
eight divisional cities in this work. Finally, 8 divisional city
data were averaged and used for further analysis. Data on
daily confirmed and mortality cases from COVID-19 in
March and April 2020 across Bangladesh, which can be found
in the following link: https://corona.gov.bd. Until April 30,
2020, the confirmed cases were 7674, and deaths were 168
(IEDCR 2020). Weather variable data of Bangladesh in the
study period were collected from BMD in the official site:
https://bmd.gov.bd.

Fig. 2 Map showing the spatial distribution of number of the COVID-19 cases in Bangladesh
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Calculation procedure of absolute humidity

AH can be calculated from several formulas. One of them, the
absolute humidity is estimated by the Eq. (1) (Snyder 2005):

AH ¼ 2165e
Tmean þ 273:16

ð1Þ

where AH is the absolute humidity (g/m3), e is vapor pressure
(KPa), and Tmean is the mean temperature (°C). The detailed
procedure of calculating vapor pressure can be found in the
paper of Snyder (2005).

Compound Poisson generalized linear model

We employed the compound Poisson generalized linear model
(CPGLMs) for exploring the relationship between daily mete-
orological variables (TDN,MT,NHR,MRH,AH, and rainfall),
and daily confirmed cases from COVID-19 across Bangladesh
fromMarch 8 to April 30, 2020. First, meteorological variables
were not considered during model development.

Most of the time-series data have continuous variables with
exactly zero. To resolve this problem, a special form of the
Poisson distribution should be implemented where the re-
sponse is assumed to be generated as a random sum of indi-
vidual random variables with positive support. Compound
Poisson distribution, a mixture probability model takes this
advantage to degenerate and continuous distribution found in
the origin and positive real line, respectively. It is effective in
which continuous data with exact zeros regularly arise. It han-
dles effectively hierarchical structures or extra zero inflation. It
is also a robust tool for the zero-inflated model (Zhang 2013).

The CPGLM function was established from the core model
which was proposed by Jørgensen (1987) in the following Eq.
(2):

Y ¼ ∑T
i¼1X iT∼pois λð Þ;X i

lid
∼ Ga α; γð Þ;T⊥X i ð2Þ

In the model, Pois () symbolizes a Poisson random variable
with mean, and Ga (,) symbolizes a Gamma random parame-
ter with mean and variance equal to and, respectively. Xi is the
identically distributed random variable. Here, if T = 0 then Y =
0 thereby allowing the distribution to have a probability mass
at the origin. When T > 0, the response parameter Y is the sum
of T i.i.d Gamma random parameters, implying that Y l T Ga
(,). In this study, Covid-19 confirmed cases set as the response
parameter and all other weather parameters (TDN, MT, NRH,
MRH, AH, and rainfall) were counted as independent
parameters.

To visualize, the lag-wise effect of climatic variables on
COVID-19 confirmed cases after developing the core model
and then evaluated the probable lagged effects. In this case, we
choose 9 days in 1 lag for single lag days (lag 0, days 1–9; lag
1, 10–18; lag 2, 19–27; lag 3, 28–36; lag 4, 37–45; and lag 5,

46–54) and cumulative days were selected in multiple-day lag
(lag 1–5; lag 1, days 1–18; lag 2, 1–27; lag 3, 1–36; lag 4, 1–
45; and lag 5, 1–54; March 8 to April 30 in calendar time).We
removed lag 0 (days 1–9) in multiple days which represents a
single -ay lag.

Both studies considered the lag fromMarch 8 as before this
date no mortality case was reported for considering lag days.
This CPGLM analysis was performed in R (version 3.6.3)
with ‘cplm’ (Version 0.7–8) package (Zhang 2013). Up to
0.05 was considered statistically significant. The effect was
denoted as the slope changes and the coefficients of 95%
significance levels of daily COVID-19 confirmed cases are
in association with the climatic variables per 1-unit increase.

Random forest model

Breiman (2001) proposed the tree-based machine learning
random forest (RF) model. It is applied for both predicting
and regression problems. It is simple, as well as a robust mod-
el. RF model has been benefited from the two more powerful
algorithms: bagging and random, which are called the power-
house of this model. For developing the RF model number of
trees and features in each split is essential. RF is a classifier,
which comprises of an assortment of classifier trees fm(x) for
m = 1, ……., M which relies on the parameters and every
single tree casts a unit vote for input x. Each tree generates
an individual class, which then combined and the majority
vote predicts the final results (Pavey et al. 2017). The RF
model has been benefited from two more powerful algo-
rithms: bagging and random, which are called the powerhouse
of this model and combining with arcing. This model is robust
for avoiding outliers alone with noise. The present study op-
timized its accuracy with 100 trees, 1 execution slot, 5 seeds,
and with maximum depth 1. This model was performed for
this study by using the package of ‘randomForest’ within the
free R statistical software. Several models exist, for instance,
principal component analysis, which is used extensively for
assessing the importance degree for the respective purposes.
But now, scholars prefer machine learning algorithms of RF
model for assessing the importance degree mainly in the fields
of climate, hydrology, environment, etc. (Rahman and Islam
2019; Salam and Islam 2020; Saha et al. 2020). In this study, a
RF model was used followed by Rahman an Islam et al.
(2019), Salam and Islam (2020), Saha et al. (2020), Islam
et al. (2020b) to explore the importance degree of climatic
variables influencing COVID-19 mortality cases across eight
major divisional cities of Bangladesh.

Monte-Carlo method

Monte-Carlo simulation refers to the method by which the
percentage of risks can be represented by histograms (Cullen
2010). This is the most used model for identifying the
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contribution of risks on a particular factor. This analysis was
based on the following Eq. (3) (Ökten 2005):

X j ¼ bj þ ∑N
i1¼1h ji1bi1 þ ∑N

i2¼1∑
N
i1¼1hji2hi2i1bi1þ; ð3Þ

where Xj denotes the jth elements of the solution vector; h is
the N ×N matrix in jth element (e.g., hji1, hji2) and bi is an N-
dimensional vector satisfying condition.

Generally, the Monte-Carlo method can be summarized as
below: (a) creating many random variables for each stochastic
input; (b) according to a special statistical distribution, these
random variables could be transformed into the associated
random variates; (c) storing the obtained stochastic variates
in an array for each variable; (d) each variable would create
a value, which is used as a deterministic input in the compu-
tation formula of the meteorological variable; (e) computing
the meteorological variables based on a numerical model for
each Monte-Carlo run; (f) the outputs of the meteorological
variables would be stored; (g) repeating steps (a)–(f) for de-
tailed Monte-Carlo run; and (h) analyzing the computation
outcomes. Monte-Carlo simulation is a robust tool to solve
the randomness and uncertainty within model operations. A
more detailed description of this model can be found in the
paper of Ökten (2005). This study adopted this model for
exploring the contribution percentage of climatic variables
on the COVID-19 outbreak in Bangladesh.

Results

Descriptive summaries

Table 1 reveals the statistical summary of daily detected cases
of the COVID-19 pandemic and meteorological variables in
Bangladesh. A total of 7674 confirmed cases and 168 deaths
were recorded during this study period (March 8–April 30)
with an average of 142.1 ± 195.5 and 3.1 ± 3.7, respectively
(IEDCR 2020).With the increasing rate of COVID-19 testing,
the confirmed cases have also been increased over time. In this
study, maximum (Tmax) and minimum (Tmin) temperatures
ranged from 29.1 to 34.9 °C and 16.2–24.8 °C with their
average of 32.2 ± 1.3 °C and 20.9 ± 1.9 °C respectively.
TDN (diurnal temperature) had an average 11.3 ± 1.9 °C
(7.1–16.0 °C) where the mean temperature (MT) was 26.6 ±
1.3 °C (23.1 °C - 28.4 °C). The relative humidity day (DRH)
and night (NRH) period had an average of 69 ± 8.7% and
61.6 ± 10.7%, respectively. However, the mean relative hu-
midity (MRH) and AH ranged between 41.6 and 80.4% and
10.9–21.4 g/m3, respectively. Apart from this, rainfall had an
average of 3 ± 5 mm (0.0–20.6 mm) during the study period.
Figure 3 shows the temporal distribution of COVID-19 daily
confirmed cases and meteorological variables in Bangladesh
during the investigation period, demonstrating the confirmed

cases/day of COVID-19 distributed in a similar pattern with
NRH, MRH, AH, and rainfall, except for TDN and MT,
where both variables showed an irregular pattern with the
daily confirmed cases of the COVID-19 in Bangladesh.

COVID-19 cases with the variation of meteorological
factors

Figure 4 reveals the temporal variations of meteorological
factors at different eight divisions in Bangladesh. The TDN
had the highest change in Sylhet (19 °C) followed by the
lowest in Barishal division (3 °C). Rajshahi and Rangpur have
substantial regional differences as 14.3 °C and 14.6 °C, re-
spectively. Alternatively, the largest and lowest MT value was
found in Dhaka (31.3 °C) and Rangpur (20.9 °C), respective-
ly, where the most considerable differences were found in
Dhaka divisional city (22.9–31.3 °C). In humidity, NRH and
AH both cases, the highest and lowest values were found in
Barishal (98.3% and 25.4 g/m3) and Sylhet (31.5% and 8.5 g/
m3), respectively. The highest range value was found for NRH
and AH in Rangpur (34.8–95.5%) and Barishal (11.1–25.4 g/
m3), respectively. In MRH, the highest value and range were
observed in the Rangpur division (93.5% and 41.3–93.5%),
where the lowest value was in Dhaka (35%). In the rainfall
variables, many outliers were detected in Rajshahi, Rangpur,
Khulna, and Barishal divisions. The lowest rainfall was ob-
served at the Rajshahi division (2 mm), whileThe highest
rainfall was distributed at Barishal division (38.5 mm).

COVID-19 mortality with variability in meteorological
factors using CPGLM modeling

Figure 5 shows the slope changes of COVID-19 confirmed
counts per 1-unit elevation in climatic factors with various
lags (0–5) using the CPGLMs modeling. In single lag, both
per 1 unit raise in all factors such as MT, NRH, MRH, AH,
and rainfall, except for TDN were connected to increased
COVID-19 confirmed cases in lag 0, with the highest increase
(26.5% (95% CI 142.13%, − 89.13%); 8.91% (95% CI
37.80%, − 19.98%); 11.39% (CI 34.47%, − 11.71%); 62.4%
(95% CI 186.14%, − 61.34%); and 83.22% (95% CI
365.46%, − 199.02%)] respectively. As for TDN each 1 °C
increase was associated with a 2.22% (95% CI 24.6%, −
20.17%) rise in COVID-19 confirmed counts in only lag 5.
In contrast, in the case of multiple lags, each 1 unit increase in
MT and AHwas the highest association with 77.54% (95%CI
112.84%, 42.24%) and 67.77% (95% CI 80.81%, 54.73%)
enhancement in the COVID-19 confirmed counts in both lag
5 (Fig. 6). A 1 mm increase in rainfall raised by 30.99% (95%
CI 77.18%, − 15.20%) COVID-19 confirmed cases while an
increase of 1 °C of TDN declined the confirmed cases by −
14.2% (95% CI 9.73%, − 38.13%) on the lag 1 and lag 2,
respectively. NRH and MRH had the highest increase
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(17.98% (95% CI 22.5%, 13.42%) and 19.92% (95% CI
25.71%, 14.13%)) of COVID-19 cased in lag 4.

Contribution analysis of meteorological variables
based on Monte-Carlo simulation

The Monte-Carlo simulation method was used to identify the
most influential meteorological variables that affect COVID-
19 confirmed cases of count and contribute most to the total
COVID-19 mortality cases over Bangladesh (Fig. 7). The re-
sults indicated that among the nine climatic variables, the most
driving variable was NRH, which had a score of 0.33. The

second and third most influential variables were the MRH,
and DRH, which had a score of 0.26 and 0.24, respectively.
The other meteorological variables such as rainfall, absolute
AH,MT, TDN, Tmin, and Tmax had less than 0.25 score, which
was comparatively non-significant.

Role of influencing meteorological factors on COVID-
19 mortality cases based on RF model

To perform the significance degree analysis for the contribut-
ing meteorological factors, RF tool was applied. It assisted for
determining the order of contribution status of several climatic

Fig. 3 Temporal distributions of COVID-19 daily confirmed cases and
climatic variables in Bangladesh from March 8 to April 2020. COVID-
19, corona virus disease-2019; TDN, diurnal temperature; MT, mean
temperature; NRH, night relative humidity; MRH, mean relative

humidity; AH, absolute humidity; lag 0 = days 1–9, lag 1 = days 10–
18, lag 2 = days 19–27, lag 3 = days 28–37, lag 4 = days 36–45, and lag 5
= days 46–54

Table 1 Statistical summary of COVID-19 variables and meteorological factors in Bangladesh

Variables Mean ± S.D. Std. Error of Mean Median Mode Minimum Maximum Skewness Kurtosis P 25 P 50 P 75

Max temp (°C) 32.2 ± 1.3 0.2 32.2 31.9 29.1 34.9 − 0.1 0.0 31.5 32.2 33.0

Min temp (°C) 20.9 ± 1.9 0.3 21.4 21.3a 16.2 24.8 − 0.3 − 0.5 19.2 21.4 22.5

Diurnal temp (°C) 11.3 ± 1.9 0.3 11.5 11.5 7.1 16.0 0.1 − 0.4 9.8 11.5 12.8

Mean temp (°C) 26.6 ± 1.3 0.2 26.9 26.8 23.1 28.4 − 0.7 − 0.2 25.8 26.9 27.6

Day RH 69 ± 8.7 1.2 70.0 76.3 46.2 82.9 − 0.6 0.2 64.6 70.0 76.3

Night RH 61.6 ± 10.7 1.5 59.9 54.3a 38.4 86.7 0.3 − 0.2 54.5 59.9 69.9

Mean RH 64.2 ± 9.1 1.2 63.4 60.3a 41.6 80.4 − 0.2 − 0.1 58.7 63.4 72.1

Absolute Humidity 16.5 ± 2.8 0.4 16.4 19.9 10.9 21.4 − 0.1 − 0.9 14.4 16.4 19.0

Rainfall 3 ± 5 0.7 0.3 0.0 0.0 20.6 2.1 3.8 0.0 0.3 3.5

Mortality 3.1 ± 3.7 0.5 1.0 0.0 0.0 15.0 1.1 0.5 0.0 1.0 5.3

Confirmed 142.1 ± 195.5 26.6 7.5 0.0 0.0 641.0 1.1 − 0.2 2.0 7.5 306.8

Multiple modes exist. The smallest value is shown
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Fig. 5 The association of slope changes between COVID-19 daily confirmed cases with 1-unit increase inmeteorological factors for the effects of single-
lag days based on the CPGLM models across Bangladesh at 95% confidence interval

Fig. 4 Temporal variation of meteorological variables in eight divisions
of Bangladesh. Boxplots represent the distance between the first and third
quartiles while whiskers are set as the most extreme (lower and upper)

data point where the yellow and red points represent median and outliers
respectively
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variables affecting the COVID-19 mortality cases based on
the RFM model in 8 divisions across Bangladesh (Fig. 8).

The yellow and light green columns of the histogram show-
ing the TDN and AH, respectively. TDN and AH found as the
highest contributing variables, indicating that these two vari-
ables influence the COVID-19 cases most in 5 divisions of
Mymensingh, Rangpur, Sylhet, Barishal, and Chattogram

(Table 2 and Fig. 8). Table 2 depicts that among the eight
divisions of Bangladesh, three divisions show TDN and three
divisions represent AH as the highest contributing factor. AH
comprised almost 37.5% of 8 divisions, which were identified
mostly in northeastern (Mymensingh), followed by northern
(Rangpur) and southwestern coastal climatic regions
(Khulna). In addition, TDN consisted of nearly 37.5% of the

Fig. 6 The association of slope changes between COVID-19 daily confirmed cases with 1-unit increase in meteorological factors for the effects of
multiple-lag days based on the CPGLM models across Bangladesh at 95% confidence interval

Fig. 7 Contribution percentage of
meteorological factors on
COVID-19 outbreak in
Bangladesh using Monte-Carlo
simulation
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total area, which was detected mainly in the eastern (Sylhet),
followed by southcentral (Barishal) and southeastern
(Chattogram). MRH was to be found as the second-highest
contributing variable affecting 50% of the total COVID-19

mortality cases distributed mostly in northeastern regions
(Mymensingh), eastern (Sylhet), southcentral (Barishal), and
southwestern (Khulna) of Bangladesh (Fig. 8). It is observed
that MT and rainfall are the lowest contributing variables in

Fig. 8 Bar diagram in the map shows the importance degree of climatic variables on COVID-19 confirm cases in eight division of Bangladesh from
March 8, 2020 to 30 April 30, 2020
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affecting the daily mortality cases. In the Dhaka division,
MRH is the most vital factor that affects COVID-19 deaths.
Therefore, the results imply that AH, TDN, and MRH are the
key contributing climatic variables for daily COVID-19 cases
across Bangladesh.

Discussion

The role of MT and RH in day-to-day new infections and case
fatalities due to COVID-19 should be dealt with many other
possible and unprecedented controlling factors which are not
yet established. For instance, the potential factors such as wind
(speed and direction), national population age groupings, the
density of population, and global indices (Global Health
Security Index; GHSI, and human development index; HDI)
should be considered the confounding factors for the COVID-
19 transmission (Wu et al. 2020). Meteorological factors such
as humidity, temperature, and rainfall are critical drivers for
controlling infectious diseases in different parts of the world
(Sahin 2020; Islam et al. 2020c). For example, elevated tem-
peratures may prevent the outbreak of droplets that transmit
coronavirus, likely via rapid evaporation. Simultaneously,
other factors like humidity may enhance the COVID-19 sur-
vival time in atmosphere possibly also influence the infection
rate, which is shown in Fig. 5. These outcomes can be con-
sidered with caution. Previous studies indicate that humidity
affects the infection rates of COVID-19 outbreak (Oliveiros
et al. 2020; Wu et al. 2020; Demongeot et al. 2020; Wang
et al. 2020). It is unknown whether increases in seasonal tem-
peratures will decrease the rate, which deserves further inves-
tigation. In fact, to date, role of environmental factors in the
transmission of COVID-19 is not established. Concrete and
evidenced-based proofs are needed to be explored, besides the
probabilistic determination methods could help to obtain po-
tential clues.

We run a CPGLM, permitting us for parameters specific to
the contagious SARS-CoV perspectives (Imai et al. 2015).

However, these drivers may behave differently for the daily
mortality cases due to infectious diseases in different climatic
zones as well as socio-demographic settings. For example, in
tropical Brazil, high mean temperature and intermediate RH
may be responsible for the COVID-19 outbreak (Auler et al.
2020), and the current disease situation in this country is the
worst with severe death tolls. In Turkey, the key weather fac-
tors might control the spread of COVID-19 is considered tem-
perature (°C), dew point (°C), humidity (%), and wind speed
(mph). Due to variant incubation periods of COVID-19 (1 to
14 days), Spearman’s correlation coefficients revealed that
wind speed and temperature had a direct relationship with
COVID-19 cases in Turkey (Sahin 2020).

Ma et al. (2020) reported that RH had a reverse association
with COVID-19 mortality cases/day (r = − 0.32), with the
highest reduction in lag 3 (− 11.41% (95% CI − 19.68%, −
2.29%). Another study stated that every 1% rise in RH, con-
firmed cases/days of COVID-19 lowered by 0.85% (with the
CI 95%, 0.51%, 1.19%), and mortality/day lowered by 0.51%
(95% CI 0.34%, 0.67%) in the 166 countries (Wu et al. 2020).
Contrary to these cited works, our result found that in the
single-lag days, every 1% rise in mean RH, confirmed case/
day of the COVID-19 raised by 11.39% (CI 34.47%, −
11.71%) in Bangladesh. Similarly, every 1 mm increase in
rainfall elevated by 30.99% (95% CI 77.18%, − 15.20%)
COVID-19 cases in lags 1 and 2. The conflicting outcomes
may be due to their studies were conducted at the global scale,
and the temperature and humidity ranges were large and dif-
ferent climatic and geographic settings. However, in either
case, more studies are warranted to draw a precise conclusion
to assure the contribution of meteorological impacts on
COVID-19 cases.

A recent study in China stated that daily COVID-19 cases
elevated by 4.861% for every 1 °C increase in MT (Zhu and
Xie 2020) when the MT was fallen 3 °C. This result echoes
our outcomes. Each 1 °C increase in MT was corroborated
with the elevated COVID-19 confirmed cases in lag 0, with
the highest growth of 26.5% (95% CI 142.13%, − 89.13%),

Table 2 Importance degree of
meteorological variables on
COVID-19 confirm cases in eight
divisions of Bangladesh during
March 8, 2020 to April 30, 2020
using random forest model

Division First largest
contributing variable

Importance degree Second largest
contributing variable

Importance degree

Dhaka MRH 22.94 MT 21.58

Mymensingh AH 24.01 MRH 22.91

Rajshahi MRH 29.83 TDN 22.47

Rangpur AH 24.58 MT 23.91

Khulna AH 23.79 MRH 23.68

Sylhet TDN 28.38 MRH 23.53

Barishal TDN 24.74 MRH 20.13

Chittagong TDN 27.43 AH 27.42

MRH, mean relative humidity; AH, absolute humidity; TDN, diurnal temperature; MT, mean temperature

11255Environ Sci Pollut Res (2021) 28:11245–11258



but it should be kept in mind that this increased transmission
majorly comes from contact and community media. Ma et al.
(2020) explored the daily mortality of COVID-19 in Wuhan,
China. They found that diurnal temperature ranges had a sig-
nificant positive association with daily COVID-19 mortality,
which is in disagreement with our study. However, this result
was unstable because the temperature was associated with a
decline in COVID-19 mortality in lags 3 and 5. The other
reason is that they may be used in the various characteristics
of the participants and multiple methods (Prata et al. 2020).

The probable elucidation of our results is that meteorolog-
ical factors such as temperature, humidity, and rainfall are
critical factors in living conditions that play a vital role in
the status of human health according to pandemic induction
and prevention (McMichael et al. 2008; Salam et al. 2019). A
set of definite meteorological factors that suitable fits favor
coronavirus and that specific climatic variables like humidity
contribute to the outbreak because it exists when the suscep-
tibility rises. It clearly indicates about the virus particle sur-
vival state under variant meteorological conditions rather than
direct transmission. Therefore, the onset of summer can be
favorable to enhance the spread out of the COVID-19 cases.
Our findings accord with those published cited reported
worldwide, exhibiting how the number of confirmed cases
increases above 25 °C and linearly increased afterward.
Several studies have stated that the virus (SARS-CoV-2) is
sensitive to temperature and humidity (Luo et al. 2013; Ma
et al. 2020; Sajadi et al. 2020; Liu et al. 2020; Benvenuto et al.
2020; Tobías and Molina 2020).

Moreover, a recent study by Benvenuto et al. (2020)
showed that the variability of SARS-CoV-2 was similar to
that of SARS-CoV under different experimental settings.
Chan et al. (2011) showed that the temperature up to 25 °C
and relative humidity of more than 50%, dried out SARS-CoV
could survive for more than 1 week on smooth surfaces.
However, the stability of SARS-CoV increased when the rel-
ative humidity and rainfall increased. The SARS-CoV-2
might be more stable at high-rainfall and high-humid condi-
tions. The moisture in the bioaerosols evaporates quickly in
high relative humidity, creating a tiny droplet in the air for a
long time, thereby enhancing the probability of pathogen out-
break (Tellier 2006). However, our immunity system is not
compromised in high-humidity systems (Oliveiros et al.
2020). Thus, the human body is at an elevated risk of infection
by viruses in high-temperature, high-rainfall, and high-humid
conditions.

In this study, the change in daily COVID-19 cases has a
strong association with AH and RH, which move southward
to increase easterlies. Our findings showed that the overall
COVID-19 pandemic in Bangladesh can be affected by the
change of humidity mostly. Many studies have reported that
temperature and relative humidity are the most contributing
climatic variables influencing COVID-19 cases in other

countries (Ma et al. 2020; Shi et al. 2020). This study also is
confirmed that five meteorological variables included, where
AH and DT are the most contributing factor, and the RH is the
second-highest influencing factor in the variability of daily
COVID-19 cases. Ma et al. (2020) found that a positive asso-
ciation is found between daily death counts of COVID-19 and
TDN.

Contrary to our study, Zhu and Xie (2020) reported that
case counts of COVID-19 could decline when the weather
becomes warmer when the temperature is above 3 °C. The
possible key meteorological driver of the COVID-19 mortal-
ity cases in Bangladesh might be the AH and RH as well as
other climatic factors such as TDN, MT, and rainfall
(Oliveiros et al. 2020; Qi et al. 2020b; Shi et al. 2020; Wu
et al. 2020; Zhu and Xie 2020). The RF model showed that
MT and rainfall are the lowest contributing factors affecting
the daily mortality cases in Bangladesh. In the Dhaka division,
MRH is the most vital factor that affects COVID-19 deaths.

The findings of Wu et al. (2020) provided preliminary in-
sights for the potential association between the virus and the
climatic parameters. Whatever is the association being, there
is no alternative to control the infections, transmissions, and
therefore spread of COVID-19. A possible mechanism of par-
ticulate matter PM10 concentration upon COVID-19 diseases
was evaluated in Italy, considering the airborne virus diffusion
based on PM10 as a vector. COVID-19 infection cases can
influence the association between air pollutants and human-
induced aerosols. However, direct correlations between the
presence of high quantities of PM10 and the diffusion of the
COVID-19 virus were not evident (Bontempi 2020).

Though our study gives a strong clue to meteorological
factors that might have an association with COVID-19 con-
firmed cases and mortality, the following limitations are ob-
served. First, other variables such as environmental pollutants,
air quality, and UV radiations must perform a comprehensive
study of COVID-19 infectious disease. Second, the associa-
tion of PM2.5, air pollutants, and human-induced aerosols
may be influenced by the COVID-19 infection cases. Next,
many parameters including immunity, social and physical dis-
tancing, nutritional status, and accessibility of healthcare fa-
cilities affect the COVID-19 cases/mortality (Shammi et al.
2020a, 2020b). This study did not consider socioeconomic
factors such as population movement and population density.
Finally, epidemiological data should be dealt with more cau-
tiously and systematically to differentiate the number of in-
fected cases and local death rates require to be deserved in
further investigation. In the entire Bangladesh, air quality in-
dex, along with other factors, should be considered to risk
assessment on daily new cases of infections and mortality.
Policymakers should think about the meteorological variables,
especially AH and RH along with environmental factors such
as air pollution for taking necessary measures to manage and
prevent new infections.
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Conclusion

We found that the confirmed cases of COVID-19 were
distributed in a similar pattern with meteorological factors
such as NRH, MRH, AH, and rainfall except for TDN and
MT, where both the factors showed an irregular pattern
with the daily confirmed cases of the COVID-19 in
Bangladesh. The result also disclosed that both per 1 unit
increase in NRH, MRH, AH, and rainfall were related to
the increased COVID-19 confirmed cases in lag 0, with the
highest increase (8.91% (95% CI 37.80%, − 19.98%);
11.39% (CI 34.47%, − 11.71%); 62.4% (95% CI
186.14%, − 61.34%); and 83.22% (95% CI 365.46%, −
199.02%)) respectively. In contrast, in the case of multiple
lags, NRH and MRH had the highest increase (17.98%
(95% CI 22.5%, 13.42%) and 19.92% (95% CI 25.71%,
14.13%)) of COVID-19 cased in lag 4 while 1 mm increase
in rainfall elevated by 30.99% (95% CI 77.18%, − 15.20%)
COVID-19 infections on lag 1 and lag 2 respectively. The
humidity (NRH, MRH, DRH) and rainfall are the most
influential meteorological factors to the COVID-19 cases.
In the Dhaka division, the mean relative humidity is the
most vital factor that affects COVID-19 cases. The out-
comes of the RF model demonstrated that the humidity
and diurnal temperature are vital factors influencing the
COVID-19 confirmed cases. As infection cases are still
rising in Bangladesh, this study recommends that sectoral
policies, actions, and preventive measures should be im-
plemented considering the environmental factors to reduce
transmission and strengthen the healthcare system in
Bangladesh. The Government will not capable to alleviate
this worse situation alone, specific efforts from the people,
active participation of the country’s healthcare specialists,
and international aid are immediately required.
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