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Abstract
The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the
quality of water. These results decrease in freshwater bodies near all of the areas. Besides, organic and inorganic compounds
discharged from different sources into the available natural water bodies are the cause of pollution. The occurrence of heavy
metals in water and volatile organic compounds (VOCs) in the air is responsible for a vast range of negative impacts on the
atmosphere and human health. Nonetheless, high uses of heavy metals for human purposes may alter the biochemical and
geochemical equilibrium. The major air contaminants which are released into the surroundings known as VOCs are produced
through different kinds of sources, such as petrochemical and pharmaceutical industries. VOCs are known to cause various health
hazards. VOCs are a pivotal group of chemicals that evaporate readily at room temperature. To get over this problem, biofiltration
technology has been evolved for the treatment of heavy metals using biological entities such as plants, algae, fungi, and bacteria.
Biofiltration technology is a beneficial and sustainable method for the elimination of toxic pollutants from the aquatic environ-
ment. Various types of biological technologies ranging from biotrickling filters to biofilters have been developed and they are
cost-effective, simple to fabricate, and easy to perform. A significant advantage of this process is the pollutant that is transformed
into biodegradable trashes which can decompose within an average time period, thus yielding no secondary pollutants. The aim
of this article is to scrutinize the role of biofiltration in the removal of heavy metals in wastewater and VOCs and also to analyze
the recent bioremediation technologies and methods.
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Introduction

Most of the earth’s surface is covered with water while less than
0.002% is consumable for humans. According to the reports of
the World Health Organization (WHO), one-sixth part of the
total world population does not have access to freshwater. The
reason behind this problem is water pollution. Water pollution
comes from human activities such as industry, agriculture, or
household waste that have a large negative impact on the water
bodies (rivers and ocean), environment, and human health also
(Owa 2014; Alrumman et al. 2016). Since industrialization,
many freshwater bodies’ rivers have been receiving a higher
amount of pollutants (industrial and many other wastes) in
which metals are also important topics of environmental con-
cern. These heavy metals are deposited in the environment ow-
ing to anthropogenic activities. For many years, heavy metals
have been growing concern over the harmful effects of humans
and aquatic ecosystems (Tiwari et al. 2016). Heavy metals refer
to trace metals that are toxic in nature at low concentrations with
quite high density. Generally, the atomic mass range of heavy
metals is found from 63 to 200 (Srivastava andMajumder 2008;
Barupal et al. 2020a, 2020b). Metals that are toxic to a living
being and refer as heavy metals are listed as follows: mercury
(Hg), lead (Pb), arsenic (As), zinc (Zn), copper (Cu), nickel (Ni),
cobalt (Co), cadmium (Cd), chromium (Cr), stannum (Sn), etc.
(Wang and Chen 2009; Liang et al. 2019; Qu et al. 2020). The
foremost sources of heavy metals are electroplating industries
waste and mining and many more that are discharged into water
bodies and soil (Ahmady-Asbchin et al. 2008; Zhou et al. 2020).
In contrast to organic waste, heavy metal removal is very diffi-
cult due to its persistent and incorruptible nature (Gupta et al.
2001; Shukla and Pai 2005; Acheampong et al. 2010). Heavy
metal’s indiscriminate disposal into water resources causes ac-
cumulation of toxicmetal in living organism’s tissues, leading to
diseases and disorders. The exposure of heavymetals to humans
can occur through different routes, for instance, inhalation, va-
porization, and food and drink ingestion. Apart from this, these
heavy metals have several environmental impacts such as the
destruction of aquatic life and habitat and algal blooms (Ngah
and Hanafiah 2008; Akpor et al. 2014). Besides heavy metals,
volatile organic compounds (VOCs) are well-known air pollut-
ants and a topic of concern too.

VOCs are compounds with a wide variety of chemicals that
have less water solubility and volatility at ambient room tem-
perature because of the high vapor pressure (Cicolella 2008).
VOCs include industrial solvents like toluene, benzene, esters,
methane, perfluorocarbons, chlorohydrocarbons (Tiwari et al.
2019), methyl tert-butyl ether (Liang et al. 2020), trichloroeth-
ylene (Yang et al. 2019), chloroform, paraffin, and ketones
(Lomonaco et al. 2020). VOCs also include hydraulic fluids,
petroleum fuels, paints, ink, and dry cleaning agents, aromatics
that are released in the air from the chemical and refinery in-
dustries. Some of these compounds are carcinogenic and some

are mutagenic and toxic for living beings and hazardous to the
environment. When VOCs oxidized in the presence of lights,
they produce aromatic, chlorinated, and other compounds that
are more toxic than their parent compounds (Zhao et al. 2014;
Barupal et al. 2020c). VOCs like oxides of nitrogen generate
ozone that forms smog which is harmful to living beings and
the environment as well (Malakar et al. 2017).

VOCs pollute not only air but also water and soil. That is
why it is a growing environmental concern. It is necessary to
confiscate or alleviate VOCs and heavy metal from the envi-
ronment. For this purpose, industries need some innovative
technologies for the removal of heavy metal and VOCs from
the wastewaters before discharging them into water bodies or
environment. A number of physicochemical methods are used
for heavy metal such as chemical precipitation, solvent extrac-
tion, adsorption, membrane separation, and ion exchange
(Eccles 1995; Kurniawan et al. 2006) and for VOCs, ozona-
tion, condensation, absorption, membrane separations, ad-
sorption, catalytic oxidation, and incineration are employed
(Kumar et al. 2011). Nonetheless, all these methods have
some drawbacks like incomplete removal, required expensive
equipment, monitoring system, reagent, and high energy re-
quirements, and also generate undesirable by-products that
require disposal as well. Furthermore, these methods might
not be much effective and cost-effective. The biological pro-
cess is an exquisite method for the management of heavy
metal and VOCs and can also help to overcome some of the
drawbacks of physiochemical treatment methods and provide
economical, eco-friendly, and safe removal of pollutants
(Mehta and Gaur 2005; Kumar et al. 2011). In this article,
we discuss biological methods for pollutant removal (heavy
metals, VOCs) like biofiltration, biofilters, microorganisms,
biotrickling filters, bioscrubber, and biosorption.

Biological methods

Biological methods involve microorganisms for the elimina-
tion of wastewater. This method can be used for the exclusion
of VOCs and heavy metals using microorganisms. Table 1
shows various microbes for the removal of different heavy
metals. There are different kinds of biological methods that
are widely used for pollutant removal such as biofilters, acti-
vated sludge, trickling filters, bioscrubber, and bioremedia-
tion; stabilization ponds are widely used for treating wastewa-
ter (Gunatilake 2015; Fig. 1). Here, Table 2 shows the various
biological methods for the elimination of various contami-
nants, kinds of processes, and related plants/microbes.
Biological methods gradually got popularity due to the fol-
lowing reasons: fewer chemicals and equipment and operating
system required and its eco-friendly nature (Srivastava and
Majumder 2008).
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Table 1 Microbes mediated removal of heavy metal

Microorganisms Methods Heavy metals and VOCs References

Eichhornia crassipes Biofiltration Pb, Cr, Zn, Mn, Cu Tiwari et al. (2007)

Azolla Biofiltration Sr(II) Cohen-Shoel et al. (2002)

Pseudomonas taiwanensis, Acinetobacter
guillouiae, Klebsiella pneumoniae

Biofiltration Cr(VI), Cu(II), Zn(II) Majumder (2015)

Gracilaria sp. Biofilter Al, Cr, Zn Kang and Sui (2010).

Rhizopus nigricans Biosorption Pb Hassan and El-Kassas (2012)

Pleurotus ostreatus Biosorption Pb Barros Júnior et al. (2003)

Aspergillus cristatus Biosorption Cd Martinez-Juarez et al. (2012)

Aspergillus niger Biosorption Cd Bunluesin et al. (2007)

Hydrilla verticillata Biosorption Cd Acosta Rodríguez et al. (2013)

Aspergillus flavus I–V, Aspergillus
fumigatus I–II

Biosorption Hg Murugesan et al. (2006)

Penicillium chrysogenum Biosorption As Mamisahebei et al. (2007)

Waste tea fungal Biosorption As(III), As(V) Shoaib et al. (2012)

Waste tea fungal Biosorption As Velkova et al. (2012)

Aspergillus niger Biosorption Ni Tay et al. (2012)

Pleurotus ostreatus Biosorption Cu Shipra et al. (2012)

Aspergillus lentulus Biosorption Cu Sutherland and Venkobachar (2010)

Fomes fasciatus Biosorption Cu Parungao et al. (2007)

Penicillium canescens Biosorption Cr(VI) Chhikara et al. (2010)

Fungal (living) mycelium of
Phanerochaete chrysosporium

Biosorption Cr(VI), Cu Sethi et al. (2010)

Mucor Biosorption Cr(VI) El-Kassas and El-Taher (2009)

Trichoderma viride Biosorption Cr(VI) Sala Cossich et al. (2002)

Aspergillus niger Biosorption Cr(VI) Javaid and Bajwa (2007)

Pleurotus ostreatus Biosorption Cr(III), Cr(VI) Park et al. (2005)

Aspergillus niger Biosorption Cr(VI) Kujan et al. (2006)

Saccharomyces cerevisiae Biosorption Cu Anaemene (2012)

Candida spp. Biosorption Cu Mapolelo and Torto (2004)

Thiobacillus thiooxidans Biosorption Cu Nagashetti et al. (2013)

Saccharomyces cerevisiae Biosorption Cr(VI) Abd-Elsalam (2011)

Saccharomyces cerevisiae Biosorption Cr(VI), Cu Davis et al. (2003)

Candida utilis Biosorption Cr(VI) Arakaki et al. (2011)

Schizosaccharomyces pombe Biosorption Cr(VI) Prakash and Kumar (2013)

Spent yeast Biosorption Cr(III) Pandey et al. (2009)

Yeast biomass Biosorption Cr(VI) Hamuda and Tóth (2012)

Saccharomyces cerevisiae Biosorption Cu, Cd, Pb, Ni Van Wyk (2011)

Saccharomyces cerevisiae Biosorption Cr, Sn Machado et al. (2009).

Saccharomyces cerevisiae Biosorption Cu, Ni, Zn Das et al. (2007)

Mycelial biomass of Pleurotus florida Biosorption Cd Yan and Viraraghavan (2000)

Saccharomyces cerevisiae Biosorption Cd Hamuda and Tóth (2012)

Strain of Saccharomyces cerevisiae Biosorption Cr, Cu, Ni, Zn Machado et al. (2008)

Mucor rouxii Biosorption Pb,Cd, Ni, Zn El-Sayed (2013); Meena et al. (2017f, b)

Saccharomyces cerevisiae Biosorption Cd El-Sayed (2013)

Rhodospirillum sp. Biofiltration Cd, Hg, Pb, Ni Chatterjee (2002)

Gallionella ferruginea Biofiltration As, Mn Fe Katsoyiannis and Zouboulis (2004)

Leptothrix sp. Biofiltration As , Mn Fe Katsoyiannis and Zouboulis (2004)
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Table 1 (continued)

Microorganisms Methods Heavy metals and VOCs References

Pseudomonas sp. Bioadsorption Cr, As Valls et al. (2000); Meena et al. (2017a, d)

Desulfovibrio sp. Biofiltration Cu, Zn, Ni, Fe, As Jong and Parry (2003)

Thiomonas sp. Biofiltration As, Fe Casiot et al. (2003)

Escherichia coli Bioaccumulation Hg, Ni Deng et al. (2003)

Thauera selenatis Biofiltration Zn, Cd, Co, Cu, Ni, Pb, Cr, Hg Mergeay et al. (2003)

Penicillium chrysogenum Biological
method

Zn, Cu, Ni, As Loukidou et al. (2003)

Aspergillus niger Bioaccumulation Ni, Cu, Pb, Cr Dursun et al. (2003); Meena et al. (2017c, f)

Coriolus hirsutus Activated sludge Cd Miyata et al. (2000)

Trametes versicolor Biotransformation Cr, Co Blánquez et al. (2004)

Mucor rouxii Bioadsorption Pb, Cd, Zn, Ni Yan and Viraraghavan (2000)

Brown algae Biosorption Cd, Cu, Zn, Pb, Cr, Hg Davis et al. (2003); Meena et al. (2017e)

Green algae Bioaccumulation Cu, Hg, Fe, Zn, Pb, Cd Haritonidis and Malea (1999)

Scenedesmus genus Biological
method

Cu, Ni, Cd, Cr, Cu Pena-Castro et al. (2004)

Sulfate-reducing bacteria (SRB) Biofitration Zn Suriya et al. (2013).

Enterobacter cloacae Biofitration Pb, Cu, Cr(VI), Hg, Cd Rani et al. (2010)

Bacillus sp., Pseudomonas sp.,
Micrococcus sp.

Biofitration Cu, Cd, Pb Hussein et al. (2004).

Pseudomonas sp. Biofitration Cr(VI), Cu, Cd, Ni Liu et al. (2004)

Thiobacillus thiooxidans Biofitration Zn, Cu Nagashetti et al. (2013)

Sargassum filipendula Biofitration Cu, Ni Rinku et al. (2012)

Sargassum sp. Biofitration Cr(III) Yavuz et al. (2006)

Green algae (Spirogyra spp.) Biofitration Cr(VI) Subhashini et al. (2011)

Microalgae Biofitration Cu, Zn Saravanan et al. (2011)

Brown algae (Fucus vesiculosus) Biofitration Cu, Pb, Ni, Cd Brinza et al. (2007)

Pseudomonas sp. Biofiltration Benzene Sene et al. (2002)

Alcaligenes xylosoxidans Biofiltration Benzene Yeom and Daugulis (2001); Meena et al.
(2017g)

Cladosporium sphaerospermum Biofiltration Benzene Qi et al. (2002)

Cladosporium resinae,
C. sphaerospermum,
Exophiala lecanii-corni,Mucor rouxii,
Phanerochaete chrysosporium

Biofiltration Butylacetate Qi et al. (2002); Meena et al. (2017i)

Pseudomonas sp. Biofiltration Chlorobenzene Seignez et al. (2001)

Candida utilis Biofiltration Ethanol Christen et al. (2002)

Rhodococcus fascians Biofiltration Ethylacetate Hwang et al. (2002)

Cladosporium resinae,
C. sphaerospermum,
Exophiala lecanii-corni,

Phanerochaete chrysosporium

Biofiltration Ethylbenzene Qi et al. (2002); Meena and Zehra (2019)

Cladosporium resinae,
C. sphaerospermum,

Exophiala lecanii-corni

Biofiltration Methylethylketone Qi et al. (2002)

Rhodococcus sp. Biofiltration Methylethylketone Amanullah et al. (2000)

Cladosporium resinae,
C. sphaerospermum,
Exophiala lecanii-corni,

Phanerochaete chrysosporium

Biofiltration Methylethylketone Qi et al. (2002)

Pseudomonas aeruginosa Biofiltration Methyl-tertbutyl-ether, pentane Dupasquier et al. (2002)

Aspergillus sp. Biofiltration α-Pinene
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Biofiltration technologies

Harm to environmental systems and human health by different
types of pollutants release has led to the development of var-
ious methodologies for the treatment of pollutants and their
source. In this regard, biofiltration has been known as a viable
option for the removal of pollutants (Vikrant et al. 2018). It
has the basic design like a fixed-bed bioreactor in which a
microorganism is immobilized to a bed of inorganic or organic

porous–supporting medium (Berenjian et al. 2012). The pol-
lutants passed through the medium (Gómez-Borraz et al.
2017), degraded by microorganisms (Carpenter and Helbling
2017; Jeong et al. 2017). Microorganisms behave as a biocat-
alyst and developed biofilm. Supporting medium provides
large surface areas and additional nutrients (Srivastva et al.
2017; Rene et al. 2018), homogenous distribution of the pol-
lutants (Cassini et al. 2017), and water retention required to
keep the biofilm alive (Mačaitis et al. 2014). These conditions

Table 1 (continued)

Microorganisms Methods Heavy metals and VOCs References

Diehl and Saileela (2000); Meena and Swapnil
(2019)

C. sphaerospermum Biofiltration Styrene Qi et al. (2002)

Tsukamurella, Pseudomonas,
Sphingomonas, Xanthomonas

Biofiltration Styrene Arnold et al. (1997)

Pseudomonas putida Biofiltration Toluene Park et al. (2002); Meena and Samal (2019)

Pseudomonas pseudoalcaligenes Biofiltration Toluene Oh and Park (2000)

Exophiala lecanii-corni Biofiltration Toluene Woertz et al. (2001)

Scedosporium apiospermum Biofiltration Toluene García-Peña et al. (2001)

Paecilomyces variotii Exophiala
oligosperma

Biofiltration Toluene Estévez et al. (2005); Meena et al. (2016a,
2016b, 2016c)

Fusarium solani Biofiltration Hexane Vergara-Fernández et al. (2006)

Bacterial/fungal consortium Fusarium
solani

Biofiltration Toluene n-pentane Dorado et al. (2008)

Fungal consortium Biofiltration n-Hexane Iranmanesh et al. (2015)

Corynebacterium jeikeium,
Corynebacterium nitrilophilus,
Micrococcus luteus, Pseudomonas
mendocina,
Sphingobacterium thalpophilum,
Turicella otitidis

Biofiltration Toluene Strauss et al. (2000)

Pseudomonas putida Biofiltration Benzene, Toluene and Phenol Abuhamed et al. (2004)

Paecilomyces variotii Biofiltration Toluene Aizpuru et al. (2005); Meena et al. (2015)

Pseudomonas putida Biofiltration Toluene Park and Jung (2006); Maestre et al. (2007)

Exophiala spp.
Mytilus edulis

Biofiltration Benzene, Toluene, Ethylbenzene, and
Xylene (BTEX)

Mohammad et al. (2007); Torretta et al. (2015);
Raboni et al. (2017)

Pseudomonas aeruginosa, Aspergillus
oryzae,
Penicillium sp., Pseudomonas putida,
Aspergillus oryzae, Pseudomonas
putida,
Penicillium sp., Chryseobacterium
indologenes,
Halosporangium sp.

Biofiltration Styrene Paca et al. (2009); Meena et al. (2013)

Cladophialophora sp. Biofiltration Toluene Prenafeta-Boldú et al. (2008)

Bacillus cereus Biotrickling Toluene Li et al. (2008); Kumari et al. (2018a, 2018b);
Raboni et al. (2017)

Stenotrophomonas maltophilia Biofiltration Toluene Ryu et al. (2008)
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altogether give suitable internal environments to pollutant-
degrading microorganisms (Ibanga et al. 2018). In this pro-
cess, separation is present between the microorganisms and
the wastewater, while the wastewater flows through a support
material on that microorganisms are immobilized (Cohen
2001; Chen and Hoff 2012). In biofiltration, the removal effi-
ciency of VOC is also related to its bioavailability (Yang et al.
2019; Pettit et al. 2019). The removal efficiency of VOCs is
directly correlated with Henry’s constant. According to this,
the lower solubility ratio of pollutants in water shows less

biodegradability in the biofiltration process (Miller et al.
2019). The order of degradation is as follows: alcohols > es-
ters > ketones > aromatic hydrocarbons > aliphatic hydrocar-
bons (Jaber et al. 2017; Vikrant et al. 2018).

Biofilters

The biofilters are easy to manufacture and operate and are
economical as well. Using biofilter, the pollutants are trans-
formed into a biodegradable form which can be decomposed

Table 2 Different biological methods for the removal of pollutants

Method(s) Process Pollutant(s) Plant(s)\microbe(s) Reference(s)

Phytotransformation Plant uptake and degradation of organic
Compounds

Xenobiotic
substances

Cannas Subramanian et al.
(2006)

Phytoextraction Remove metals pollutants and organics
from soil by accumulate in plant parts

Cd, Pb, Zn, As,
petroleum,
hydrocarbons
and
radionuclides

Viola baoshanensis, Sedum alfredii,
Rumex crispus

Macek et al. (2000);
Zhuang et al. (2007)

Phytostabilization Use of plants to reduce the
bioavailability of pollutants in the
environment

Cu, Cd, Cr, Ni,
Pb, Zn

Anthyllis vulneraria, Festuca
arvernensis

Vázquez et al. (2006)

Rhizofiltration Roots absorb Groundwater with
pollutants, mainly metals such as Zn,
Pb, Cd from water and aqueous waste
streams

Zn, Pb, Cd, As Brassica juncea Verma et al. (2006);
Meena et al. (2018)

Phytodegradation Plants and associated microorganisms
degrade organic pollutants

DDT,
explosives,
waste and
nitrates

Elodea Canadensis, Pueraria Garrison et al. (2000);
Newman and
Reynolds (2004)

Bioaugmentation Addition of exogenous microorganisms
with the ability of degrading the
contaminants that are recalcitrant to
the indigenous microbiota

PAHs, Cr, Pb Bacillus cereus, Fusarium oxysporum,
Actinobacteria, Agaricus bisporus

Jacques et al. (2008);
Polti et al. (2014);
García-Delgado et al.
(2015); Meena et al.
(2020)

Bioleaching Specific microorganisms like
Thiobacillus ferrooxidans and
T. thiooxidans promote metal
solubilization

Cr, Cu, Pb, Zn Acidithiobacillus spp., Aspergillus niger Akinci and Guven
(2011); Ren et al.
(2009); Zehra et al.
(2020)

Biofilters Application of bacteria in filters for the
decontamination of polluted water
and wastes

Cu, Cd Micro-algal/bacterial biomass Loutseti et al. (2009)

Bioventing Combination of venting of soil to
remove the volatile compounds with
bioremediation that uses oxygen to
degrade the organic contaminants

Phenanthren
toluene

Multispecies system Frutos et al. (2010);
Hong and Xingang
(2011); Zehra et al.
(2015)

Composting Nutrients are added to soil that is mixed
to increase aeration and activation of
indigenous microorganisms

Phenolic
compounds
heavy metals

Thermoascus aurantiacus, Eudrilus
eugeniae

Ghaly et al. (2011);
Soobhany et al.
(2015)

Biosparging Involving the injection of air below the
water table to increase groundwater
oxygen concentrations and enhance
the rate of biological degradation of
contaminants by naturally occurring
bacteria

Trichloroethene
and cis-
dichloroethene

Pseudomonas cepacia G4,
Pseudomonas cepacia G4PR1,
Pseudomonas mendocina KR1,
Pseudomonas putida F1,
Methylosinus trichosporium OB3b

Tovanabootr et al.
(2001); Meena et al.
(2019a, 2019b)

Bioreactors Slurry reactors (aqueous reactors) Pyrene PAHs Pseudomonas spp., Pseudomonas
aeruginosa

Nasseri et al. (2010);
Mohan et al. (2008)
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within a moderate timeframe without any secondary pollutant
production (Gopinath et al. 2018). A basic design of biofilter
is constructed with a supporting medium which provides the
required nutrients to the growing microorganisms (Fig. 2).
Microorganisms have important roles in the process of pollut-
ant breakdown present in the environment (Srivastava and
Majumder 2008). A biofilter consists of biologically active
material which is the 1 m in height (Kumar et al. 2013).
Materials that are usually used in filters comprise compost,
soil, bamboo, or peat activated carbon–based packing material
(Lim et al. 2015; Kumar et al. 2019). The maintenance of a
biologically active layer, known as the biofilm support medi-
um, has to be kept wet (Zou et al. 2012). Biofilm is gradually
developed by microorganisms (algae, protozoa, aerobic, an-
aerobic, and facultative bacteria, fungi, etc.) and surrounds the
biofilter materials. It gives favorable conditions for the mi-
crobe’s growth. Compost obtained from the leaves, bark, or
other trees’ parts is usually used as a basic filter material.
Other materials which can be used as a support medium may
include porous clay or polystyrene spheres. These mediums
are sometimes used to increase active surface area and reli-
ability, reduce backpressure, and increase the useful life of
filter material (Leson and Winer 1991; Barupal et al. 2019).
Biofilter’s pollutant removal efficiency mostly depends on the

attribute and nature of its filter media. Porosity and degree of
compaction should be minimum to reduce the need for filter
material replacement, ability to provide an optimum environ-
ment (medium pH, temperature, and moisture) and attachment
surface for microbial populations, capacity to maintain high
degradation rates, etc. (Leson andWiner 1991; Srivastava and
Majumder 2008, 2015). These properties maintain healthy
biomass of microorganisms on the surface of the filter media
for the better completion of the biofilters.

For the attachment and colonization on the surface of the
filter media, these microorganisms use transportation, prelim-
inary adhesion, firm attachment, and colonization.
Microorganisms use transportation, preliminary adhesion,
firm attachment, and establishment to attach and colonize on
the surface of the filter media (Chaudhary et al. 2003; Kumar
et al. 2013). Biological methods that take place in a biofilter
are as follows: attachment and growth of microorganisms,
decay, and detachment (Srivastava and Majumder 2008;
Berenjian et al. 2012). Microorganisms present in the biofilter
are mostly aerobic; hence, they required O2 which is supplied
by incoming natural air. Oxygen must be dissolved into the
water phase so that it can be easily available to the microor-
ganism growing in the biofilter (Chandran et al. 2020). It has
been found that most of the bacteria which form club-shaped

Fig. 1 Various kinds of biological methods for the removal of heavy metals and VOCs
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(coryneform) endospore and occasionally pseudomonads are
present in biofilters. Streptomyces spp. some time show their
presence in a filter that is actinomycetes. Generally, some
fungi such as yeast are not in biofilters. Some filamentous
fungi which belong to the Deuteromycetes (Aspergillus,
Penicillium , Cladosporium , Alternaria , Fusarium ,
Trichoderma, and Botrytis) and Mucorales (Mortierella and
Rhizopus) commonly show their presence and contribution to
the biofiltration process (Kumar et al. 2013).

Biofilter technologies for heavy metal removal

Heavy metals are removed through the biological remediation
process occurring in a biofilter. Lethal heavy metals are
passed through a moist biologically active film present in the
filter medium (Majumder 2015; Gallardo-Rodríguez et al.
2019). Some biological waste material such as water treatment
sludge, coconut, rice husk, swine hairs, and tea leaves were
also used in biofiltration systems and they showed potential
heavy metal removal capacity via ion exchange, surface ad-
sorption, and complexation process (Lim et al. 2015; De Paris
et al. 2019). These lethal heavy metals are either oxidized or
reduced by microorganisms present in the active layer of the
biofilter and produce less soluble and less toxic species. These
less-soluble forms of metals formed by the process of
precipitation/co-precipitation adsorption, absorption, and

bioremediation (Kumari and Tripathi 2015) on the extracellu-
lar protein of the microorganisms and the surface of the ad-
sorbent (Valls and De Lorenzo 2002; Li et al. 2016). Some
heavy metals are aerobically transformed into less-toxic spe-
cies, water, and biomass. An alternative vital route for heavy
metals removal fromwater is themethylation ofmetals (White
et al. 1997; Srivastava and Majumder 2008).

Biofilter technologies for VOC removal

It is an economical and excellently efficient treatment method
for VOC removal. It is an effective technique over the con-
ventional methods commonly recovered for air pollutionman-
agement (Jantschak et al. 2004; Alinezhad et al. 2019). For the
treatment of polluted air with VOCs, contaminated off-gas is
discharged and sustained from the bottom. Contaminated air
passes through the biologically active layer of the filter. Due to
the turbulent nature of VOCs, the mass transport takes place
through convection and diffusion. The substrate passes to the
biofilm by passive diffusion or actively via enzymes (Miller
and Allen 2004; Miller et al. 2019). Once pollutants are pres-
ent in the air, they are diffused into the liquid-phase or
absorbed directly on the biofilm. The target pollutants go
through aerobic degradation in the biofilm. The cell mem-
brane of the microorganism is conveyed VOCs into the cell,
where the reaction occurs and VOCs metabolized. The final

Fig. 2 Phenomena involved in the biofiltration process
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products of the comprehensive biodegradation of pollutants
are water and carbon dioxide along with microbial biomass
(Adler 2001; Showqi et al. 2016). The oxidations of chlorinat-
ed organic and reduced sulfur compounds also generate inor-
ganic acids (Leson andWiner 1991). Different types of VOCs
present in the air can react with one another, alter one an-
other’s chemical properties, and also affect one another’s bio-
availability and the rate of biodegradation. Especially in the
biofiltration process, these interactions might impact the effi-
ciency of the purification process (Balasubramanian et al.
2012; Miller et al. 2019; Ghasemi et al. 2020). The oxygen
availability is also an important factor as well as the retro-
diffusion of metabolic by-products such as carbon dioxide,
water, and biomass (Vergara-Fernández et al. 2018a, b).

Biotrickling filters methods

Biotrickling filters (BTFs) are structurally quite identical to
biofilters. However, they have continuous re-circulation (co-
currently or counter-currently) of the liquid medium through
the filter instead of pre-humidification in biofilters and also
there is synthetic packing material used (Omil 2014). The
procedure of gas absorption, gas diffusion into the biofilm,
and liquid-phase, regeneration and successive biodegradation
take place concomitantly in one procedure equipment. The
waste gas being treated is carried through a packed bed in a
biotrickling filter either co-currently or counter-currently to
the liquid flow. An uninterrupted stream of the recirculating
aqueous solution carrying the requisite nutrients for microbial
growth is diffused evenly into the packed filter bed
(Wambugu et al. 2017). The filtering material should have
to resist crushing and constriction of biotrickling filter pack-
ing, and also it has to enable the gas and liquid flows through
the bed to promote the growth of the microbes. Generally, the
packing media are made up of granular activated carbon, ce-
ramics, rocks, plastics, and resins (Mudliar et al. 2010).

During the development of biofilm, microorganisms are
inoculated on the surface of the synthetic bed or organic pack-
ing material where microbes occur in the liquid phase and also
grow primarily on the synthetic bed. An aqueous film
surrounded the biofilm where contaminants are primarily
absorbed by aqueous film then degraded by the biofilm as
biotrickling filter comprises a liquid flow phase; it allows us
to dispose of the by-products of decomposition, control pH,
and nutrient concentrations. Nevertheless, biotrickling filters
are great for the treatment of easily water-soluble pollutants,
yet it is inappropriate for less-soluble pollutants (Omil 2014).
The interaction between the microbes and the contaminants
takes place after the dispersion of the contaminants in the
liquid phase. Therefore, the liquid phase flow rate and the
recycling rate are known to be acute parameters for
biotrickling filter procedure.

The biotrickling filter has the benefit of having the capacity
to react with acidic degradation entities of volatile organic
compounds, acidic or alkaline compounds, and acidic odorous
gases; small operating and capital costs; and lower pressure
drop throughout continuous operation (Lebrero et al. 2012).
On account of this, when combining this advantage with its
cost-efficacy, biotrickling filter technique could be an excel-
lent choice to manage VOCs and odor emissions from various
industrial operations (Zehraoui et al. 2012). In spite of all,
there are also some constraints with BTF methods such as
complex in construction and operation, plenty of biomass ac-
cumulation, and low mass-transfer rate that may impact the
contaminant elimination efficiency of BTFs. The design,
trickling recycling rate to guarantee improved mass transfer,
nutrient enrichment, packing materials, operating conditions,
and biodegradation of pollutants by microorganisms play a
crucia l ro le dur ing biot r ickl ing f i l te r opera t ion
(Prachuabmorn and Noppaporn 2010). The degree of degra-
dation of pollutants by microorganisms may vary according to
a particular pollutant to be treated. As distinct microbes have
their own pros and cons, it becomes crucial to select an ap-
propriate microbial consortium (Wu et al. 2018). The biofilms
in biotrickling filters are generally composed of a high amount
of bacteria than fungi; thus, most of the researchers have been
the focus on the analysis of bacterial communities for their
potential (Zhao et al. 2014). Bacterial members of the genera
Pseudomonas, Bacillus, Staphylococcus, and Rhodococcus
are frequently used in the BTF system. Pseudomonas has been
recognized as the superior species of the bacterial community
in various bioreactors employed to eliminate H2S and the
number of VOCs (Giri et al. 2014; Li et al. 2014; Zheng
et al. 2016). Staphylococcus has the capacity to reduce nitrate
to nitrite whereas Bacillus can be found simultaneously under
aerobic nitrification and denitrification processes;
Rhodococcus has the capability to degrade lethal environmen-
tal contaminants comprising naphthalene, toluene, herbicides,
and other compounds (Baltrėnas et al. 2015). BTF method
plays a crucial role in the exclusive treatment of VOCs and
odorants that present in large volumes and lesser concentra-
tions (Wu et al. 2018). To the author’s knowledge, nearly all
of these studies have been focused on the elimination of
VOCs (Chen et al. 2010; Zhang et al. 2010; Lebrero et al.
2012; Yang et al . 2013), hydrogen sulfide (H2S)
(Montebello et al. 2013; Chen et al. 2014), and trimethylamine
(Schiavon et al. 2016).

In another study, four biotrickling filters have been packed
with polyurethane foam to determine the reaction amid four
aromatic compounds (xylene, toluene, benzene, and styrene).
The 90% removal efficiency is reported for distinct toluene,
styrene, and xylene (Treesubsuntorn and Thiravetyan 2018).
The complete elimination capabilities for binary, ternary, and
quaternary gases considerably lowered largely in all
biotrickling filters. Almost all samples were predominated
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either by the genus Achromobacter or Burkholderia. Samples
of biotrickling filters treating single and binary gases were
dominated by the genus Achromobacter with little
Burkholderia inside. The rest of the samples drawn from
biotrickling filters treating ternary and quaternary gases were
dominated by the genus Burkholderia with li t t le
Achromobacter detected inside. These genera were involved
in the breakdown of the benzene series in biotrickling filters
(Liao et al. 2018). Elimination performance for trichloroethy-
lene and H2S was estimated to be in the range of 50−90% and
95−98%, respectively (Vikrant et al. 2017).

Biofilm

Biofilm is a group of microbes (protozoa, fungi, algae, bacte-
ria) or biological film or a thin film of a viscous, gelatinous
complex in which microbes adhere themselves on the surface
of the packing with the help of several forces like electrostatic
properties, covalent bond formation, and hydrophobic forces.
The strength and the combination of forces are relying on
diverse environmental factors that are oxygen supply, gas
flow rate, type of microorganisms’ species and their surface
characteristics, nutrient availability, and pollutant concentra-
tion (Kumar et al. 2011; Gafri et al. 2019). The formation of
biofilm might take certain days to months depending upon the
microbe’s concentration. There are three major biological
methods that take place in the biofiltration systems; those
are (1) adherence of microbes on the surface, (2) growth of
microbes, and (3) decomposition and detachment of microbes.
In a biofilm, organics or food to the microbes is provided by
the bulk and substrate transport methods as the microbes have
adhered to the surface. The substrate is metabolized after dif-
fusion onto the outer facet of the biofilm. There are mainly
three attributes that affect the rate of substrate utilization with-
in a biofilm which are (1) transport of substrate mass to the
biofilm, (2) substrate distribution over the biofilm, and (3)
utilization kinetics of the biofilm (Durgananda et al. 2003).
Microbes attached to the biofilm decompose the organic com-
pounds in liquid biofilm, where water-soluble contaminants
dispersed into the biofilm. Microbes form slim layers upon
un-rough surfaces; each treatment process has a standard
thickness of biofilm. Biofilm thickness ranges from 10 to
10,000 mm; usually, it averages around 1000 mm
(Fulazzaky et al. 2014). The thickness of the biofilm increases
during the biofiltration operation and above particular thick-
ness, it is called active thickness (Malakar et al. 2017).
Nevertheless, the activity of the biofilm enhances with the
thickness up to a level termed the “active thicknesses” but
the entire biofilm is not active. Above this level, the distribu-
tion of nutrients becomes a limiting factor to differentiate an
“active” biofilm from an “inactive” biofilm (Kumar et al.
2011).

Aggregation of microorganisms in sessile or non-
submersed (activated sludge) atmosphere has a great benefit
of enhanced resistance towards exposure to lethal chemicals
contaminants in higher concentration, atmospheric stress en-
vironments like change in temperature, pH, and salt concen-
tration and change in environmental conditions viz. nutrients
and predation. Hence, these characteristics and stiffness of
biofilm can be exploited to come up with approaches for bio-
remediation of organic contaminants (Edwards and Kjellerup
2013). A multi-species association of Pseudomonas strains
amplifies the biofilm development in comparison with pure
cultures. During the biodegradation process, it also performs
100% and 78% elimination of phenanthrene and pyrene, re-
spectively, after 7 days of progression (Isaac et al. 2017).
Recently, in the occurrence of secondary carbon sources, for
instance, glucose, starch, sucrose, and L-arginine, biodegrada-
tion of naphthalene was made. It was deduced that the
Pseudomonas putida KD9 strain improves the biofilm devel-
opment in the presence of sucrose (0.5% wt) during the naph-
thalene degradation. It has been observed that sucrose serves
as a biostimulating agent for the breakdown of naphthalene
(Dutta et al. 2018). In another study, employing a moving bed
biofilm reactor biodegradation of polychlorinated biphenyls
(PCBs) carrying wastewater was accomplished with the elim-
ination efficiency of PCB77 in aerobic and anaerobic portions
were 73% and 84.4%, respectively (Dong et al. 2015). The
integrated approach of activated sludge and biofilm method
along with a moving bed biofilm reactor decomposes the
pharmaceuticals adequately (Gaur et al. 2018).

Consistent with these observations, it has been observed
that Zn was uniformly distributed across thin biofilms
(approx. 12 μm) but passes through less than 20 μm into
thick biofilms (approx. 350 μm) (Hu et al. 2005).
According to previous studies, the interactions amid bio-
film and heavy metals have chiefly concentrated on the
absorption of heavy metals. Many investigators have inves-
tigated the use of biofilms to eliminate heavy metals from
contaminated water owing to the capability of biofilms in
the elimination of metals from bulk liquid (Labrenz et al.
2000). Electron microscopic study of Pseudomonas
aeruginosa biofilm has been reported that it has the capa-
bility to separate heavy metals while Hg-declining
Pseudomonas putida biofilms were observed to store ele-
mental Hg on the extrinsic of the biofilms. Burkholderia
cepacia biofilms were also found to accumulate Pb
(Meliani and Bensoltane 2016).

The bacteria of the phylum Chloroflexi (Dehalococcoides,
Dehalobium chlorocoercia) can be exploited for the biodeg-
radation of halogenated hydrocarbons due to the presence of
organohalide respiration (Löffler et al. 2013). Moreover, bac-
teria of the genus Dehalococcoides have been reported to
show the reductive dechlorination of trichloroethene in a bio-
film reactor (Chung and Rittmann 2008). Selenium (Se) has
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been accumulated in biofilms on nutrients incorporating tubes
(Williams et al. 2013). As and Fe (iron) at gold-quartz mining
sites have been passively oxidized by biofilms (Edwards and
Kjellerup 2013). The packed bed bioreactor (PBBR) was
chiefly devised for the successful removal of organic and nu-
trient employing a biofilm complex. The maximum adsorp-
tion potential of Cu, Ni, and Cd ions onto activated sludge is in
the following order Cu > Ni > Cd, which was documented by
Ong et al. (2013); that is, Cu and Zn are more easily removed
than Cd and Ni (Cu > Zn > Ni > Cd). It is therefore deduced
that PBBR is capable of removing heavy metal contamination
from industrial wastewater outflows (Azizi et al. 2016).

The mixed-species biofilm has more tolerance capacity
against disinfectants, antibiotics, heavy metals, etc., than the
single-species biofilm (Golby et al. 2014; Jahid and Ha 2014).
To the writers’ knowledge (Golby et al. 2014), one of the first
observations on the impact of heavy metals on mixed bacterial
biofilm was published. Besides bacteria, the yeast biofilms
have also been studied for the efficient elimination of heavy
metal (Basak et al. 2014). The mixed-species biofilms of
Rhodotorula mucilaginosa and Escherichia coli show effi-
cient elimination of heavy metals like Cd, Zn, Ni, Cu, Pb,
and Hg from polluted environments. Basak et al. (2014) have
observed a decrease in the concentrations of the heavy metal
ions in the substrate during the removal of Zn using the
Candida rugosa and Cryptococcus laurentii biofilms (Grujić
et al. 2017).

Bioscrubber

Bioscrubber’s basic design comprises two subunits; one is a
bioreactor unit and another is an absorption unit (Rene et al.
2012). In the absorption unit, contaminated gases are convert-
ed to the gaseous phase to the dispersed aqueous phase (aero-
sol). In a column which contains a packing material, gas and
liquid phases flow cross currently. In the bioreactor present in
the aqueous phase, contaminants are aerobically degraded by
microorganisms (Schlegelmilch et al. 2005). The addition of
inert material (such as ceramic) provides a developed transfer
surface area amid the gas phase (VOCs) and the liquid phase
(VanGroenestijn and Hesselink 1993). The separated contam-
inated liquid phase is pumped to an aerated bioreactor for
agitation and the washed gas is liberated from the column.
This reactor unit contains nutrient solution (media) and the
appropriate microorganism suspended in the liquid phase
and gets nutrients from the media which is essential for their
growth and maintenance. Presently, most of the bioscrubbers
are based on the stimulated sludge principle (Delhoménie and
Heitz 2005). In some bioscrubber methods, a specific type of
degrading microbial strain is introduced into the bioreactor.
The residence time for management differs from 20 to 40 days
depending on the nature and absorption of VOCs. After com-
plete biodegradation of the pollutants, the medium of

bioreactor is filtered and a portion of the waste liquid solution
can be recycled through this process again while a part of the
sediment biomass re-introduced into the system.

Some research studies illustrate that the accumulation of
silicon oil, phthalate to the liquid solution, can expressively
improve the removal of less soluble pollutants because they
act as emulsifying agents who facilitate the VOC bulk trans-
mission from gas to liquid phases (Mortgat 2001; Artiga et al.
2005; Delhoménie and Heitz 2005). There are some advan-
tages with this process as follows: they have enough control of
the biological parameters such as pH, nutrient level, and also
good operational stability; relatively lower pressure drops
(Rho 2000); and no need for large spaces for their installation.
There are also some major limitations with bioscrubbers as
follows: adapted to treat VOC which have low Henry coeffi-
cients (< 0.01) such as alcohols and ketones (Le Cloirec and
Humeau 2013) and at low concentrations (< 5 g/m3)
(Frederickson et al. 2013). It means a narrow band of VOCs
is treatable; mass transfer areas available for gas/liquid are
quiet less (< 300 m−1); excess sludge generation; and required
two units for the treatment process (Mortgat 2001; Berenjian
et al. 2012). There are several forms of bioscrubbers designs
available to boost the performance of the VOC treatment are
as follows: sorptive-slurry bioscrubbers, anoxic bioscrubbers,
two-liquid phase bioscrubbers, airlift bioscrubbers, and spray
column bioscrubbers (Mudliar et al. 2010).

Biosorption processes

The biosorption process is based on the metal-binding capa-
bilities of biological materials. The sorption process converts
metal ions from soluble form to the solid phase which includes
a group of adsorption and precipitation reactions. Generally,
this process uses microorganisms to recover or remove heavy
metals from the aqueous phase. It is a cost-effective, eco-
friendly, efficient new emerging technology. This process
uses the physicochemical interactions between metal ions
and cellular compounds of biological species. This interaction
results in the uptake of heavy metals (Ahalya et al. 2003). It is
a metabolic independent passive process. Metals are primarily
bound to the functional groups present on the cell wall of the
biological species. These functional groupsmay comprise car-
boxyl, phosphate, hydroxyl, and amine groups (Sardrood et al.
2013). Some mechanisms which contribute to this process are
as follows: ion exchange, adsorption, electrostatic interaction,
complexation, and precipitation (Loukidou et al. 2004;
Acheampong et al. 2010; Abbas et al. 2014; Li and Yu
2014). Particularly, the cell wall organization of some specific
fungi, bacteria, and algae was found responsible for this meth-
od. The biosorption method can removematerials (metal ions)
by using inactive, non-living or living biomass (materials of
biological origin) owing to attractive forces existing amid ab-
sorbent and metal (Volesky and Holan 1995; Gadd 2010).
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Microbial cells have the ability to bind up dissolvedmetals but
the sorption affinities and capacities may differ frommicrobial
to non-microbial biomass and between the microorganisms
themselves as well (Acheampong et al. 2010). The biosorption
process comprises two phases: One is a solid phase which
may include sorbent/biosorbent/biomass/biological material
and another one is an aqueous phase which may include sol-
vent (water), which contain dissolved metal ions to be sorbet.
Microorganisms are great sources of biosorbent; for example,
algae, bacteria, fungi, and yeast (Kumar et al. 2014; Mustapha
and Halimoon 2015; Ayangbenro and Babalola 2017) possess
the metal-sequestering property and by using this method,
heavy metal ion concentration can be reduced from ppm to
ppb level in aqueous solution. It can efficiently eliminate dis-
solvedmetal ions from the contaminant solutions; thus, it is an
ideal method for the wastewater treatment as well (Chigondo
et al. 2013).

Biosorption processes for metal removal using living cells

This process comprises two important steps. In the first step,
the metal ions are adsorbed by biological systems (biosorbent)
on their surface. The bioadsorption process takes place owing
to the presence of interaction amid heavy metal and functional
groups of the biological systems. Second, metal ions are
absorbed intracellularly because of active biosorption through
the cell membrane and metal enters into the cells. This is a
metabolism-dependent process which is responsible for metal
transportation and accumulation or deposition (Abbas et al.
2014).

Biosorption processes for metal removal using dead cells

Numerous removal studies were performed on dead cells as
they are unaffected by metal toxicity, unlike live cells
(Chen et al. 2020). In this process, metal is removed mainly
by passive mode with non-living cells which means it is
independent of the energy process (Mohapatra et al.
2019). It is a simple physicochemical process that shows
resemblance with some conventional methods such as ad-
sorption or ion exchange. This process is accomplished by
the different chemical groups present on the surface of the
dead cells. The biosorption process initiates with metal up-
take on the cell surface (extracellular binding) and occurs
by the processes that include physical adsorption, ion ex-
change, van der Waals forces, complexation, or inorganic
microprecipitation (Gin et al. 2002; Kotrba 2011; Abbas
et al. 2014). Some reported metal-binding chemical groups
belong to carboxylates, amines, and imidazoles family with
cellulose (algal cell wall), chitin, and chitosan (fungal cell
wall) and teichoic acids or lipopolysaccharides (gram-pos-
itive and gram-negative bacteria, respectively) (Chen et al.
2019; Hansda et al. 2016). The biosorption capability of

dead cells may be less, equivalent, or greater than that of
living cells (Gallardo-Rodríguez et al. 2019). Therefore, it
is a metabolism-independent process. It rapidly removes
metal by anyone or a group of metal-binding mechanisms,
for instance, ion exchange, adsorption, physical, and com-
plexation (Gin et al. 2002; Kotrba 2011; Abbas et al. 2014).

Phytoremediation technologies

Plants have been used to eliminate pollutants from the sur-
rounding dates for 300 years. Baumann (1885) first ever re-
ported bioaccumulation of heavy metals by the plant species
Thlaspi caerulescens and Viola calaminaria at the end of the
nineteenth century. Later, the term “phytoremediation” was
introduced in the earlier 1990s (Shackira and Puthur 2019).
Phytoremediation employed plants and cooperating soil mi-
crobes. Moreover, in situ or ex situ methods are used to elim-
inate or reduce pollutants in distinct environmental forms like
air, soil, and water. In which in situ phytoremediation is most
frequently used as it can manage the interference of soil and
atmosphere and it also helps in lowering the expansion of
pollution through airborne and waterborne wastes (Kumar
and Gunasundari 2018). Phytoremediation can be used to deal
with nearly all types of pollutants, radionuclides (Dubchak
and Bondar 2019), toxic metals (Xiao et al. 2019), and recal-
citrant organic contaminants (Cameselle and Gouveia 2019)
such as organophosphate insecticides, sulfonated aromatics,
nitroaromatics and explosives, chlorinated pesticides, polynu-
clear aromatic hydrocarbons, polychlorinated biphenyls petro-
leum hydrocarbons, phenolics, and chlorinated solvents (Wu
et al. 2012). Phytoremediation is a rising branch of
biofiltration science that utilizes several plants for the degra-
dation, extraction, accumulation, or immobilization pollutants
from soil and water. Later, this technique has been recognized
as an innovative, cost-effective unconventional treatment
method. Figure 3 provides the schematic representation of
the phytoremediation of heavy metals and VOCs. This meth-
od is usually depending exclusively on the use of microbes
which is complementary to conventional bioremediation
methods (Abhilash et al. 2009; Thijs et al. 2017). Plants have
been efficiently employed not only for soil remediation but
also to treat polluted air, industrial, and municipal wastewaters
(Zurita et al. 2009).

Phytoremediation for heavy metals removal

Plant species that have a capacity to absorb and store the
pollutants in the plant tissues like roots, aerial parts, or shoots
can be employed for the phytoremediation of metals in soils.
During the process of phytoremediation, it is important to use
hyperaccumulator plant species that has the capability to ac-
cumulate an elevated amount of concentrations of heavy
metals a hundred times higher than non-hyperaccumulator
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plants with no considerable adverse effect on their growth and
development. Hyperaccumulators have greatly pronounced
metal removal mechanisms and, occasionally, higher internal
needs for specific metals, andmobilized and solubilized heavy
metals and converts into low-soluble forms than the non-
hyperaccumulating plant species (Rascio and Navari-Izzo
2011; Hesami et al. 2018).

Nevertheless, their efficacy also relies upon the kind of
heavy metal. Different metals have different types of activity
andmobility within plant tissues such as Cd, Ni, and Znwhich
are more readily translocated to the aboveground plant parts,
whereby Pb, Cr, and Cu immobilized and translocated in the
root system (Pulford and Watson 2003; Xu et al. 2019). After
uptake of metals by the plant, metals commonly accumulated
in vacuoles where they are attached to organic acids or tend to
bind to cell wall constitutes or to sulfur ligands in the cytosol
(Callahan et al. 2006). In addition to this, it may also form
precipitates with carbonate, phosphate, or sulfate and accumu-
lates within intracellular or extracellular spaces of cells
(Chirakkara et al. 2016).

Phytoremediation of VOC removal

Phytoremediation of volatile organic compounds is principal
element of the environment, chiefly as the precursor of
ground-level ozone and secondary organic aerosols. Hydroxyl
radicals serve as the superior VOC sink; at the same time,
volatile organic compounds may also nucleate to very fine par-
ticulates through the moderate procedure of oxidation (Singh
et al. 2017). Various plants liberate VOCs into the environment;
hence, only those plants should be selected for
phytoremediation, which have low VOC-emitting capacity.
Various plant species have been identified to have the capability
to eliminate VOCs from the air (Teiri et al. 2018). The elimi-
nation of VOCs comprises the incorporation of direct and indi-
rect methods, which may be obtained either by growing medi-
um, leaves, shoot system, root system, or by microbes existing
in the rhizosphere. Both stomata and cuticles play a vital role
during the removal process of VOC. The stomatal uptake of
VOCs is predominantly depended upon types of VOCs.
Benzene passes readily through the cuticle whereas formalde-
hyde passesmore readily through stomatal apertures (Cruz et al.

Fig. 3 Schematic representation of phytoremediation of heavy metals and VOCs
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2014). After entering into the plant body, VOCs undergo break-
down, accumulation, or excretion either at the place of penetra-
tion or after translocation to vacuoles of the cell. Certain volatile
organic compounds, like xylene, toluene, and formaldehyde,
are occupied by plants leaves and are eventually transferred to
the root system where microbes are capable to digest them.
Ornamental plants are reported as an efficient system for de-
composition of volatile organic compounds and as well as low-
er the volatile organic compound concentration for indoor at-
mosphere (Kim et al. 2010). Volatile organic compounds are
one of the most indoor air pollutants and there are so many
predominant sources within the indoor environment with high
concentrations than outdoor conditions. The most often volatile
organic compounds are ethyl-benzene, formaldehyde, naphtha-
lene, benzene, toluene, xylene, and polycyclic aromatic hydro-
carbons (PAHs) including tr ichloroethylene and
benzo[α]pyrene. Hanging pot plants also help in lowering the
carbonyl concentration in the indoor atmosphere (Pegas et al.
2012). Other researches have been recommended that
Spathiphyllum and Dracaena deremensis successfully elimi-
nate toluene, even though Dracaena marginata ,
D. deremensis, Spathiphyllum floribundum “Petite”,
S. floribundum “Sensation,” and Schefflera actinophylla
“Amate” were identified to be beneficial for the elimination of
benzene (Orwell et al. 2006). Moreover, D. marginata,
S. floribundum, and D. deremensis have been employed to
eliminate xylene and ethylbenzene from indoor air (Wood
et al. 2006). In addition to this, the greater removal capacity
has been investigated in Chrysanthemum morifolium and
Calathea rotundifolia cv. “Fasciata” out of 94 studied potted
plant species for the removal of benzene and toluene (Yang and
Liu 2011). Some plants have been identified to lower the form-
aldehyde concentration in the range of 47–70% than the con-
trolled atmosphere. Some plants such as Chlorophytum
comosum L. consume formaldehyde as a carbon and energy
resource. Industrial, traffic, and commercial activities are the
prime sources of outdoor pollutants as they liberate the number
of air contaminants. Later these contaminants, either through
primary conversion or gas-to-particle conversion, might react
with plant bodies and their microbiomes where they have the
capabilities to alter the future of pollutants (Agarwal et al.
2019) . There are dis t inc t methods used for the
phytoremediation of heavy metal and VOCs like
phytoextraction, phytodegradation, rhizofiltration,
phy to t r an s fo rma t i on , phy tovo l a t i l i z a t i on , and
phytostabilization.

Phytoaccumulation or phytoextraction

Phytoextraction is the process acquired by the plants to store
contaminants into their aboveground plant parts like shoots or
leaves and the root system. It comprises the absorption, trans-
location, and accumulation of heavy metals by the

aboveground and belowground plant parts along with other
nutrients. In this direction, plants are capable of storage of
heavy metals. These plants are grown in contaminated places
where heavy metal accumulated aboveground plant parts are
collected for the elimination of traces of the heavy metal.
Phytoextraction is also defined as phytoabsorption,
phytoaccumulation, or phytosequestration. Contradictory to
the degradation procedures, this method generates a chunk
of plants and pollutants that can be transferred for discarding
or reprocessing (Sharma 2012). The benefits of the
phytoextraction are high tolerance to heavy metals, excessive
biomass, rapid growth rate, and great root system (Suman
et al. 2018). There are two methods that have been recognized
for the phytoextraction based upon the plant properties. The
first method is the utilization of natural hyperaccumulator
plants that have a greater capacity to store heavy metals.
These hyperaccumulators are successfully accumulating
many of the heavy metal that is 10–500 times higher than
ordinary plants (Chibuike and Obiora 2014). However, in
the second method, chelates or soil amendments are used with
the high-biomass plant to boost the capability to store heavy
metals from the atmosphere. Few plants have the capabilities
for the storage of more heavy metals than one in the same
respective plant such as the hyperaccumulation of Zn and
Cd by Sedum alfredii. Frequently available plants for the
hyperaccumulation of metals are Haumaniastrum robertii
(Co), Aeollanthus subacaulis (Cu), Lecythis ollaria (Se),
Agrostis tenuis (Pd), Streptanthus polygaloides (Ni),
Maytenus bureaviana (Mn), Pteris vi t tata (As) ,
Thlaspitatrense, Thlaspi caerulescens (Zn), etc. Nonetheless,
the phytoextraction method also has some constraints such as
the utilization of hyperaccumulators which include the possi-
bility of polluting the food chain. In spite of such limitation,
the hyperaccumulators of metal of the family Brassicaceae
have more amounts of thiocyanates that make them unappe-
tizing to animals, and therefore, these plants can reduce the
chances of availability of metal ions in the food chain.

Phytostabilization

This process is relying upon the immobilization of metal ions
in the soil by the plant rather than their degradation. Leachable
components are uptaken by the plants. These components are
attached to the plant structures so that they build a solid mass
of plants that taper of the bioavailability of heavy metals in the
surroundings through erosion and infiltration from which the
pollutants will not turn back into the environment.
Phytostabilization of heavy metals using plants can be accom-
plished through precipitation, absorption, and metal valence
reduction. This phytostabilization is more advantageous for
the rapid immobilization of heavy metal from soil and ground-
water, although the entire elimination of heavy metals from
the environment is not unachievable (Kumar and Gunasundari
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2018). Phytostabilization is an unsophisticated, economical
process that employs plants to restrict the movement of toxic
metal contaminants within the root tissues and in the rhizo-
sphere. In spite of the physical elimination of the pollutants,
this process involves the deactivation and immobilization of
the contaminants, consequently ceasing the further transfer of
contaminants to the same food chain. The microbial commu-
nity that has been associated with roots and rhizospheric re-
gions of plants engaged in performing many functions such as
recycling of nutrients, detoxification of toxic pollutants, and
sustainment of soil. It has been studied that bacteria namely
Sphingomonas macrogoltabidus , Microbacterium
liquefaciens, Microbacterium arabinogalactanolyticum, and
Alyssum murale upon incorporation into the soil promote the
phytostabilization by reducing the pH of the soil, thereby re-
markably enhancing the phytoavailability of heavy metals to-
gether with Ni too (Shackira and Puthur 2019) .
Phytostabilization is a highly appropriate approach for the
immobilization of the noxious pollutants in a heavily contam-
inated site. It abruptly stops the movement of potentially
harmful pollutants by acting as a strong barrier for the filtra-
tion of water within the soil; thus, contaminants remain in the
soil (Ali et al. 2020). It has been proved that it is truly efficient
in the rapid immobilization for the preservation of ground and
surface waters; also it is a pertinent process for the removal of
Cd, Cu, As, Zn, and Cr (Ekta and Modi 2018).

Rhizodegradation: phytoremediation using root system

This method comprises the degradation of pollutants. The
specific activity in the rhizospheric region is responsible for
the breakdown of contaminants which is present in the plant-
and microbe-derived proteins and enzymes. Rhizodegradation
is an outcome of the symbiotic association between plants and
microbes. Rhizofiltration is a type of phytoremediation, which
is used to purify extracted water with a lower concentration of
pollutants by using root system. It can also be termed as
phytostimulation as degradation of pollutants being stimulated
by rhizospheric microflora (Lee et al. 2020). This method can
be used for other metals like Cd, Cu, Pb, Zn, Ni, and Cr that
are voluminously accumulated into the roots. Sunflowers, rye,
tobacco, corn, Indian mustard, spinach, and pulse are broadly
used for the elimination of Pb from water or soil (Luciano
et al. 2013). Basically, both terrestrial and aquatic plants en-
gaged in the rhizofiltration for in situ or ex situ purposes. The
bigger disadvantage of this method is the pH settlement re-
quired for a regular time span (Pinto et al. 2016).

Phytovolatilization

In this method, plants absorbed water and carried organic
contaminants from the soil. These organic contaminants are
transformed into volatile components after being dispersed

into the aboveground plant parts. Hence, the degraded volatile
compounds were released into the environment via aerial parts
of the plant (Lee et al. 2020). Later, these organic pollutants
are transformed into volatile skeletons and are liberated into
the air through their leaves. The phytovolatilization can be
employed for the elimination of organic contaminants as well
as some heavy metals such as Se and Hg. This method could
not completely eliminate contaminants. It only transformed
the lethal form of contaminants into the least toxic form. The
limitation of this method is the productions of additional prod-
ucts that may re-accumulate into the water bodies. For this
process, genetically modified plants are predominantly used
for the absorption of pollutants; particularly, Brassica juncea
and Brassica napus have been employed for the
phytovolatilization of Hg and Se from soil (Chibuike and
Obiora 2014). Since, Hg and Se are considered most conve-
nient to be remediated through phytovolatilization, it has been
reported that Indian mustard and canola are very helpful in the
phytovolatilization of Se (Ali et al. 2020). Mercury is the
foremost metal contaminant that has been phytoremediated
by using phytovolatilization process together with trichloro-
ethene and volatile inorganic chemicals like Se and As (Bisht
et al. 2020). This method extremely relies upon the physical
state of the pollutant itself and the availability of the contam-
inant in rhizosphere of the plant to be absorbed by the roots
(Gupta et al. 2020).

Conclusions

This review gives a thumbnail sketch of the biological-based
methods for the elimination of VOCs and heavy metal from
water wastes. Throughout the last few decenniums, tremen-
dous heed has been paid to control the environmental pollu-
tion that is attributed to the excessive amounts of lethal heavy
metals and VOCs. Here, we emphasize that upcoming en-
deavors are required to explicate methods for the decontami-
nation of heavy metals and volatile organic compounds from
the environment which is becoming very much necessary for
the maintenance of a healthy and safe environment.
Nevertheless, physical-chemical methods are often used for
the same purposes; biological processes namely biosorption/
bioaccumulation, biofilters, phytoremediation, and
bioscrubber seem to be a promising alternative method from
the perspective of pollutant removal efficiency, costs, technol-
ogy requirement, environmental impacts, and energy efficien-
cy. Although, all the above methods can be employed for the
management of heavy metal and VOCs, it is pivotal to declare
that the adoption of the most suitable treatment techniques
relies upon the initial contaminant concentration, capital in-
vestment and operational cost, the component of the wastewa-
ter, environmental impact, utility of the treated water, etc.
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