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Abstract
Herein, Co3O4/CeO2 nanocomposite was synthesized by the modified Pechini method. Citric, maleic, succinic, and trimsic acids
were used as a stabilizer, and the variation affected the morphology and size of the synthesized nanocomposites. Subsequently,
the formation of Co3O4/CeO2 nanocomposites was confirmed by various analyses. Furthermore, the particles were considered for
size and morphology by SEM and HRTEM analyses, and the sample that used trimsic acid as the stabilizer was designated as the
goal sample to continue the route. The optimum sample was used to investigate the photocatalytic properties of the synthesized
nanocomposite. The UV-light photocatalyst test was performed in neutral, alkaline, and acidic states against two aqueous
solutions containing color contamination of methylene blue and erythrosine B dyes. The results showed decolorization at 85%
for methylene blue and 90% for erythrosine B over 120 min test time.
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Introduction

Environmental pollution by various factors has involved much
notice in recent decades and the pollution of aquatic environ-
ments due to the importance of water to humans has caused great
concern in different societies (Khan and Malik 2019; Wutich
2019). Due to the importance of sanitizing water from the sub-
stances that cause it unhealthy, many researchers have attracted
the attention of researchers to remove these contaminants in
rapid and inexpensive methods (Fernández et al. 2016; Kumar
Reddy and Lee 2012; Pradeep 2009; Qin et al. 2019). Nano-
sized materials, as a new group of materials that have been used
extensively in the past decades due to their unique properties, are
among thematerials that are of interest to researchers working on
water treatment (Ghasali et al. 2020; Karimi-Maleh et al. 2020a;
Karimi-Maleh et al. 2020b; Orooji et al. 2019a, 2019b, 2019c;
Santhosh et al. 2019; Sisi et al. 2020; Wang 2019; Arefi-Oskoui

et al. 2019). The photocatalytic process on semiconductors ma-
terials is one of the paths that researchers take to remove organic
compounds and some other water contaminants by
nanomaterials (Belver et al. 2019; Ghasemi et al. 2020; Rad
et al. 2020; Zhang et al. 2019). Metal oxide nanocomposites
have semiconductor properties. These materials are among the
most commonly used materials for the photocatalytic process
(Alem et al. 2020; Boruah et al. 2019; Kumar and Rao 2017).

Recently, mix metal oxides due to their mix properties have
received a lot of attention and researches have shown that
when two or more metal oxides are put together, the features
that appear are either complementary to the effects of each
metal oxide or, in some cases, reduce some of the individual
properties of metal oxide, which is useful in any way to attain
the desired goals (Fuku et al. 2018; Hassanpour et al. 2017b;
Karthik et al. 2018; Mousavi et al. 2018; Orooji et al. 2020; Qi
et al. 2015; Reddy et al. 2018; Zhao et al. 2018; Zhu et al.
2012). For instance, Guo et al. (2015) who prepared multi-
layer hollow CuO@NiO spheres for storage goal, which is
due to its structural characteristics, showed a large higher-
than-theoretical capacity that is very excellent among various
NiO or CuO electrode structures. Singh et al. (2013) synthe-
sized porous ZnO embeddedwith Fe3O4 nanoparticles to form
Fe3O4–ZnO magnetic semiconductor nanocomposites; they
recorded that prepared nanocomposites have much better
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attractive features for the purification of wastewater as com-
pared with individual oxides.Wei et al. (2019) synthesized the
broccoli-like SrTiO3–TiO2 heterogeneous hollow multi-
shelled structures. They reported that, in addition to the special
role of morphology in light absorption property of catalysts,
the structure of the SrTiO3–TiO2 junctions enhanced the sep-
aration performance of the photogenerated charge carriers.

Among the nano-scale metal oxides, transition metal oxides
are one of the most widely used materials, and one of these well-
knownmetal oxides is Co3O4.Many uses have been reported for
cobalt oxides, such as catalyst (Dong et al. 2007), supercapacitors
(Vijayakumar et al. 2013; Orooji et al. 2019a, 2019b, 2019c),
anodes for lithium-ion batteries (Wang et al. 2015), gas sensors
(Li et al. 2005), magnetic materials (Makhlouf 2002), and
photocatalyst (Hassanpour et al. 2017a; Soofivand and
Salavati-Niasari 2015; Warang et al. 2013). On the other hand,
CeO2 is one of the well-known rare-earth oxides that have inter-
esting applications in sensors (Fu et al. 2007), catalysts (Li et al.
2019), anti-bacterial (Kannan and Sundrarajan 2014), and
photocatalyst (Hassanpour et al. 2018; Liyanage et al. 2014; Qi
et al. 2014; Zhai et al. 2007; Hassandoost et al. 2019). For both of
these oxides, there are many reports of their combination with
other metal oxides in the literature. For example, Li and Yan
(2009) prepared CeO2–Bi2O3 with a hydrothermal approach
and used the obtained microstructures for photocatalytic
degradation of RhB. They concluded that when two metal
oxides are combined, the photocatalytic activity increased than
when they are used separately. Fiorenza et al. (2018) synthesized
macro-mesoporous TiO2-CeO2 and examined its photocatalytic
activity, revealing that when the amount of the CeO2 was low,
the photocatalytic activity increased. Wang et al. synthesized the
hollowmultishelled structure of Co3O4–CeO2–x nanocomposites
for CO catalytic oxidation. The specific morphology of this
nanocomposite greatly influenced the creation of active sites to
advance the catalytic process (Wang et al. 2019). Because of the
amazing results stated, the synthesis of binary metal oxides
attracted our attention.

In this work, for the first one, Co3O4/CeO2 nanocomposites
were synthesized by an informal modified Pechini method
using carboxylic acid as a stabilizer and a diol as a polymer-
ization agent. After testing the effect of the type of carboxylic
acid on size and morphology, the optimal sample was used for
the decolorization of water pollutants in photocatalyst tests.
The impure water included methylene blue (MB) and eryth-
rosine (ET) colors.

Experimental

Materials and method

Ce(NO3)3.6H2O, Co(NO3)2.6H2O, propylene glycol (PG),
and liquor ammonia solution containing 25% NH3 and

citric, maleic, succinic, and trimesic acids were purchased
from Merck, and all the chemicals were used as received
without further purifications. The XRD patterns were re-
corded by a Philips X-ray diffractometer using Ni-filtered
CuKα radiation. Fourier transform infrared (FTIR) spectra
were detected by means of Nicolet Magna-550 spectrome-
ter in KBr pellets. The UV–vis diffuse reflectance analysis
of the as-prepared Co3O4/CeO2 nanocomposites was done
by applying a UV–vis spectrophotometer (Shimadzu, UV-
2550, Japan). SEM images were obtained using a TESCAN
instrument model Mira3 to take images, and the samples
were coated by a very thin layer of Pt to make the sample
surface conductor and prevent charge accumulation,
obtaining a better contrast. Transmission electron microsco-
py (TEM) image was achieved via a Philips EM208 trans-
mission electron microscope with an accelerating voltage of
200 kV. GC-2550TG (Teif Gostar Faraz Company, Iran)
was used for all chemical analyses. The Brunauer–Emmett–
Teller method (BET) was used to determine the specific
surface areas of the catalysts. The measurements were car-
ried out with a Belsorp mini II device at the boiling tem-
perature of liquid nitrogen (− 196 °C). Pore size distribu-
tion was calculated by using the desorption branch of the
isotherm by the Barrett, Joyner, and Halenda (BJH) meth-
od. Magnetic properties were measured using a vibrating
sample magnetometer 60 (VSM, Meghnatis Kavir Kashan
Co., Kashan, Iran).

Synthesis of Co3O4/CeO2 nanocomposites

For synthesis of Co3O4/CeO2 nanocomposites in a modi-
fied Pechini method, 0.001 mol of each Ce(NO3)3.6H2O
and Co(NO3)2.6H2O was dissolved in distilled water. After
that, 0.002 mol of carboxylic acid was added into the pre-
vious solution. Also, by adding NH3, the pH of the solution
was arranged to 6. Then, 0.012 mol of PG as a polymeri-
zation agent was added to the mixture solution. The ob-
tained solution at a constant temperature, stirred until the
resultant gel-like solution becomes solid sediment, was
evaporated. After that, to gain Co3O4/CeO2 nanocompos-
ites, the solid sediment was calcined at 700 °C for 4 h. The
effects of different stabilizing agents, on the size and mor-
phology of the Co3O4/CeO2 nanocomposites, were stud-
ied. Figure 1 illustrates the schematic of the synthesis route
briefly.

Preparation of photocatalytic test

The photocatalytic activity of the Co3O4/CeO2 nanocom-
posites was applied by controlling the decolorization of
dye in aqueous solution, under irradiation with UV light.
Photocatalytic decolorization was performed with a 5 ppm
solution of dyes and 0.05 g of nanocomposites. Then, the
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solution was placed in a photoreactor under UV light and
stirred for 20 min at dark to ensure the appropriate
adsorption-desorption equilibrium of the dye molecules
on the surface of the nanostructures required to perform
as an effective photocatalyst. To maintain the solution's
saturated oxygen throughout the reaction, the air was
blown into the container via a pump. Then, Co3O4/CeO2

was separated from the 5 ml samples, taken from the
degraded solution at various time intervals, using 5 min
centrifuging at 12,000 rpm. The dye concentration was
determined by employing a UV–vis spectrophotometer.
Two colors, including methylene blue (MB) and erythro-
sine (ET), were used for testing the Co3O4/CeO2 nano-
composite photocatalyst activity.

Result and discussion

One of the tools for the crystallographic recognition of syn-
thetic bulk, nano, and a thin film is XRD (Sharma et al. 2012).
Figure 2 presented the XRD pattern of the Co3O4/CeO2 nano-
composites prepared with trimesic acid as stabilizer after cal-
cination at 700 °C for 4 h. Its appearance verifies the presence
of both cubic phases of CeO2 (JCPDS No. 34-0394, space
group: Fm-3m) and Co3O4 (JCPDS No. 43-1003, space
group: Fd3m). Also, there are no impurities detected in the
pattern. Crystalline sizes are computed from Scherrer equa-
tion, Dc = Kλ/βCosθ, where β is the width of the observed
diffraction peak at its half maximum intensity (FWHM), K is
the shape factor, which takes a value of about 0.9, and λ is the

Fig. 1 Schematic of Co3O4/CeO2

nanocomposite synthesis route

Fig. 2 XRD pattern of Co3O4/
CeO2 nanocomposite after
calcination at 700 °C for 4 h
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X-ray wavelength (CuKα radiation, equals to 0.154 nm)
(Sharma et al. 2012); the average crystalline sizes gained were
about 20 nm for the Co3O4/CeO2 nanocomposites.

For complete assurance, EDS analysis was used to cor-
roborate the attendance of the desired elements in the
resulting nanocomposites. The result, as shown in Fig. 3,

confirms the presence of cobalt, cerium, and oxygen ele-
ments. Subsequently, the EDS mapping analysis was op-
erated to illustrate how the elements are located through-
out the nanocomposites. As shown in Fig. 4, the elements
of cobalt, cerium, and oxygen were distributed uniformly.
Also, considering the distribution of the nanoparticles side

Fig. 3 EDS spectra of Co3O4/
CeO2 nanocomposite

Fig. 4 Mapping analysis of
Co3O4/CeO2 nanocomposite
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Fig. 5 FT-IR spectra of Co3O4/
CeO2 nanocomposite after
calcination at 700 °C for 4 h

Fig. 6 SEM images of Co3O4/CeO2 nanocomposite: (a) citric and (b) maleic acids
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Fig. 7 SEM images of Co3O4/CeO2 nanocomposite: (a) succinic and (b) trimesic

Fig. 8 Particle size distribution
plot when trimesic is used as a
stabilizer
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by side can help in interpreting the photocatalytic proper-
ties of this nanocomposite.

The FT-IR spectrum of the as-synthesized Co3O4/CeO2

nanocomposites is illustrated in Fig. 5. The absorption peaks
at 3433 and 1633 cm−1 related to the stretching and bending
vibrational absorptions of O-H (Gharahshiran et al. 2020).
The peaks at 574 and 664 cm−1 corresponded to the stretching
vibration of Co2+-O and Co3+-O, respectively (Hassanpour
et al. 2017a; Salavati-Niasari et al. 2009), and a short peak
around 410 cm−1 attributed to Ce-O (Panahi-Kalamuei et al.
2015; Ho et al. 2020).

For observation of the morphology, dispersed and agglom-
erated, and surface functionalization of materials in nano-
scale, SEM images are suitable (Drouin et al. 2006). For
studying the effects of carboxylic acid on the morphology of
the synthesized nanocomposites, four carboxylic acids as

stabilizers were used. Figure 6 illustrated the SEM images of
Co3O4/CeO2 nanocomposites that used (a) citric and (b) ma-
leic acids as stabilizers. As can be seen, when citric and maleic
are used, the nanoparticles because of their high activity
showed agglomeration after calcination, but the maleic one
is more uniform than when citric acid was used. The SEM
images obtained from samples that used succinic and trimesic
are illustrated in Fig. 7.When succinic acid was used (Fig. 7a),
agglomeration occurred and the formed nanoparticles stick
together. The composites synthesized with trimesic acid show
mono-dispersed and spherical shape (Fig. 7b). Study of the
distribution of particle size for nanocomposites synthesized
with trimesic acid as the stabilizer is shown in Fig. 8. The
highest percentage is related to particles with 30 to 40 nm in
size. Also, the average size of the nanoparticles was about 35
nm. TEM images of an optimum sample that used trimesic as

Fig. 9 (a)–(c) TEM images in different magnification and (d) HRTEM of Co3O4/CeO2 nanocomposite that used trimesic acid as stabilizer
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the stabilizer were taken to qualify the exact morphology and
particle size of the synthesized nanocomposites. As shown in
Fig. 9a–c, it is obvious that the morphology of the product is a
particle. The average particle size of the TEM image is calcu-
lated at 30 nm. A high-resolution TEM image of the Co3O4/
CeO2 nanocomposites is exhibited in Fig. 9d. The crystalline
planes were recognized by the parallel lines indicating the
high degree of crystallinity of the nanocomposites. The lattice
fringes are clearly shown with spacing fringes of 2.61 and
3.16 Å, which matched well with the crystal planes (311)
and (111) of Co3O4 and cubic CeO2 crystals, respectively.

One of the properties of nanomaterials that can be valuable in
the study of photocatalytic virtues is its magnetic property (Wu
et al. 2016), which is understood by VSM analysis. The mag-
netization evaluations as a function of the magnetic field are
studied at 300 K and shown in Fig. 10. As is clear from the plot,
Co3O4/CeO2 nanocomposites have superparamagnetic proper-
ties. According to the graph obtained from the VMS analysis,
nanocomposites have a saturation magnetization of 0.45 emu/g
and a coercivity very close to zero. The lack of hysteresis loops
has substantially confirmed the small size of the synthesized
particles. The magnetic properties of nanocomposites for the
recovery of nanoparticles from the photocatalyst test environ-
ment at the end of the work are of great interest.

The BET method is a standard tool to measure the surface
area and pore volume of as-prepared samples from nitrogen
adsorption isotherms measured at 77 K. Figure 11a and b
shows the adsorption/desorption isotherms and BJH plots of
Co3O4/CeO2 nanocomposites, respectively. As is clear from
the figure, the type III isotherm with a type H3 hysteresis loop
for the nanocomposites was obtained from the BET method.
Due to the type of isotherm and the hysteresis loop, funnel-

shaped cavities for these nanocomposites are probable
(Ghiyasiyan-Arani and Salavati-Niasari 2018; Leofanti et al.
1998; Mobini et al. 2018). The specific surface areas, total
pore volumes, and mean pore diameters obtained from the
BET were 26.818 (m2 g−1), 0.1939 (cm3 g−1), and 28.927
(nm), respectively. The data obtained from the BET analysis
confirm that the increase in the percentage of decolorization
after the photocatalytic process is not due to the physical ab-
sorption of the dye onto the nanoparticles.

Diffuse reflectance spectra (DRS) of Co3O4/CeO2 nano-
composites in Fig. 12 show the optical absorption capability
in the region from 200 to 800 nm. The optical energy bandgap
of the nanocomposites was defined using the following rela-
tion (Hassanpour et al. 2017c):

αhνð Þ ¼ C hν−Egð Þ1=2 ð1Þ

For CeO2, the bandgap on 2.72 (Fiorenza et al. 2018), 3.57
(Maensiri et al. 2007), and 3.35 eV (Sangsefidi and Salavati-
Niasari 2017) and for Co3O4 1.53 and 2.02 eV (Salavati-
Niasari and Khansari 2014) and 2 and 3.2 eV (Soofivand
and Salavati-Niasari 2015) are reported in the literature. For
this nanocomposite, two band gaps estimated for Co3O4 were
2.9 and 3.5 eV and the bandgap estimated for CeO2 was 3.9
eV. The calculated band gap reveals that prepared nanocom-
posites can be used as a good catalyst in the photocatalytic
process. To investigate the photocatalytic activity of synthe-
sized nanocomposites, the decolorization of MB and ET in
aqueous solution under UV irradiation was done. The absorp-
tion of samples is studied in the maximumwavelength obtain-
ed by the UV–vis of prepared colors, which is shown in Fig.
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13. Obtained lambda max for MB and ET was 620 and 484
nm, respectively. Figure 14 reveals that the prepared nano-
composites catalyze processes effectively. When pollutants
are exposed to prepared Co3O4/CeO2 nanocomposites and
UV light, decreasing of pollutant concentration begins. The
photocatalytic efficiency is calculated by the following equa-
tion (Moshtaghi et al. 2016):

Decolorization (%) = (C0 − Ct / C0) × 100(2)
Where C0 (mg L−1) is the initial concentration of colors in

solution and Ct (mg L−1) is the concentration of colors at any
irradiation time (min). The probable mechanism for the
photocatalyst test in a water solution is as follows:

Nanocompositesþ hν⟶Nanocomposites* þ e− þ hþ

hþ þ H2O→Hþ þ OH:

e− þ O2→O−:
2

Color solutionþ OH: þ O−:
2 →Decolorization solution

Electron-cavity pairs (e− and h+) are formed after colliding
light to nanocomposites, and the size of nanocomposite
bandgap has a direct influence on its recombination rate;
whenever the recombination rate is higher, there will be a
possibility of increased photocatalytic activity (Wang et al.
2007; Wang et al. 2005). When each of these metal oxides
is used alone, due to their bandgap, the rate of formation and
recombination of the electron cavity has a specific duration.
However, when two metal oxides come together after the
electron cavity formation, the time of recombination alters.
The reason for this change is the migration of electrons from
the metal oxide conduction band with the lower bandgap to
the metal oxide conduction band with higher band gap; there-
fore, the recombination time increases. As mentioned previ-
ously, the rate of decolorization increases with the increased
recombination time and increased production of free radicals

Fig. 11 (a) N2 adsorption/
desorption isotherms and (b) BJH
pore size distributions of Co3O4/
CeO2 nanocomposite
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in the aquatic environment (Magdalane et al. 2017;
Sohrabnezhad and Rajabi 2018). The photocatalytic activity
was measured in neutral pH, acidic, alkaline, with and without
UV irradiation for a period of 120 min. When there is no
irradiation, decolorization is very low for both neutral acidic
and alkaline solutions. The low percentage of decolorization
indicates color absorption on the surface of the catalyst. In
neutral pH, percentages of decolorization were obtained about
51 and 52% decolorization for MB and ET, respectively. For
better color interaction with the catalyst in the solution that
containedMB as cationic color (Fil et al. 2012), ammonia was
used to adjust its pH to 8, and the decolorization achieved was
85%; on the other hand, for ET as anionic color (Ritthidej and
Phaechamud 2003), nitric acid was used to adjust pH to 6, and
the result was 90% decolorization for it. There is a raise in the

percentage of decolorization of dye after adding an acidic or
alkaline agent to the media; when a cationic color that has a
positive charge on its surface is used, it causes a negative
charge on the surface of the catalyst, leading to better contact
of color and catalyst, continuously increasing the decoloriza-
tion percentage. On the basis of this, for anionic color, the
process exactly reverses (Shojaei et al. 2013). To compare
the results of the photocatalytic test performed, a report of
the photocatalytic test results for CeO2 and Co3O4 separately
is provided. In literature, photocatalytic test results for CeO2

against color solutions containing acridine orange showed
about 45% (Khan et al. 2013), amido black about 45%
(Khan et al. 2011), and trypan blue about 90% (Ravishankar
et al. 2015). Also, for Co3O4 color removal in an aqueous
solution containing rhodamine B about 70% (Huang et al.
2018), methyl orange about 60% (Chen et al. 2009), and
methylene blue about 80% (Warang et al. 2013) have been
reported.

For both dyes at optimal pH conditions and at 90min, three
different amounts of Co3O4/CeO2 nanocomposites were used
for photocatalyst testing. As shown in Fig. 15a and b, in the
first step, a significant increase is observed with increasing
catalyst content in the medium. But as the process progressed,
the gradient of the decolorization increase was mild, with a
slight difference in the decolorization rate. This indicates that
the catalyst content in each photocatalyst test has an optimum
value that must be considered to increase the efficiency of the
photocatalyst process (Nam et al. 2002).

To examine the effect of dye concentration on the
photocatalyst activity of Co3O4/CeO2 nanocomposites, the

Fig. 12 Diffuse reflectance
spectra (DRS) of Co3O4/CeO2

nanocomposite

Fig. 13 UV–Vis analysis of as-prepared colors for photocatalyst test: (a)
MB and (b) ET
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test was performed at four different concentrations under op-
timum pH conditions and at 90 min, as illustrated in Fig. 15c
and d. As the concentration of the dye used increases, the
decolorization by the nanocomposite decreases.What is likely
due to this event is that the decrease in light penetration with
increasing color concentration causes less light to reach the
catalyst to perform the photocatalytic process, thus reducing
the amount of photocatalytic activity and decolorization
(Kiriakidou et al. 1999).

In addition to the nanocomposite decolorization rate, other
points to be noted for their photocatalytic properties are their
stability and ability for repeating similar processes. To inves-
tigate the stability and repeatability of the photocatalytic ac-
tivity of Co3O4/CeO2 nanocomposites, the photocatalytic pro-
cess for both dyes was optimized in four cycles under opti-
mum pH conditions. After each step of the photocatalyst test,

the nanoparticles were recycled and used for the next cycle.
As shown in Fig. 16, the nanocomposites had proper stability
and repeatability over four consecutive cycles, but the changes
observed in the fourth cycle were not significant compared
with the first cycle.

Conclusion

As a result, Co3O4/CeO2 nanocomposites were synthesized via a
simple modified Pechini method. For the synthesis, four carbox-
ylic acids were used, and their effects on the morphology of
nanocomposites were investigated. The identification analyses
were done and confirmed the purity of the synthesized nanocom-
posites. The sample that used trimesic acid as a stabilizer was
selected as the optimal sample because of its uniform shape and

Fig. 14 Photocatalytic activity of
Co3O4/CeO2 nanocomposites on
decolorization of methylene blue
(MB) and erythrosine (ET)
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small size. The selected sample was used as a photocatalyst
against two aqueous solutions containing organic colors as a
pollutant. The photocatalyst process was done in neutral and
non-neutral media. The nanocomposite showed better perfor-
mance in non-neutral media because of better interactions with

the dye. Different amounts of catalyst and different concentra-
tions of the dye, as well as the repeatability and stability of the
nanocomposite during the photocatalytic process, were investi-
gated. Due to the photocatalyst results obtained, Co3O4/CeO2

nanocomposite can be known as a suitable photocatalyst.

Fig. 15 The effect of amount of nanocomposites (a, b) and dye concentration (c, d) on the decolorization

Fig. 16 The photocatalytic
stability of Co3O4/CeO2

nanocomposites in recycling
reactions under the same
condition
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