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Photocatalytic performance improvement by utilizing GO_MWCNTs
hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade
methylene blue dye
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Abstract
In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)–based photocatalysts were hybridized with graphene oxide (GO)
and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to
degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via
sol–gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a
substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with
1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then
incorporated onto sand/ZnO/TiO2 nanocomposite–based photocatalysts through immersion. Various sand/ZnO/TiO2-based
photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement,
the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface
area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the
photocatalytic performance.
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Introduction

Nowadays, clean water sources are limited due to the pollu-
tion from industries which release waste disposal into fresh

water sources without proper treatment. Textile wastewater
contains various heavy metals and non-biodegradable organic
dyes, which pose a serious problem for human health and the
environment (Saravanan et al. 2017). Furthermore, most
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organic dyes are rich in hazardous chemicals which are diffi-
cult to remove (Katheresan et al. 2018; Maučec et al. 2018).
Methylene blue (MB) is an organic dye that is difficult to
decompose because of its complex aromatic structure (Sun
et al. 2018). Water mixed with MB dye is difficult to treat
and decolorize (Basturk and Karatas 2015). Therefore,
methods to degrade MB need to be developed to obtain clean
and fresh water. Photocatalysis is an efficient and
environment-friendly process for dye degradation and water
purification (Khojasteh et al. 2018).

Zinc oxide (ZnO) is an ideal semiconductor photocatalyst
owing to its high electron mobility (Qi et al. 2017),
mechanical–thermal stability, high quantum efficiency, high
photostability (Kumar and Rao 2015), good oxidizing power
(Adnan et al. 2016) and high surface area (Liu et al. 2018).
However, the agglomeration between ZnO particles decreases
the number of active surface sites (Azmina et al. 2017) and
thus weakens its photocatalytic performance. In addition, ZnO
photocatalyst is inefficient in powder form because it dis-
perses in water and produces a milky solution, which hinders
photocatalyst activation under UV light (Eddy et al. 2015). A
substrate is clearly needed to activate the photocatalyst (Alansi
et al. 2015; Fadillah et al. 2019; Saleh 2020) and perform
photocatalysis. Substrates usually used in photocatalysis are
clay, glass, zeolite, silica, sand and fly ash. Sand offers several
advantages, such as porous morphology, high density, local
availability, low cost and chemical inertness (Abdel-Maksoud
et al. 2018; Hadjltaief et al. 2016; Shan et al. 2010).

Given its broad band gap energy (3.37 eV), ZnO also pos-
sesses a limitation in photocatalysis because the high recom-
bination rate between electron–hole pairs could affect the pho-
tocatalytic performance (Hellen et al. 2018; Sun et al. 2018).
Therefore, ZnO photocatalyst must be composited with other
semiconductor, metal, non-metal or carbon-based materials to
overcome this limitation (Banerjee et al. 2018; Sun et al.
2018). Semiconductor–semiconductor composites such as
ZnO/titanium dioxide (TiO2) show excellent photocatalytic
performance (Cheng et al. 2014; Habib et al. 2013). The life-
time of the photogenerated electron/hole is prolonged when
ZnO and TiO2 are composited because TiO2 acts as a trap site
which prevents electron–hole recombination (Hadjltaief et al.
2016; Hellen et al. 2018). Moreover, the incorporation of ZnO
into TiO2 can decrease the band gap value and extend the light
absorption range (Bai et al. 2013; Cirak et al. 2018;
Wetchakun et al. 2019). Cirak et al. (2018) showed that
compositing ZnO and TiO2 achieves 95% dye degradation,
which is higher than that obtained by pure TiO2 photocatalyst
(65%). In addition, Cheng et al. (2014, 2016) showed that
ZnO/TiO2 nanocomposites perform higher photocatalytic ac-
tivity than pure ZnO and TiO2. These results agree with the
report of Hadjltaief et al. (2016) that ZnO/TiO2/clay nanocom-
posites achieve a higher dye degradation of 98.7% than TiO2/
clay (87.2%).

Several methods are used to synthesize ZnO, TiO2 and
their nanocomposite. Sol–gel and hydrothermal methods offer
uniform size distribution, various morphologies (Ba-abbad
et al. 2013), low temperature operation, simple procedures
(Ong et al. 2018) and high purity and crystallinity (Ong
et al. 2018; Wetchakun et al. 2019) of nanocomposites. The
sol–gel method also promotes good purity, dispersion and
homogeneity (Bodson et al. 2010). Cheng et al. (2016) syn-
thesized ZnO/TiO2 nanocomposites by using a two-step hy-
drothermal method and achieved the complete degradation of
methylene orange (MO) dye within 25 min. Siwińska-
Stefańska et al. (2019) fabricated TiO2/ZnO by using a hydro-
thermal method and exhibited high photocatalytic perfor-
mance in removing C.I. Basic Violet 10 (95%) within 180
min. Earlier, Siwińska-Stefańska et al. (2018) synthesized
TiO2/ZnO nanocomposites by using the sol–gel method and
successfully degraded 93.4% of C.I. Basic Violet 10 dye with-
in 120 min. Hakki et al. (2019) also synthesized TiO2/ZnO on
glass by using sol–gel and dip-coating method and effectively
removed 97.3% MB dye within 360 min.

Photocatalysts were also hybridized with carbon-basedma-
terials, such as graphene oxide (GO) and GO_multi-walled
carbon nanotubes (MWCNTs) with large surface area (Saleh
2011; Saleh 2015a, b, c) and high electronmobility to enhance
their performance (Mahmoodi 2013; Saleh 2013; Tayel et al.
2018). The utilization of GO and MWCNTs onto the
photocatalyst further improves photocatalysis (Da Dalt et al.
2016; Zhang et al. 2016). Chaudhary et al. (2018) showed that
ZnO/MWCNTs achieve 93% of MB degradation, whereas
pure ZnO can only reach 48%. Meanwhile, Raliya et al.
(2017) showed that the hybridization of GO with TiO2/ZnO
nanocomposites enhances the photocatalytic performance
from 40 to 44%. These results agree with the finding of Da
Dalt et al. (2016) that the incorporation of MWCNTs with
TiO2/ZnO achieves higher photocatalytic activity than TiO2/
ZnO nanocomposites.

High-quality GO is commonly synthesized via Hummers’
method (Kumar et al. 2010). However, this method presents
several drawbacks, such as the utilization of hazardous
chemicals that can damage the environment, require several
procedures and entail long production time (Brodie 1859;
Hummers and Offeman 1957). A simpler electrochemical ex-
foliation becomes a promising method to synthesize GO in
large-scale production (Md Disa et al. 2015; Wu et al. 2017;
Yu et al. 2015). In addition, the utilization of water-based
electrolytes with the assistance of a surfactant for GO layer
intercalation offers environment-friendly, economic and less
hazardous chemical usage (Md Disa et al. 2015; Suriani et al.
2018a, b, c).

GO-based materials can be transferred onto ZnO/TiO2

nanocomposites via spray coating, spin coating, dip coating
and immersion. Spray coating is simple and provides a large
surface area coverage onto the desired substrate (Liu 2017;
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Chen et al. 2018). However, the uniformity of the coverage is
relatively poor, and material wastage or loss occurs during the
process (Liu 2017). Moreover, this method requires expensive
apparatus. Meanwhile, dip coating possesses a slow coating
process. Spin coating is easy to handle, is cheap and provides
high uniformity. However, it also results in coating material
wastage, produces a non-uniform layer and is only suitable for
flat substrates. By contrast, immersion offers a simple, low-
cost (Poorebrahimi and Norouzbeigi 2015) and time-saving
method (Latthe et al. 2012), which is suitable for large-scale
production and facilitates homogenous coating over the
substrate.

The method to synthesize ZnO/TiO2 nanocomposite by
combining sol–gel immersion and hydrothermal method is
not well explored. In addition, the utilization of immersion
method to transfer GO-based materials onto the ZnO/TiO2

nanocomposite is also rarely explored. Therefore, in the pres-
ent work, the photocatalyst materials were fabricated by com-
bining ZnO, TiO2, GO and MWCNTs on sand substrate. The
novel combination of ZnO and TiO2 synthesized by sol–gel
immersion and hydrothermal method, respectively, prior to
the hybridization with GO-based materials using immersion
was used as a sand-based photocatalyst in MB dye degrada-
tion. To the best of our knowledge, the novelty of this study
lies on the utilization of sand/ZnO/TiO2-based photocatalysts
hybridized with GO synthesized by electrochemical exfolia-
tion and MWCNTs synthesized from waste cooking palm oil.

Experimental and methods

Materials

Sand, zinc nitrate (Zn(NO)3)2 and hexamethylenetetramine
(HMT) were used for sand/ZnO NRs synthesis. Titanium
butoxide (TBOT) (Sigma-Aldrich) and hydrochloric acid
(HCl, 36.5–38% concentration, JT Baker) were used for
TiO2 NR synthesis. Graphite rods (99.99%, 150 mm in length
and 10 mm in diameter, GoodFellow GmbH, Germany) and a
commercially available sodium dodecyl sulphate (SDS)
(Sigma-Aldrich) surfactant were used in GO synthesis.
MWCNTs from waste cooking palm oil were used to prepare
GO_MWCNTs hybrid solution. Meanwhile, the MB dye
(Sigma-Aldrich) was used for dye degradation test.

Fabrication of sand/ZnO NRs

A 0.05M ZnO solution was prepared by dissolving 1.407 g of
HMT and 2.975 g of zinc nitrate into 200 mL of DI water in a
Schott-capped bottle. The prepared solution was then sonicat-
ed in an ultrasonic cleaner for 30 min at 50 °C prior to stirring
for 2 h at room temperature. The obtained solution was then
left for 1 day at room temperature for aging. The prepared

solution was separated equally into two Schott-capped bottles
and then added with 25 g of sand. The Schott-capped bottles
were placed into a water bath to perform the sol–gel synthesis
for 4 h at 95 °C. The sand was then removed and rinsed with
DI water and directly dried for 10 min in an electric oven at
150 °C. The dried sand was further annealed for 1 h at 500 °C.

Fabrication of sand/ZnO/TiO2 nanocomposite

A sand/ZnO/TiO2 nanocomposite was prepared by growing
TiO2 NRs on the fabricated sand/ZnO using a hydrothermal
method. Hydrothermal solution was prepared by mixing 60
mL of DI water and 60mL of HCl for about 5min. Next, 3 mL
of TBOT was added into the solution dropwise and stirred for
another 15 min until a clear solution was observed. The pre-
pared hydrothermal solution was poured into an autoclave
followed by 40 g of the synthesized sand/ZnO NRs. The au-
toclave was then heated in an electric oven for 5 and 20 h at
150 °C to perform hydrothermal synthesis. The autoclave was
directly taken out and allowed to cool down at room temper-
ature. The synthesized sand/ZnO NRs/TiO2 was then taken
out and rinsed using DI water. The sample was heated in an
electric oven for 5 min at 150 °C and then annealed for 1 h at
400 °C.

Synthesis of graphene oxide

GO was synthesized by electrochemical exfoliation as previ-
ously described (Md Disa et al. 2015; Suriani et al. 2018a, b,
c). Two graphite rods were partially immersed into 0.1 M of
electrolyte containing SDS surfactant and connected to the
DC power supply (7 V) for 24 h at room temperature.

Preparation of GO_MWCNTs hybrid solution

The MWCNTs were prepared as previously described
(Suriani et al. 2016). A hybrid solution of GO_MWCNTs
was prepared by mixing 1 wt% MWCNTs into the prepared
GO solutionwith stirring for 1 h at room temperature to ensure
that the MWCNTs were well dispersed in the GO solution
(Suriani et al. 2018c; Suriani et al. 2019).

Fabrication of sand/ZnO/TiO2/GO and
ZnO/TiO2/GO_MWCNTs nanohybrids

A total of 30 g of the fabricated sand/ZnO/TiO2 was initially
immersed in 30 mL of GO and GO_MWCNTs hybrid solu-
tion and heated for 2 h at 90 °C on a hot plate. The nanohybrid
photocatalysts were then annealed in an argon gas furnace at
400 °C for 1 h.

6968 Environ Sci Pollut Res  (2021) 28:6966–6979



Photocatalytic test

A photocatalysis test for MB degradation was performed un-
der the illumination of UV light by utilizing 5 ppm MB. The
MB solution was placed in a container followed by adding
30 g of photocatalyst. The container was then exposed under
UV light irradiation for 3 days. The samples were taken daily
for 3 days, and theMB concentration was determined by using
UV-Vis. The photodegradation efficiency (η) was calculated
using the following equation:

η ¼ co−ctð Þ½ �
co

� 100% ð1Þ

where C0 and Ct are the initial and specific times of MB
concentration, respectively.

Instrument and tools

The fabricated sand/ZnO/TiO2-based photocatalysts were
characterized based on its morphological, structural and opti-
cal properties. The morphological and structural properties
were observed by field emission scanning electron micro-
scope (FESEM) instrument (Hitachi SU8020) and (ZEISS),
energy dispersive X-ray (EDX) spectroscopy (Horiba EMAX)
and micro-Raman spectroscopy (Renishaw InVia
microRaman System). Meanwhile, the optical properties were
measured by UV-Vis spectroscopy (Agilent Cary 60).

Results and discussion

FESEM and EDX analyses

The surface morphology of all fabricated sand/ZnO/TiO2-
based photocatalysts was determined by FESEM, and the re-
sults are presented in Fig. 1. First sample of sand/ZnO NRs/
TiO2 NRs (5 h) showed a random arrangement with a low
density of ZnO NRs and TiO2 NRs (5 h) formation on the
sand substrate (Fig. 1a). At high magnification, the synthe-
sized TiO2 NRs (5 h) possessed two pyramidal ends (see yel-
low arrows), whereas the ZnO NRs showed flat ends (see red
arrows) (Fig. 1b). The pyramidal ends of TiO2 NRs (5 h) were
due to the presence of HCl, which decreased the surface en-
ergy of the NR plane side walls and resulted in anisotropic
growth in the (101) direction (Mali et al. 2011). Meanwhile,
the flat ends of ZnO NRs resulted from the dominant dissolu-
tion effect on the top of the (0001) surfaces due to the reduc-

tion in Zn(NH3Þ2þ4 concentration (Wei et al. 2006).
The hydrolysis process of Zn(NO3)2 and HMT produced

Zn2+and OH−, which proposed the growth mechanism of ZnO
NRs (Malek et al. 2015). The formation of ZnO nuclei was

obtained when the ZnO solution reached the supersaturation
state, which then triggered the Zn2+ to be reacted with OH-
ions. As a consequence, the formation of ZnO nuclei on the
sand substrate would initiate the growth of the ZnO NRs (4 h)
(Malek et al. 2015). Four-hour growth time of ZnO NRs was
found to be an optimal synthesis time in order to form the NRs
nanostructure (Ridhuan et al. 2012). This result was in a good
agreement with Fudzi et al. (2018), which confirmed that 4-h
growth time was an optimum condition to grow ZnO NRs.
Meanwhile, the formation of TiO2 NRs is initiated with hy-
drolysis process where the H+ ions from water molecules are
captivated to the oxide ion of titanium butoxide (Ti(RO4))
(Arthi 2016). The OH− ions replaced the butyl groups (R) in
(Ti(RO4) and became Ti-OH groups (Arthi 2016; Prathan
et al. 2020). Consequently, these processes resulted in the
change of coordination number of Ti precursor (Ti(RO4))
from Ti4+ to Ti6+. Under high pressure in the hydrothermal
process, Ti6+ transformed into octahedra followed by the for-
mation of precipitate crystal.

The low growth density of the ZnONRs/TiO2 NRs (5 h) on
the sand substrate was due to the utilization of HCl, which
dissolved the initial amount of ZnO NRs and interrupted the
growth of TiO2 NRs (5 h). The ZnO NRs were slowly dis-
solved and released Zn2+ ions, which then reacted with Cl−

ions in the hydrothermal solution when interacted with a
strong acid such as HCl. Meanwhile, the H+ reacted with O2

− and formed H2O (Greenwood and Earnshaw 1997). This
process led to the reduction of Cl− and H+ ions in the hydro-
thermal solution, which is responsible for the growth of TiO2

NRs (5 h). In turn, the reduction of Cl− ions led to titanium
precursor precipitation, which suppressed TBOT hydrolysis
to form TiO2 NRs (Liu and Aydil 2009) and thus resulted in
the low density formation of TiO2 NRs (5 h) (Fig. 1c, d). As
shown in Fig. 1c, the low atomic percentages of Ti (1.2%) and
Zn (0.7%) confirmed the low existence of bothmaterials in the
sand/ZnONRs/TiO2 NRs (5 h) nanocomposite.Moreover, the
length and diameter of ZnO NRs and TiO2 NRs (5 h) in the
sand/ZnO NRs/TiO2 NRs (5 h) nanocomposite ranged within
487 nm–1.9 μm and 181–466 nm and within 1–1.8 μm and
112–186 nm, respectively.

Lower ZnO NRs and TiO2 NRs (20 h) density formation
was observed on the sand/ZnO NRs/TiO2 NRs (20 h) than on
the sand/ZnO NRs/TiO2 NRs (5 h) (Fig. 1d, e). The unobserv-
able ZnO NRs were due to the dissolution of ZnO NRs in the
hydrothermal solution (Greenwood and Earnshaw 1997).
Prolonged interaction between ZnO NRs and HCl causes a
high dissolution of ZnO NRs (Kalpana and Rajeswari 2018)
and retains low amounts of Cl− and H+ ions in the hydrother-
mal solution. As a consequence, lower ZnO and TiO2 NRs (20
h) were observed in the sand/ZnO NRs/TiO NRs (20 h) than
in the sand/ZnO NRs/TiO2 NRs (5 h). This result was sup-
ported by the EDX analysis result (Fig. 1f), i.e., low Ti atomic
percentage (1.0%) and absence of Zn (0%). Meanwhile, the
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length and diameter of the TiO2 NRs (20 h) in the sand/ZnO
NRs/TiO2 NRs (20 h) nanocomposite were 0.73–1.66 μm and
200–267 nm, respectively, compared with those in the sand/
ZnO NRs/TiO2 NRs (5 h).

The morphologic structures of the sand/ZnO NRs/TiO2

NRs (5 h)/GO and sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs nanohybrid are presented in Fig. 1g–l. As
shown in Fig. 1g, h, GO sheets were homogeneously covered
on top of the TiO2 NRs (5 h) (white arrows) in the sand/ZnO
NRs/TiO2 NRs (5 h)/GO sample. The interaction between GO
sheets and MWCNTs tube walls can be considered as a three-
dimensional sheet and tube structure (Min et al. 2018). The

hydroxyl groups of TiO2 NRs (5 h) interacted with the oxygen
functional groups of GO forming Ti-O-C by hydrogen bonds,
which resulted in homogeneity of GO on the TiO2 NRs (5 h)
(Naknikham et al. 2017; Qiu et al. 2012; Yu et al. 2017). EDX
analysis of the sand/ZnO NRs/TiO2 NRs (5 h)/GO presented
7.0%, 0.9% and 4.4% atomic percentages, which represented
Ti, Zn and C, respectively (Fig. 1i). The morphology of the
sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs showed bun-
dles of thread-like MWCNTs, which were well dispersed on
the sand/ZnONRs/TiO2 NRs (5 h) nanocomposite (Fig. 1j, k).
The average diameter of the MWCNTs was observed in the
range of 50.2–92.1 nm, which was in a good agreement with

Fig. 1 FESEM images with different magnification ranging between 5 and 50K X and EDX analysis of a–c sand/ZnO NRs/TiO2 NRs (5 h), d–f sand/
ZnO NRs/TiO2 NRs (20 h), g–i sand/ZnO NRs/TiO2 NRs (5 h)/GO and j–l sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
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the previous work (Suriani et al. 2018c). The MWCNTs pos-
sessed smooth surface which bound and entangled toward
each other. These MWCNTs were wrapped and strongly
stacked on the GO sheets.

Moreover, the GO sheets (see red circle) were well
adsorbed and dispersed between the MWCNTs emptiness
due to the interactions between the side walls of the
MWCNTs and hydrophobic region of the GO (Fig. 1j, k)
(Shahriary et al. 2014). The weak π-π stacking interactions
between GO and MWCNTs could prevent the MWCNTs
from aggregating with each other and provide higher surface
area as compared with individual GO or MWCNTs (Chen
et al. 2018; Zhang et al. 2010). The tetragonal structure of
TiO2 NRs (5 h) with two pyramidal ends (white arrows) under

the bundles of MWCNTs is shown in Fig. 1k. The higher
atomic percentage of C (69.89%) in the sand/ZnO NRs/TiO2

NRs (5 h)/GO_MWCNTs than in the sand/ZnO NRs/TiO2

NRs (5 h)/GO (4.4%) was due to the high content of C con-
tributed by the incorporation of MWCNTs (Fig. 1l).

Micro-Raman spectroscopy

Micro-Raman spectroscopy was carried out to investigate the
crystallinity of the fabricated sand/ZnO/TiO2-based
photocatalyst materials. The micro-Raman spectra of sand/
ZnO NRs/TiO2 NRs (5 and 20 h) showed five peaks in the
range of 100–800 cm−1, as presented in Fig. 2. On the basis of
the Raman spectra, the sand/ZnO NRs/TiO2 NRs (5 h)

Fig. 1 (continued)

6971Environ Sci Pollut Res  (2021) 28:6966–6979



nanocomposite (black line graph) showed a weak peak at 142
cm−1, which corresponds to B1g mode resulting from the sym-
metric bending vibration of O-Ti-O (Alhomoudi and Newaz
2009; Mulmi et al. 2016). Meanwhile, two dominant peaks
observed at 446 and 610 cm−1 resulted from O-Ti-O symmet-
ric stretching vibration and anti-symmetric bending vibration,
respectively (Yan et al. 2013). Conversely, the second-order
scattering process featured the broad Raman peak located at
236 cm−1. These results confirmed the rutile phase of the
fabricated TiO2 NRs (5 h) by the existence of three Raman
active modes expressed as B1g + Eg + A1g (Alhomoudi and
Newaz 2009; Danish et al. 2014; Hardcastle 2011; Mali et al.
2011; Mokhtar et al. 2018; Suriani et al. 2018b, 2018c). The
additional weak peak observed at 127 cm−1 represented quartz
as an element of sand substrate (Sharma et al. 2006).

As the reaction time was prolonged, the intensity of
two prominent peaks observed in the sand/ZnO NRs/
TiO2 NRs (20 h) increased (red line graph). This result
indicated that the sand/ZnO NRs/TiO2 NRs (20 h) pos-
sessed better crystallinity than the sand/ZnO NRs/TiO2

NRs (5 h) (Ahn et al. 2011; Mokhtar et al. 2018).
Furthermore, these peaks blue-shifted to 445 and 609
cm−1 in the Eg and A1g modes, respectively, indicating
that the TiO2 NRs (20 h) possessed larger crystallite
size in the sand/ZnO NRs/TiO2 NRs (20 h) than in
the sand/ZnO NRs/TiO2 NRs (5 h) (Li Bassi et al.
2005). Meanwhile, the multiple phonon scattering and
B1g mode were exhibited at 236 and 142 cm−1, respec-
tively. These results further confirmed that the synthe-
sized TiO2 NRs (20 h) were also in rutile phase (Liu
et al. 2009; Ma et al. 2007; Woo et al. 2010). However,
ZnO NRs peak was not detected in both nanocomposite
samples because of its small content (Bai et al. 2013) in

the nanocomposites as presented in FESEM images and
EDX analysis (Fig. 1a–f).

After the hybridization of GO and GO_MWCNTs with
sand/ZnO NRs/TiO2 NRs (5 h), two prominent peaks (D-
and G-band) were clearly observed as shown in Fig. 2
(blue and green line graphs), indicating their existence
in sand/ZnO NRs/TiO2 NRs (5 h). D-band was associated
with the distortions and internal structural defects of
carbon-based materials (Albert et al. 2018). Meanwhile,
G-band was associated with E2g vibrational mode, which
resulted from the C-C bond in graphitic materials
(Hosseini et al. 2018). The sand/ZnO NRs/TiO2 NRs (5
h)/GO and sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
presented the D-band at 1400 and 1365 cm−1, respective-
ly, and the G-band at 1588 and 1591 cm−1, respectively.
The blue-shift of the D-band on the sand/ZnO NRs/TiO2

NRs (5 h)/GO_MWCNTs compared with the sand/ZnO
NRs/TiO2 NRs (5 h)/GO indicated a good and strong
interaction between GO and MWCNTs (Batakliev et al.
2019; Suriani et al. 2019). Meanwhile, the red-shift of the
G-band peak can be attributed to the dispersion and dis-
entanglement of MWCNTs on the GO surface, which de-
creased the interaction between the MWCNTs (Batakliev
et al. 2019).

As shown in Fig. 2 (green line graph), the sand/ZnO NRs/
TiO2 NRs (5 h)/GO_MWCNTs also exhibited higher intensity
in the D- and G-band peaks. The high intensity of D-band (ID)
indicated high defect level, which means that the sp2 bonds
were broken and formed new sp3 bonds (Bîru and Iovu 2018;
Hodkiewicz 2010). Meanwhile, the high G-band intensity (IG)
was associated with the strong compressive forces between
GO and MWCNTs and well dispersion of the MWCNTs in
the GO solution (Bokobza et al. 2008). Furthermore, the ID/IG
ratio can be used to estimate the sample crystallinity, includ-
ing the structural defect number, within the samples. The low-
er ID/IG ratio of the sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs (0.65) than the sand/ZnO NRs/TiO2 NRs (5
h)/GO (0.73) suggested lower structural defects, which can be
ascribed to the incorporation of MWCNTs (Muda et al. 2017;
Neelgund and Oki 2016). Furthermore, low structural defects
suggested that the sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs possessed high structural and crystalline qual-
ity (Ivanova et al. 2012; Neelgund and Oki 2016; Srivastava
et al. 2014; Wu et al. 2018). Moreover, the low ID/IG ratio
observed in the sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs was due to the high amount of MWCNTs,
indicating the good dispersion on the sand substrate
(Batakliev et al. 2019; Saner et al. 2013). The weak interaction
between GO and MWCNTs also resulted lower ID/IG ratio in
sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs sample
(Zhang et al. 2010). This result can be supported by the
FESEM images (Fig. 1j, k) where the formation of
MWCNTs was dominant and well dispersed in the sand/

Fig. 2 Micro-Raman spectra run at 514 nm wavelength of argon laser of
sand/ZnO NRs/TiO2 NRs (5 h), sand/ZnO NRs/TiO2 NRs (20 h), sand/
ZnO NRs/TiO2 NRs (5 h)/GO and sand/ZnO NRs/TiO2 NRs (5 h)/GO_
MWCNTs
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ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs sample.
Furthermore, other typical peaks at 142 (B1g), 237, 446 (Eg)
and 610 cm−1 (E1g) represented the rutile phase of TiO2.

UV-Vis spectroscopy

The photocatalytic activities of sand/ZnO NRs/TiO2 NRs (5
and 20 h) nanocomposites, sand/ZnO NRs/TiO2 NRs (5 h)/
GO and sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
nanohybrids were evaluated by measuring the degradation of
250 mL with 5 g/mL of MB solution under UV irradiation for
3 days (Fig. 3a). The photocatalytic performance of the sand/

ZnO NRs/TiO2 NRs (20 h) (88.29% MB degradation) was
weaker than that of the sand/ZnO NRs/TiO2 NRs (5 h)
(91.73%) after 3 days of measurement (Fig. 3b, c). This result
was due to the decrement of ZnO NRs initial amount in the
nanocomposite caused by the dissolution of ZnO in acid so-
lution, which formed ZnCl2. Prolonged exposure of ZnO NRs
to HCl increased the ZnO dissolution and thus decreased the
number of active sites in the nanocomposite (Kalpana and
Rajeswari 2018). This result can be supported by the
FESEM images (Fig. 1d) where ZnO NRs were unobservable
in the sand/ZnO NRs/TiO2 NRs (20 h) sample. Given that it
showed better photocatalytic performance than the sand/ZnO

Fig. 3 a UV-Vis absorption spectrum of the samples’ photocatalytic
performance at day 3 and photocatalytic performance of b sand/ZnO
NRs/TiO2 NRs (5 h), c sand/ZnO NRs/TiO2 NRs (20 h), d sand/ZnO

NRs/TiO2 NRs (5 h)/GO and e sand/ZnO NRs/TiO2 NRs (5 h)/GO_
MWCNTs within 3 days in the wavelength range of 200–800 nm
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NRs/TiO2 NRs (20 h), the sand/ZnO NRs/TiO2 NRs (5 h)
sample was used for hybridization with carbon-based
materials.

After the hybridization, the samples sand/ZnO NRs/TiO2

NRs (5 h)/GO and sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs showed similar MB degradation percentage
after 3 days of measurement, which were 92.56% and
92.60%, respectively (Fig. 3a). These results also showed
higher MB degradation percentage than the sand/ZnO NRs/
TiO2 NRs (5 h) (91.73%). This result was because most of the
MB molecules were oxidized by the hydroxyl group or most
of the active sites offered by both samples were occupied by
MB molecules (Chen et al. 2017) at day 3. The higher MB
degradation exhibited by the sand/ZnO NRs/TiO2 NRs (5 h)/
GO as compared with the sand/ZnO NRs/TiO2 NRs (5 h) was
due to the important role of GO as the electron transporter and
acceptor in the nanocomposite owing to its 2D π-conjunction
structure (Paul et al. 2017; Sharma et al. 2018; Wang et al.
2012).

The electrons from the sand/ZnO NRs/TiO2 NRs (5 h)
were transferred on the 2D planar structure of the GO nano-
sheets, which led to the prevention of the electron/hole recom-
bination (Wang et al. 2012). Furthermore, GO with a large
surface area acted as the charge carrier and transported the
electrons to the photocatalyst surfaces to form reactive species
and thus enhance the photocatalytic performance (Nenavathu
et al. 2018; Raliya et al. 2017; Wang et al. 2012). This im-
provement was due to the further UV-light extension range
that can be absorbed by the sand/ZnO NRs/TiO2 NRs (5 h)/
GO (Morales-torres and Martinez-Pastrana 2014; Pérez-
Ramírez et al. 2016).

At day 3, the sand/ZnO NRs/TiO2 NRs (5 h)/GO and sand/
ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs exhibited similar
MB degradation percentages. Thus, the comparison was made
at day 1. The sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
(91.68%) showed slightly higher MB degradation percentage
than the sand/ZnO NRs/TiO2 NRs (5 h)/GO (90.61%) (Fig.
3d, e). The MWCNTs possessed a unique tubular structure,
which offered higher surface area with many active sites due
to its 3D network and strong adsorption ability towards oxy-
gen and water (Huang et al. 2018; Jiang et al. 2013).
Compared with GO, the GO_MWCNTs hybrid provided

larger surface area and promoted higher electron transfer,
which could prolong the electron/hole separation and improve
the effectiveness of dye adsorption capacity (Duan et al. 2016;
Hosseini et al. 2018; Koay et al. 2016; Marco et al. 2017;
Raliya et al. 2017; Saleh 2013; Shaban et al. 2018; Sui et al.
2012). As shown in Table 1, the MB degradation percentages
for days 2 and 3 were not so obvious as that for day 1. This
result was due to the fact that most of the active sites of all
samples were occupied by dye molecules at day 1. Therefore,
the photocatalytic performance was gradually decreasing for
the next 2 days (Chen et al. 2017).

Photocatalytic mechanism

The photocatalyticmechanism of sand/ZnONRs/TiO2 NRs (5
h)/GO_MWCNTs nanohybrid begins when light energy in
the form of photon strikes the surface of the photocatalyst with
a greater or equal amount of energy to the band gap energy
(Eg). Electrons from valence band (VB) of ZnO NRs was
excited to its conduction band (CB), which resulted in the
generation of hole in the VB (Eq. 2). The electrons were then
transferred to the TiO2 NRs CB because TiO2 NRs have lower
Eg than ZnO NRs (Hellen et al. 2018). The electron transfers
for the sand/ZnONRs/TiO2 NRs (5 and 20 h) nanocomposites
were stopped at the TiO2 NRs CB, which then fell back to the
ZnO NRs VB and thus decreased the photocatalytic activity.

Photocatalystþ hv→hþVB þ e−CB ð2Þ

For the sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
nanohybrid, the excited electron was then further transferred
onto the surface of the GO_MWCNTs hybrid. GO and
MWCNTs exhibit rapid electron transfer because of their high
electrical conductivity and high electron storage capacity,
thereby preventing the accumulation of electrons and resulting
in high electronmobilization (Chen et al. 2018; Ho et al. 2018;
Hosseini et al. 2018; Kaur and Jeet 2017; Khan et al. 2012;
Saleh 2013). The electrons moved freely along the conducting
sheets and networks of GO and MWCNTs, respectively
(Ahmad et al. 2018). This process inhibited the recombination
rate of the electron and holes and thus enhanced the photocat-
alytic performance (Hosseini et al. 2018).

Table 1 Percentage ofMB removal for 3 days of sand/ZnONRs/TiO2 NRs (5 h), sand/ZnONRs/TiO2 NRs (20 h), sand/ZnONRs/TiO2 NRs (5 h)/GO
and sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs

Sample Day 1 (%) Day 2 (%) Day 3 (%)

Sand/ZnO NRs/TiO2 NRs (5 h) 87.24 90.21 91.73

Sand/ZnO NRs/TiO2 NRs (20 h) 86.86 88.98 89.63

Sand/ZnO NRs/TiO2 NRs (5 h)/GO 90.61 92.40 92.56

Sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs 91.68 92.39 92.60
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Meanwhile, the holes in the VB of the sand/ZnONRs/TiO2

NRs (5 h)/GO_MWCNTs underwent oxidation, which
reacted with absorbed water molecules and hydroxide ions
(OH−) to generate hydroxyl radicals (OH∙) (Eqs. 3 and 4).
These radicals have an extremely strong oxidizing power that
is responsible for MB dye degradation.

hþVB þ H2O→Hþ þ OH∙ ð3Þ
hþVB þ OH−→OH∙ ð4Þ

The transferred electron underwent reduction and reacted
with the absorbed oxygen on the photocatalyst surface to form
superoxide radical anions (e∙−2 Þ. These (e∙−2 Þ can further react
with H+ to generate highly active hydrogen peroxide (H2O2).
H2O2 then dissociated into highly reactive OH∙ radicals. The
electrons transferred in the reduction process are shown in
Eqs. 5–8.

e−CB þ O2→O∙−
2 ð5Þ

O∙−
2 þ Hþ→OOH∙ ð6Þ

OOH∙ þ OOH∙→H2O2 þ O2 ð7Þ
e− þ H2O2→OH∙ þ OH− ð8Þ

Therefore, the generated powerful and reactive hydroxyl
radicals OH∙ oxidize the organic dye into CO2 andH2O, which
are harmless to the environment, as shown in Eq. 9. The
GO_MWCNTs hybrid in the sand/ZnO NRs/TiO2 NRs (5
h)/GO_MWCNTs nanohybrid provided a larger specific sur-
face area and more active sites than the sand/ZnO NRs/TiO2

NRs (5 and 20 h) nanocomposites and sand/ZnO NRs/TiO2

NRs (5 h)/GO nanohybrid. Thus, an abundant number of hy-
droxyl groups formed on the surfaces. As a consequence, the

targetedMBmolecules that were adsorbed can be oxidized on
the surface of the sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs and thus enhance the photocatalytic
performance.

Dye moleculesþ OH∙→CO2 þ H2Oþmineral acid ð9Þ

Moreover, the higher MB degradation possessed by the
sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs nanohybrid
than the sand/ZnO NRs/TiO2 NRs (5 h) nanocomposite was
due to the higher adsorption of MB dye molecules onto the
surface of sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs
photocatalysts by π-π interaction and oxygen functional
groups offered by the GO_MWCNTs hybrid (Ahmad et al.
2018; Thi et al. 2019; Vanitha et al. 2014; Zhang et al. 2014).
An illustration of the photocatalytic mechanism is presented in
Fig. 4.

Conclusion

The sand/ZnO NRs/TiO2 NRs-based photocatalysts were suc-
cessfully fabricated via sol–gel immersion followed by a hy-
drothermal method. The sand/ZnO NRs/TiO2 NRs (5 h)/
GO_MWCNTs presented the highest MB degradation remov-
al (92.60%) after 3 days of measurement. This result was due
to the utilization of the GO_MWCNTs hybrid as an electron
acceptor and transporter, which retarded the electron–hole re-
combination. Moreover, its large surface area allowed the for-
mation of many active sites and hydroxyl ions on the surface.
As a consequence, a large number of MB molecules were
adsorbed on the surface and thus enhanced the photocatalytic
performance. In conclusion, sand/ZnO NRs/TiO2 NRs (5 h)/

Fig. 4 Photocatalytic mechanism of sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs nanohybrid photocatalyst
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GO_MWCNTs demonstrated a potential ability to be applied
as a photocatalyst material to degradeMB solution. This study
presented a simpler and low-cost production of sand/ZnO
NRs/TiO2 NRs-based photocatalysts materials for
photocatalysis application. Further study could be done by
increasing ZnO solution’s molarity thus increased the amount
of ZnO NRs growth. Moreover, the synthesis time of TiO2

could be reduced thus resulted lower rate of ZnO NRs
dissolution.

Funding The authors received financial support from the Fundamental
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