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Abstract
Heavy metals are one of the most hazardous inorganic contaminants of both water and soil environment composition. Normally,
heavy metals are non-biodegradable in nature because of their long persistence in the environment. Trace amounts of heavy metal
contamination may pose severe health problems in human beings after prolonged consumption. Many instrumental techniques
such as atomic absorption spectrophotometry, inductively coupled plasma-mass spectrometry, X-ray fluorescence, neutron
activation analysis, etc. have been developed to determine their concentration in water as well as in the soil up to ppm, ppb,
or ppt levels. Recent advances in these techniques along with their respective advantages and limitations are being discussed in
the present paper. Moreover, some possible remedial phytoremediation approaches (phytostimulation, phytoextraction,
phyotovolatilization, rhizofiltration, phytostabilization) have been presented for the removal of the heavy metal contamination
from the water and soil environments.
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Introduction

Heavy metals have been considered as one of the most lethal
inorganic contaminants mainly originated due to anthropo-
genic activities (Nyarko et al. 2008). Manufacturing units or

industries are the major sources of environmental degradation
because they liberate various types of pollutants such as heavy
metals [e.g., arsenic (As), cadmium (Cd), chromium (Cr), zinc
(Zn), etc.] as well as toxic organics (Kim et al. 2005,
Ahluwalia and Goyal 2007, Kumar et al. 2015). These heavy
metals do not decompose naturally (because of their inorganic
nature) and stay for a long time in the soil and water environ-
ments. The quality of agriculture crops and groundwater also
gets spoiled due to their transfer from contaminated soil as
reported by some researchers (Yoon et al. 2006; Jamali et al.
2009; Ekmekyapar et al. 2012; Srivastav et al. 2019).
Throughout the world, the water environment is in worse con-
dition due to the mixing of diverse types of toxicants including
hydrocarbons, pesticides, antibiotics, cosmetics, and lethal
heavy metals (Chowdhury et al. 2016; Kim et al. 2018;
Khanam et al. 2020). High concentrations of heavy metals,
fluoride, nitrate, etc. have been found beyond the permissible
levels in groundwater in many parts of the world including
India (Srivastav et al. 2013; Ranjan et al. 2019). According to
the reports of both theWorld Health Organization (WHO) and
the United Nations Children’s Fund (UNICEF), only in devel-
oping countries are approximately 2.2 million people dying
annually due to the long-term intake of bad-quality drinking
water and insanitation (Azizullah et al. 2011). Presence of
arsenic (metalloid), fluoride, iron, nitrate, and heavy metals
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(Cd, Hg, Cr, etc.) in water can make it unfit for drinking
purpose. In groundwater, arsenic, fluoride, and iron are natu-
rally added because of their presence in the earth and nitrate,
phosphate, and heavy metals (Cd, Cr, Pb, Hg, etc.) are
appended by human activities including poor sewer systems,
chemical-based agricultural practices, industrial ejections, etc.
(Srivastav 2013). Heavy metals like As, Cd, Cr, Pb, Hg, and
Ni have greater stability and least biodegradability (Lim et al.
2008; Mehta et al. 2016). Due to their frequent disposal in
water and soil, human health has become an easy victim of
many severe diseases (Hamilton et al. 1998; Aragay et al.
2011). Diagnosis and remedial options of any existing prob-
lems are the backbone of research. Therefore, in the present
paper, many advance and sophisticated instrumental options
of heavy metal determinations in water as well as soil envi-
ronment have been reviewed in detail. Some possible remedial
approaches have also been included herein for the detoxifica-
tion of heavy metals present in water and soil.

Sources of heavy metals in soil and water

Heavy metal contaminations of water and soil have attracted
the attention of the world because of their lethality to living
beings (both flora and fauna) through bioaccumulation
(Ekmekyapar et al. 2012). Different researchers have defined
that usually heavy metals are those metals or metalloids which
have higher elemental density. The definition of heavy metals
is based on their elemental density, atomic number, or weight
and also their chemical reactivity (Duruibe et al. 2007; Kumar
et al. 2017). However, Oves et al. (2016) defined that the
metals and metalloids which possess 5 g/cm3 densities are
known as heavy metals. In contrast, Ali et al. (2019a, b) have
given a different criterion that a heavy metal should have > 4 ±
1 g/cm3 elemental density and cited many examples such as
Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn, etc. Terrestrial as well as
aquatic ecosystems are getting affected severely even with
the trace amount of heavy metals present in the environment
(Bansod et al. 2017). These may come from the diffused
sources like atmospheric impurities which have also been
found to be the most important cause of soil and water con-
taminations (Kelly et al. 1996). These are the most hazardous
and destructive water contaminants for natural systems as well
as human health (Wanekaya 2011; Kim et al. 2012). The
natural source includes volcanoes, erosion of soil and disinte-
gration of rocks, etc. whereas the incomplete burning of fos-
sils, mineral extraction, land filling, urban water discharge,
mining and smelting, industrial discharge, agricultural
chemicals, metal refining, manufacturing of electronic goods,
coloring dyes, military operations, vehicular emissions, etc.
are among human activities which are responsible for heavy
metal contamination of water (Baldwin and Marshall 1999;
Franzen et al. 2004; Senesi et al. 2009; Barakat 2011; Oves

et al. 2012; Harvey et al. 2015; Häder et al. 2020). Generally,
wastewaters from mines, smelters, sewage, battery industries,
dyes, alloys, and electronic factories are the source of toxic
heavy metals such as As, Cd, Cr, Cu, Hg, Pb, Zn, etc. (Ene
et al. 2010). However, the contribution of anthropogenic ac-
tivities in environmental contamination is greater than that of
natural sources (Duruibe et al. 2007). According to Kumar
et al. (2017), most of the heavy metals are very reactive in
nature which ultimately have detrimental effects to the envi-
ronment as well as human beings (Fig. 1).

Major anthropogenic activities which could increase the
level of toxic heavy metals in the environmental systems are
as follows:

& Mining activities and smelters may add As, Cd, Pb, and
Hg metals.

& Industries (thermal power plants, electronics, automobiles,
etc.) may add As, Cd, Cr, Co, Cu, Hg, Ni, and Zn metals.

& Through atmospheric dispersion and deposition, As, Cd,
Cr, Cu, Pb, Hg, and U may be added.

& Excessive use of agrochemicals may add As, Cd, Cu, Pb,
Se, U, and Zn.

& Improper solid/liquid waste disposal may add As, Cd, Cr,
Cu, Pb, Hg, and Zn.

Moreover, some bacterial actions are also responsible for
the addition of toxic organic mercury (mono- and/or
dimethylmercury) to the environment (especially water and
soil) which ultimately degrade the quality of drinking water
as well as food stuffs (Kumar et al. 2017). Recently, the
United Kingdom Environment Agency (UKEA) identified
around 1300 plus mining places which contaminated the soil
as well as nearby water reservoirs (e.g., rivers) through adding
various types of heavy metals such as copper, cadmium, lead,
and zinc (Foulds et al. 2014). Similarly, some researchers
reported smelting and mineral mining being the chief sources
of heavy metal pollution (surface and groundwater, farming
soils, crops, etc.) in China as a huge quantity of wastewater
(containing heavy metals) is being generated in these practices
and it creates high risks to the health of society at large scale
(Zhuang et al. 2009; Sun et al. 2010). In addition to the above,
cosmetic items and chemical fertilizers are also responsible for
heavy metal contamination (Callender 2004). Interestingly, it
has been also observed that the heavy metals emitted by ve-
hicles may be deposited on leaves as well as on the soil surface
(Harrison et al. 1981). Hence, soil or agriculture fields close to
the roads may have several types of toxic heavy metals as
reported by many researchers (Turer and Maynard 2003;
Viard et al. 2004; Kalavrouziotis et al. 2006).

Many recent studies have supported that untreated indus-
trial wastewater is a main culprit of heavy metal contamina-
tion (arsenic, cadmium, mercury, etc.) of water and other parts
of the environment. Moreover, heavy metals create a severe
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threat to the living entity of the planet earth (Cao et al. 2019;
Dumont et al. 2019; Sandhu et al. 2019; Nanda et al. 2019).
According to Alloway (2012), soil samples of industrial and
urban areas can have relatively greater levels of heavy metal
contaminations (for example, cadmium, copper, lead, and
zinc) coming from diffused sources such as automobiles, dis-
posal of untreated wastewater, paint and varnishes, etc.
However, soil texture (rocks), atmospheric impurities (metal-
containing aerosols), fossil fuel burning, and agrochemicals
(nitrogenous and phosphate fertilizers, and pesticides) are
the major contributors of heavy metals in agricultural soils.
Sun et al. (2013) studied 114 black soil samples collected from
the farming lands of China for the determination of chromium,
copper, nickel, lead, and zinc. Out of these metals, copper and
lead were added by human activities, chromium, nickel, and
zinc were added by geological reasons; agricultural practices
were responsible for copper elevation; and lead was emitted
due to the burning of fossils and municipal garbage. Peralta
et al. (2020) observed metallic contaminations of arsenic, cop-
per, lead, and zinc in the soil of a 40-year-old vineyard
(Catalonia, northeast Spain) that used Bourdeaux (a copper-

based fungicide) via portable ED-XRF. It was found that the
upper soil was containing 70–128 mg/kg of copper, which is
more than the Spain government-prescribed standard (90
mg/kg). However, the levels of arsenic, lead, and zinc were
found insignificant. According to Shah and Daverey (2020),
Europe (central and eastern), USA, and China are found to
have metal-contaminated soil sites of around 1.7 million, 0.6
million, and > 20 million ha agriculture area, respectively.
Natural sources of heavy metals in soils are volcanoes and
disintegration of rocks, whereas industrial discharge, urban
expansion, the automobile sector, and the wide application
of agrochemicals are human sources of heavy metals in the
soils (Pan et al. 2016; Ali et al. 2019a, b). Moreover, mining
activities, municipal solid wastes, and industrial sludge are the
significant contributors of heavy metal contamination in the
soil (Ye et al. 2017; Bello et al. 2019; Vardhan et al. 2019).
Wang et al. (2020a) reported that the exponential growth of
industries and metropolitan areas is mostly responsible for the
metallic contamination of soil. In the southwest part of China,
cadmium and nickel are being added frequently into the soil
(Sun et al. 2014). Moreover, metals like cadmium, chromium,

Fig. 1 Sources of heavy metals in the environment
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nickel, and zinc can enter the human body via the food chain
(Mclaughlin et al. 1999, Wang et al. 2003). Apart from these,
many researchers reported the deterioration in the quality of
crops, environmental imbalance, soil health decline, and loss
of agriculture could also be possibly due the elevated concen-
trations of heavy metals in soil (Ahmad et al. 2016; Shah and
Daverey 2020; Zhang et al. 2020). Further, Zhang et al. (2020)
estimated the concentration of antimony, arsenic, cadmium,
chromium, lead, thallium, mercury, manganese, and nickel in
tea leaves. They noticed that apart from human factors, geo-
logical reason is also a significant factor for metal addition in
the soil as evident in some studies. It has been observed that
the soil generated from the carbonate-bearing rocks or/and
intermediate-acid rocks may contain greater levels of heavy
metals (Jia et al. 2020; Zhang et al. 2020). The source of heavy
metal contamination in water may be natural or anthropogenic
or both. However, they do not degrade easily; only transfor-
mation in their oxidation state is possible (Park et al. 2019),
which ultimately causes severe disturbances in the metabo-
lism of aquatic lives along with ecological turbulence (Baby
et al. 2010). Marella et al. (2020) examined that many activ-
ities are responsible for the addition of heavy metals (common
metals are cadmium, chromium, copper, lead, mercury, and
zinc) in the aquatic environment. Cadmium can also be added
from plastic manufacturing, from steel and battery industries,
and also by some natural ores in the aquatic environment. It
can disturb entire trophic levels of organisms after consuming
contaminated fishes (Rizwan et al. 2019). The presence of
heavy metals in soil can lead to contamination of water (sur-
face and ground), killing of agriculture-friendly microbes, and
poor soil health along with loss of agricultural yield (Singh
et al. 2018; He et al. 2019). Moreover, these metals accumu-
late in the crops and may become risky for ecological frame-
works including human beings (Yin et al. 2016; Chai et al.
2018; Wang et al. 2020b).

The soil of firing ranges also gets heavily pollutedwith lead
as it accumulates bullets that can change the fundamental
properties of soil including pH, ability of exchanging cations,
moisture content, etc. (Etim 2018; Dinake et al. 2019).
According to Moon et al. (2013a), normally Pb (97%), Sb
(2%), As (0.5%), Ni (0.5%), and Cu (0.1%) may be present
in one bullet shot. Many previous studies observed > 90%
lead presence in a single bullet (Dermatas et al. 2006;
Robinson et al. 2008; Chrastný et al. 2010; Moon et al.
2013a). Somewhere, the range of lead was diagnosed even
more than 1000 mg/kg in the soil of an army firing range
(Lin et al. 1995; Cao et al. 2003). Further, Moon et al.
(2013b) stated that in the soil of military shooting ranges,
significant concentrations of Pb2+ as well as Cu2+ were pres-
ent and they can reach the groundwater after dissolution and in
the air as fine aerosol. Lead has a great tendency to accumulate
in the top layer of soil as it shows little mobility (Martin et al.
2014; Etim, 2018; Lago-Vila et al. 2019).

Discarded electronic products such as air conditioners, mo-
bile phones, laptops, desktops, music players, etc. generated ~
41.8 MT throughout the world in year 2014 (Ouabo et al.
2019). These e-wastes possess many harmful metals such as
arsenic, cadmium, chromium, mercury, lead, selenium, etc.
These metals are being used in the development of circuiting,
electrification, galvanic cells, etc. (Otsuka et al. 2012; Zeng
et al. 2014) and the careless disposal of e-wastes (open dump-
ing and/or burning, etc.) can lead severe environmental con-
tamination of the atmosphere and hydrosphere as well as lith-
osphere (Wei and Liu 2012; Ouabo et al. 2019; Wu et al.
2019a, b; Yu et al. 2019). Friedlander et al. (2019) examined
the 29 soil samples around an e-waste incineration area of East
Jerusalem and found concentrations of copper, iron, lead,
manganese, and zinc in the vicinity of the burning site.
Moreover, it was also observed that these metallic concentra-
tions were governed by the local weather and soil composi-
tions. E-waste has become a global concern because of con-
taining poisonous metals which deteriorates the quality of the
environment as well as human life (Zhang et al. 2012a, b). A
similar finding of soil contamination due to multiple heavy
metals (Cd, Cr, Hg, Pb, and Sb) from the burning of e-waste
is also reported by many studies (Santos et al. 2011; Stenvall
et al. 2013; Jiang et al. 2018; Han et al. 2019). Processing of e-
waste materials is a significant supplier of many heavy metals
and other pollutants in the soil and water as well (Salam and
Varma 2018; Kumar 2018; Kumar and Fulekar 2019). For
example, Yin et al. (2018) observed 4.61, 6.3, and 10.3 times
greater copper, mercury, and antimony, respectively, in the
soil of e-waste processing site as compared to a reference soil
sample. Thus, it can be seen that there are many types of
diffused and non-diffused sources of toxic metals. These
sources may be natural or human generated; however, anthro-
pogenic activities are the significant contributor of toxic
metals in the environment.

Traces of heavy metals in plants and animals

Accumulation of heavy metals is observed frequently in the
body of living creatures due to their highly reactive as well as
permeable nature that eventually causes irreversible damage
to the health of biota (Zou et al. 2016; Zhang et al. 2018; Wu
et al. 2019a, b). Even a little concentration may cause stern
troubles to humans as well as the environment (Gumpu et al.
2015; Chu et al. 2019). Ene et al. (2010) used X-ray fluores-
cence to determine the several types of heavy metal concen-
tration in water and soil samples collected from the surround-
ing areas of some iron and steel workshops (Romania). A high
metal concentration was observed in the soil samples collected
from the adjacent areas of this workshop as compared to the
distant location from the workshop. However, the areas with
high traffic density as well as industries possess enhanced
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levels of heavy metals. Therefore, it can be understood that
increasing distance from the pollution sites may have lesser
detrimental effects on the environmental systems or biota.
Similarly, Ekmekyapar et al. (2012) reported heavy metal
contamination in the soil samples and these metals got
transferred from the contaminated soil to the wheat crop
which was cultivated near the roads in Turkey. As per their
findings, the level of lead was detected to be greater than the
standards prescribed for soils. Interestingly, the levels of Cu,
Fe, Mn, and Ni were found to be higher in the wheat plants
before washing as compared to those of the cleansed wheat
plants. The higher level of metal contamination was attributed
to the heavy traffic load as well as the effect of wind direction.
Liu et al. (2013) also studied the accumulation of metals by
several crop plants including barley, clover, grapes, spinach,
wheat, etc. The samples were extracted from the edible parts
of these crops as these parts are consumed by humans or other
living organisms. Roots and leaves are the main parts of any
plant through which heavy metals get absorbed from the con-
taminated soils (Liang et al. 2017). Likewise, Byers et al.
(2019) determined the heavy metal contents in the algal plants
using portable energy-dispersive X-ray fluorescence(ED-
XRF) as this instrument can be used for onsite determination
of metallic contents in the samples. Moreover, atomic absorp-
tion spectrometry (AAS), inductively coupled plasma-atomic
emission spectrometry (ICP-AES), inductively coupled
plasma-atomic mass spectrometry (ICP-MS), and wavelength
dispersive XRF (WD-XRF) are also some of the important
techniques for metal determination in various types of sam-
ples. Fishes are also reported to have heavy metal contamina-
tion as studied by Mehouel et al. (2019). Researchers noticed
that species of fishes found along with Algerian coasts like
sardine (Sardina pilchardus) and swordfish (Xiphias gladius)
were also having higher levels of Cd, Hg, and Pb as prescribed
by the health authorities of Algeria as well as Europe
(Mehouel et al. 2019).

Furthermore, Marques et al. (2008) observed that terrestrial
vertebral organisms of contaminated areas are also at risk be-
cause of the bioaccumulation of heavy metals in their body.
Baby et al. (2010) reported that the liver is a major body organ
of mammalians as well as fishes where most of the heavy
metals get accumulated. Sarah et al. (2019) examined the
presence of heavy metals in the body of an edible fish, i.e.,
Channa punctatus of Ramganga River. A study has shown
that heavy metals were accumulated in the liver of the fish in
an order of Fe > As > Cd > Zn > Pb, whereas in the kidney,
these metals were present in an order of Zn > Fe > As > Cd >
Pb. These metals were present more than the standards and
may cause human health disorders after fish consumption.
The source of heavy metals in the river was the
agrochemicals and other human activities. Spyra et al.
(2019) reported heavy metal accumulation (including copper,
cadmium, lead, and zinc) in a snail species, i.e., Physell

aacuta, which is generally found in freshwater ecosystems.
According to Hao et al. (2019), marine organisms have a
greater ability for bioaccumulation of heavy metals as they
studied crabs and marine fish for cadmium, chromium,
copper, lead, mercury, and zinc. Copper and zinc were
highly accumulated metals in crabs and marine fish. Goretti
et al. (2019) reported on the heavy metal accumulation in the
body of the honeybee (Apis mellifera ligustica) in central
Italy. A study has shown that cadmium was present in higher
concentrations with respect to copper, manganese, and zinc.
Sources of these heavy metals were PM10 (particulate matter
of 10 micron size) and agrochemicals used in soil. Hu et al.
(2020a, b) developed a model to determine heavy metal accu-
mulation in the crops coming from the contaminated farm-
lands. One thousand eight hundred twenty-two samples (both
crops and soils) were collected for the calculation of bioaccu-
mulation factors for all the crops. Arsenic, cadmium, chromi-
um, copper, lead, mercury, nickel, and zinc metals were de-
termined in all the samples, and cadmium was accumulated in
the highest concentration among all the crops. Lethal effects
on human beings are observed due to the intake of heavy
metal-contaminated vegetables and crops as these crops were
irrigated with metal-contaminated water (Jacob et al. 2018).
Kumar et al. (2019) reported the contamination in cauliflower
(Brassica oleracea L.) which was irrigated with industrial
wastewater. Analyses have shown that iron was present in
the highest level and cadmium was accumulated in the
lowest concentration in the roots, leaves, and florescence of
cauliflower. Liu et al. (2019) investigated the presence of
many heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in
mollusk species, crabs, and fish. However, molluskans were
found to have elevated concentrations of metals as compared
to crabs and fishes. Quina et al. (2019) studied the effect of
heavy metal contamination of the population of wild Algerian
mice (Mus spretus). Heavy metal-contaminated environments
caused changes in enzyme secretions, tissue disorders, and
blood poisoning as well as mutations in the mice species.
According to Zhang and Reynolds (2019), cadmium easily
gets accumulated in the vegetations and animal tissues (terres-
trial and aquatic). The lethality of cadmium is comparatively
greater because it can persist for longer times in the environ-
ment as compared to other metals. Kidney, liver, and DNA
disorders, and growth obstacles, are the common problems
due to cadmium poisoning.

Human health disorders due to heavy metal
contamination

Heavy metals are very lethal, sometimes carcinogenic, and
also can create big problems to the health of many kinds of
living creatures (Leong and Chang 2020). If the concentration
of heavy metals exceeds the level prescribed by WHO, it will
create toxic effects for the soil and aquatic systems (Ali et al.
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2019a, b). Their existence in the soil environment can deteri-
orate the quality of food, groundwater, agriculture-friendly
microorganisms’ growth and vegetation growth, etc. (Vries
et al. 2007; Popescu et al. 2009). Heavymetals are well known
for higher reactivity and rapid complexation as well as bio-
chemical processes (Salem et al. 2000a, b; Mohammed et al.
2011). Moreover, these heavy metals get circulated among all
the living systems of any ecosystem through the food chain
(Ali et al. 2019a, b). The presence of heavy metals in soil,
water, and food can harm human health as it could reach
inside the body through direct intake, dermal contact, and
inhalation (Liang et al. 2017). In addition to these, the food
chain is the easiest route of heavy metals to reach the inside of
the human body and causes several fatal diseases. It is note-
worthy that the levels of several essential nutrients including
ascorbic acid (vitamin C) and iron in the human body will be
decreased if they are taking meals contaminated with arsenic,
cadmium, chromium, lead, etc. like toxic metallic ions and
may have weaker immune systems, many functional disor-
ders, disabilities, and malnutrition (Liu et al. 2005) as these
metals have been considered as extremely toxic in nature
(Bansod et al. 2017). Heavy metals are importunate contami-
nants of the environment, and they may be present for hun-
dreds of years (Kumar et al. 2017; Bansod et al. 2017) as these
metals are not easily decomposable in the environment and
most likely get accumulated inside the bodies of living crea-
tures after being exposed to contaminated air, food, soil, and/
or water (Kumar et al. 2017). After prolonged accumulation,
these chemicals attack the central nervous system, immune
system, and reproductive system as well as gastrointestinal
system (Turdean 2011; Gong et al. 2016). These human health
disorders may include severe diseases like carcinogenicity,
mutagenicity, and toxicological diseases to the various body
organs (Trautwein and Deutsche 1997; Lim et al. 2008; Mehta
et al. 2016). Several human body organs may also have severe
risk due to heavy metal intake such as brain retardation, neu-
rons, blood poisoning, liver, cancer, skin problems, DNA dys-
function, lung disorders, kidney and cardiotoxicity (Oves et al.
2016; Kumar et al. 2017; Wallace and Djordjevic 2020;
Sevim et al. 2020). Moreover, prolonged intake of these
metals may also promote other diseases like Alzheimer’s,
Parkinson’s, collapse in skeletal muscles, nerves of brain, ver-
tebra as well as optic nerves (Kampa and Castanas 2008;
Guilarte 2011). Conversely, some metals like copper, seleni-
um, and zinc play essential and advantageous roles in the
physiology of the human body as copper is linked with the
proper functioning of many enzymes (Farhan et al. 2016).
Major impacts of heavy metals are illustrated in Fig. 2.

Mercury is a deadly toxic heavy metal and its poisoning
can have several destructive effects on the central nervous
systems, respiratory organs, muscle dystrophy, memory dis-
orders, disability to the limbs, etc. (Kim et al. 2016; Ha et al.
2017; Kim et al. 2019). Mercury can enter the body through

various routes such as air, water, food (fishes), etc. (Maria
2011; Prabhakar et al. 2012; Pujol et al. 2014). Some common
effects of heavy metal contamination, their speciation, and
route of entry are summarized in Table 1.

Risk assessment of human health hazard due
to heavy metal consumption

Some researchers have been trying to explore the level of
hazardness on human health due to the heavy metal contam-
ination because of their toxicity (either carcinogenic or non-
carcinogenic disease) (Singh et al. 2010; Christou et al. 2017).
Moreover, some researchers have identified the location wise
hazard level of heavy metals. For example, people living near-
by any mining area may have the greater health risk of arsenic,
lead, and/or cadmium poisoning (Li et al. 2014a, b).
Comparatively, the level of hazardness of mercury (Hg2+),
lead (Pb2+), and arsenic (As3−) is greater than that of nickel
(Ni2+), copper (Cu2+), cadmium (Cd2+), and chromium (Cr3+

and Cr6+). Hence, for heavy metals having greater risks, their
standard has been set up to ppb levels and those are having
less hazard their standard is up to ppm levels (WHO 2011).

Risk of cancer development in any person may depend on
the level as well as the exposure to carcinogenic chemicals and
it can be understood by using Eq. (1):

Cancer risk ¼ CDI� SF ð1Þ

where cancer risk = probability of developing cancer in an
individual, CDI = prolonged consumption of carcinogenic
chemicals in milligrams per kilogram per day, and SF = slope
factor for carcinogenicity in milligrams per kilogram per day
(Cai et al. 2015). This slope factor (SF) is the ratio of average
daily intake and expected lifelong exposure to heavy metal as
it has a direct connection in escalating the probability of can-
cer growth in a person (USEPA 1989).

However, carcinogenic chemicals mean several types of
carcinogens. Moreover, non-carcinogenic threat can also be
estimated after making comparison of exposure level vs time
and daily intake by using Eq. (2) (Liang et al. 2017).

HQ ¼ CDI=RFD ð2Þ

where HQ = hazard quotient, CDI = chronic daily intake,
and RFD = reference dosage.

Further, USEPA (1989) andWu et al. (2019a, b) employed
Eq. (2) to compute the probability of developing human health
disorders (noncancerous only) after the consumption of heavy
metal-contaminated rice grains. If the value of HQ is < 1, then
it would be less harmful. However, it may have greater risk, if
it is > 1 (Wu et al. 2019a, b).

Transfer factor (can give the amount of heavy metal trans-
fer into plant biomass) can also be calculated by some
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researchers (Mirecki et al. 2015) as the formula given below:

Transfer factor

¼ metal content in plant mg=kgð Þ=metal content in soil mg=kgð Þ
ð3Þ

Many researchers have observed that heavy metals present
along the roads can cause human health problems through
breathing, skin absorption, and direct intake. However, direct
ingestion of heavy metal-contaminated things (eatables, water
etc.) is the biggest hazard for the human health followed by

skin absorption and breathing (Tang et al. 2017; Li et al. 2017;
Hou et al. 2019).

Qiao et al. (2020) used a formula, i.e., pollution index (Pi),
to evaluate heavy metal contamination in water and soil as
given below:

Pi ¼ Ci=Si ð4Þ

in which Ci = metal concentration in the sample and Si =
reference metal concentration.

Fig. 2 Impacts of heavy metal
contamination on biota
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The values of Pi were observed as 22 and 15 for copper
present in sediment and upper layer of soil and it was catego-
rized as highly polluted, and the Pi value was 2 for zinc in both
the mediums (stated as moderately polluted). Similarly, arse-
nic was present in the level of moderately polluted as it had 1
and 4 Pi values in the same mediums (Qiao et al. 2020).

Hakanson (1980) provided 4 classes of heavy metal con-
tamination level based on the Pi values as mentioned below
(Table 2).

Moreover, a pollution load index was also employed by the
researchers to examine the level of heavy metal contamination
present in soil (Suresh et al. 2012; Kumar and Fulekar 2019).
This parameter can be calculated by using Eq. (5):

Pollution load index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pi1� Pi2� Pi3�…::� Pi ofn numbern
p

ð5Þ

where n = number of total analyzed metals; Pi1, Pi2 = first
and second metal concentrations, respectively; and so on
(Kumar and Fulekar 2019). According to Seshan et al.
(2010), if the pollution load index is less than 1, it shows zero
pollution due to heavy metals, whereas, if it is more than 1, it
may have metallic pollution. Such types of equations can pro-
vide us an idea about the transfer of metals into plant biomass.
Moreover, it can also help to screen the hyperaccumulator
plants which are having greater potential for the
phytoremediation of toxic heavy metals present in soil and/
or water systems.

Advanced techniques of heavy metal
determination

Detection of heavy metals in water is vital, and hence, re-
nowned international organizations such as WHO, FAO, and
USEPA as well as EU have inferred that these chemicals must
be monitored regularly in water to meet the set standards
(WHO 2011; Gumpu et al. 2015). For this purpose, highly
sensitive and sophisticated advanced instruments are required
which should have the capability of determination up to ppm
and/or ppb levels in biological samples including blood,

serum, saliva, etc.; aqueous medium; air; food; and soil as well
(Bansod et al. 2017). Conventional approaches of heavy metal
determination have several drawbacks as compared to the ad-
vanced instruments in terms of precision, accuracy, reliability,
determination time, etc. (Zhang et al. 2011; Lamine et al.
2019). The techniques which are capable of detecting the level
of heavy metals up to ppb levels in a variety of environmental,
biological, and geological samples mentioned below:

& Atomic absorption spectroscopy (AAS)
& Inductively coupled plasma-atomic emission spectrome-

try (ICP-AES) or inductively coupled plasma-mass spec-
trometry (ICP-MS) or inductively coupled plasma-optical
emission spectrometry (ICP-OES)

& X-ray fluorescence spectrometry (XRF) or wavelength
dispersive XRF (WD-XRF) or bench-mounted energy-
dispersive XRF (ED-XRF) or portable ED-XRF or syn-
chrotron XRF

& Neutron activation analysis (NAA)
& Particle-induced X-ray emission (PIXE)

The above analytical techniques are well documented for
the detection of heavy metals present in environmental sys-
tems because of their efficiency and wide range of detection
(Knecht and Sethi 2009; Bings et al. 2010; Zhang and Fang
2010; Srungaram et al. 2013) as the salient features are com-
piled in Table 3.

The techniques mentioned in Table 3 are non-destructive
which can also detect the presence of multi-elements at the
same time. These techniques are being used in industrial ap-
plications along with research because of their accuracy, pre-
cision, trace level determination, and sensitivity for the heavy
metal detection in various types of samples such as historical,
organic, industrial, geographical, environmental, etc. (Ene
et al. 2010; Pujol et al. 2014; Bansod et al. 2017).
Biosensors: Heavy metal presence can also be detected by
using some biosensors after their interaction with biological
units of living organisms such as proteins, enzymes, antibod-
ies, nucleotides, nucleosides, etc. (Blake et al. 2001; Mehta
et al. 2016). Nanoparticles: Similarly, developments of
nanomaterial-based techniques are also an important factor
of detecting heavy metals in different types of materials.

Table 2 Pollution index with
respect to heavy metal
contamination

S. no. Values of Pi for heavy metal
in water or/and soil

Expected level of heavy
metal toxicity

1. Less than 1 Low

2. 1–3 Moderate

3. 3–6 High

4. More than 6 Very high

Source: Kumar and Fulekar (2019)
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Application of many types of nanomaterials is illustrated in
the research papers which includes metallic nanoparticles,
quantum dots, metal organic frameworks, magnetic nanopar-
ticles, carbon nanotubes, and nanocomposites (Wallace 2009;
Knecht and Sethi 2009; Zhang and Fang 2010; Kumar et al.
2017).

XRF is an important technique of heavy determination in
the diverse types of samples, and it is an extremely responsive
technique which follows the principle of interaction of atoms
with radiation (Torok et al. 1998; Anjos et al. 2000; Soodan
et al. 2014). During XRF spectroscopy, emission of secondary
or fluorescent X-rays of the materials has atomized due to the
exposure of high-energy X-rays or gamma rays. It can be used
to know the precise elemental composition of the different
types of samples like archaeological things, ceramics, construc-
tion materials, forensic materials, geo-chemicals, glass, and
metals (Jekins 1999; Wilberforce 2016). Also, both quantita-
tive and qualitative analyses of these samples (along with si-
multaneous multi-element determination) can be carried out
without acid digestion in much less time (Ene et al. 2010).
Further, the XRF technique has been categorized into different
types as already mentioned in Table 2. The synchrotron-based
XRF technique is non-destructive and is the most precise and
accurate method of heavy metal determination in soil as well as
water samples. Synchrotron radiation can be used to character-
ize the various types of materials which have a very precise
accurate detection of the chemicals. Furthermore, it can simul-
taneously determine many elements present in single sample
(Radtke et al. 2016). In India, this facility is available at
RRCAT-Indore. Researchers can collaborate with the institute
to perform the experiments on highly advanced synchrotron
radiation XRF/TXRF facility at BL-16 of RRCAT-Indore.

Remediation techniques for heavy metals

The World Health Organization (WHO) and Environmental
Protection Agency (EPA) both have reported that heavy metal
contamination is a big menace for us, and therefore, they have
given several options of controlling the expansion of heavy
metals in the environmental systems (Merkoc and Alegret
2007; Aragay et al. 2011). According to Mu’azu et al.
(2019), some sustainable techniques are available in the re-
search documents for the remediation of heavy metal-
contaminated soils as well as water. Water purification can
be carried out by chemical precipitation and oxidation, reverse
osmosis, adsorption, electrodialysis, reverse osmosis, ion-
exchange etc. (Ali and Gupta 2006; Ali et al. 2011; Chen
et al. 2018). However, adsorption has been reported as a rel-
atively better technique than any others in terms of operation,
cost, and practical aspects as well as water contaminant re-
moval efficiency (Chowdhury and Balasubramanian 2014;
Park et al. 2019), and also, it does not require any post

treatment of treated water (Santhosh et al. 2016; Ersana et al.
2017). In order to protect human health, people should get safe
drinking water as well as contamination-free foodstuff.
Therefore, it is imperative to stop the release of metallic con-
taminate at their source. Moreover, eco-friendly, economical,
and efficient techniques are required to mitigate the heavy
metals present in the environment (Rai et al. 2019). Zou
et al. (2017) reported that a concept namely H-G has the abil-
ity to provide effective and precise remediation steps for the
soil contaminated with heavy metals as it incorporates threats
to the human well-being with geospatial parameters. In the H-
G concept, human well-being assessment (H) was integrated
with the geographical parameters (G) of heavy metal-
contaminated soil. Therefore, it can help in developing
geospatial technology-based decision support system to pro-
vide remediation options for contaminated soil even with a
small cluster of samples (Zou et al. 2017). Further, wisely
developed land use policies for agricultural practices (for ex-
ample, sufficient distance from the cause of heavy metal gen-
erations) and production of organic food items have got much
wide attention to prevent human health from any chemical
toxicity (Rock et al. 2017). Rai et al. (2019) have specified
the types of approaches for the management of heavy metals
present in water and soil environment such as reduction at
source of generation, ecological remediation, physical and
chemical processes, and nanomaterial-based techniques.

Phytoremediation has been considered an eco-friendly and
sustainable approach to eliminate heavy metals or other haz-
ardous chemicals from water as well as soil environment
(Bian et al. 2019). The term “phytoremediation” originated
from the Greek word of phyto which means “plant” and
remedium, a Latin word to remove or to correct an evil
(USEPA 2000; Erakhrumen and Agbontalor 2007). Several
r e s e a r c h e r s h a v e w i s e l y e x p l a i n e d t h e t e rm
“phytoremediation” according to their experimentation and
illustrations. Most of them have documented that
phytoremediation is an approach or technique which uses
plants or microbes to reduce the level of hazard of noxious
contaminants of water, air, and soil environments. It may in-
clude removal, destruction, sequestration, remediation, extrac-
tion, uptake, immobilization, and stabilization of contami-
nants (USEPA 2000; Bhattacharya et al. 2006; Van
Ginneken et al. 2007; Moreno et al. 2008; Tangahu et al.
2011). Rai et al. (2019) illustrated heavy metal contamination
of soil and water and their proper management using appro-
priate strategies as given in Fig. 3.

The phytoremediation approach has many advantages in
environmental cleanup because of the exclusive potential of
removing hazardous chemicals through their plant root system
either by the mechanism of bioaccumulation, contaminant
degradation, and/or translocation (Akpor and Muchie 2010;
Tangahu et al. 2011). Cho-Ruk et al. (2006) found that arse-
nic, cadmium, chromium, mercury, nickel, and lead can be
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removed from the soil along with some radionuclide
chemicals as well using the phytoextraction mechanism.
Phytoremediation is a widely accepted approach for heavy
metal remediation because of its less disturbing, efficiency,
relatively 60–80% less costly, eco-friendly nature, etc.
(Salido et al. 2003; Olguín and Sánchez-Galván 2012; Al-
Thani and Yasseen 2020), and it is relatively better for in situ
removal of toxic chemicals present in soil or water (USEPA
2000). A large number of heavy metals and other inorganic
and organic contaminants can also be removed using plants
(Liu et al. 2000; Mwegoha 2008). It is noteworthy that oil
crops can also be cultivated on the heavy metal-
contaminated soils for biodiesel (or bioenergy) production
(Van Ginneken et al. 2007). Moreover, the important advan-
tages are mentioned in Fig. 4.

From Fig. 4, it can be seen that plants used in the process of
phytoremediation can improve the ambient environment by
producing oxygen. Moreover, it can be applicable for in situ
as well as ex situ remediation of multiple toxic metals present
in water and soil environments. Apart from these merits, some
limitations of this technique are also well documented in the
research papers. It may be considered as a time-consuming
process because of taking much time to grow on the contam-
inated site. Furthermore, if the contaminants are likely to be
cytotoxic to the accumulator, plants will die and the approach
will fail (USEPA 2000; Akpor and Muchie 2010; Tangahu
et al. 2011). The efficiency of this technique will depend on
the nature of contaminants, level of contaminants, and nature
of the plant accumulator as well as the climatic conditions of
the field to be treated (Mwegoha 2008). However, the work

Fig. 3 Approaches for the
remediation of heavy metal
present in water and soil
environment (adapted from Rai
et al. 2019)
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progress and innovation in phytoremediation are still on the
peak of interest among the researchers.

Phytoremediation techniques
and mechanism of heavy metal alleviation

Being a green technique, phytoremediation can remove many
types of contaminants such as heavy metals and organic pol-
lutants from the water and soil without generating byproducts
(Nejad et al. 2018). It can be achieved by using plants, grasses,
microorganisms, and shrubs as in this process contaminants
can be degraded, accumulated, or stabilized (Rajkumar et al.
2012; Cameselle and Gouveia 2019; Shah and Daverey 2020).
Mainly these mechanisms have been reported to achieve the
process of phytoremediation, which includes rhizospheric bi-
ological degradation, phyto-stabilization, phyto-accumulation
or phyto-extraction, rhizofiltration, phyto-volatilization and
phyto-degradation or phyto-transformation (Erakhrumen and
Agbontalor 2007; Patra et al. 2020; Ansari et al. 2020; Al-
Thani and Yasseen 2020). These mechanisms have already
been discussed in detail in Table 4 that contains the names
of the plants reported for phytoremediation of toxic metals
present in soil and water near industries.

Steliga and Kluk (2020) found the potential of a
phytostabilizer grass, i.e., Festuca arundinacea Schreb. for
the removal of cadmium, nickel, and lead in an order of Cd
< Ni < Pb. These metals were retained by the roots of the plant
because the metal transport was not possible from the root to
the stem. It was also found to remove the hydrocarbons (in
between 49.9 and 60.1%) from the soil which were added by
petroleum products due to phytostimulation process of

rhizospheric microbes of the plant. Similar studies have also
been reported by Sun et al. (2011) and Lou et al. 2017) to
improve the soil health through phytoremediation process.
Manjate et al. (2020) recognized the role of microplastics in
the phytoremediation of cadmium and copper using
P. australis plant. However, significant quantities of metals
were removed (for example, copper 1 mg/g and cadmium 70
μg/g). The cadmium uptake by Phragmites australis (Cav.)
Steud was governed by temperature, hydrogen ion concentra-
tion, redox potential, concentration of competing ions, and
organic content of soil (Rocha et al. 2014). Rhizofiltration,
phytostabilization, phytoextraction, phytovolatilization,
phytostimulation, and phytotransformation are the widely
used phytoremediation techniques of heavy metal remediation
(Ghosh and Singh 2005; Akpor and Muchie 2010). An over-
view of these approaches is depicted in Fig. 5.

These techniques are frequently being used to alleviate
heavy metal contaminations along with some other inorganic
pollutants (for example, nitrate, phosphate, etc.) as well as
organic contaminations from the soil and water environments
(Ghosh and Singh 2005; Akpor andMuchie 2010; Olguín and
Sánchez-Galván 2012). An excellent explanation of the mech-
anism of heavy metal trapping of some important
phytoremediation techniques is depicted in Fig. 6.

Chromium [especially Cr(VI)] is one of the most toxic
metals for every type of living organisms including human
beings and plants (Mohanty and Patra 2020; Steliga and
Kluk 2020). According to Mohanty et al. (2012),
phytoremediation is a green approach to remove toxic metals
by employing plant materials. Many studies have been carried
out to remove toxic metals from the environment such as
Lonicera japonica Thunb. (Liu et al. 2009), which is a
hyperaccumulator of cadmium. Similarly, B. pilosa L. was
used for antimony removal (Qi et al. 2011). Moreover, in situ
chromium removal through hyperaccumulator weed plants
has been claimed as an innovative technique (Mohanty and
Patra 2020). Festuca arundinacea Schreb. was found to have
extraordinary capacity for the phytoremediation of metal-
contaminated soil sites. The reason of this remarkable capacity
is due to fast growth of the plant and greater proportion of
biomass as well as used for multiple metals such as Cd, Cu,
Pb, and Zn (Zhou et al. 2016; Wang et al. 2019; Zhu et al.
2020). However, Sedum alfredii H. and Brassica juncea L.
were found better for the cadmium remediation (Huang et al.
2017). Some important features of the various techniques of
phytoremediation are discussed such as:

Rhizofiltration can be carried out using both terrestrial and
aquatic plant roots which should have the capability to elim-
inate the contaminants from the soil and water. Many types of
metals (for example, lead, cadmium, copper, nickel, zinc, and
chromium) can be eliminated by their roots (Chaudhry et al.
1998; Akpor and Muchie 2010) both in situ as well as ex situ
places. Hyper accumulator plants can also be used in this

Fig. 4 Advantages of phytoremediation technique
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Table 4 Name of hyperaccumulator plants for the remediation of toxic metals from the soil and water

Toxic metal Plant Medium Uptake of heavy
metal (mg/kg)

References

As Pteris vittata L. Soil and water 8331 Kalve et al. (2011)

Pteris ryukyuensis Tagawa Soil 3647 Srivastava et al. (2006)
Pteris quadriaurita Retz. 2900

Pteris biaurita L. 2000

Pteris cretica L. 1800

Eleocharis acicularis (L.) Roem. & Schult. Water 1470 Sakakibara et al. (2011)

Sedum alfredi Hance – 9000 Xiong et al. (2004)

Prosopis laevigata (Humb. & Bonpl. ex Willd.)
M.C.Johnst.

– 8176 Buendía-González et al. (2010)

Arabis gemmifera (Matsum.) Makino – 5600 Kubota and Takenaka (2003)

Salsola kali L. Water 2075 de la Rosa et al. (2004)

Azolla pinnata R.Br. Water 740 Rai (2008)

Deschampsia cespitosa (L.) P. Beauv. Water 236.2 Kucharski et al. (2005)

Corrigiola telephiifolia Pourr. Soil 2110 Garcia-Salgado et al. (2012)

Ni Alyssum bertolonii Desv. synonym of
Odontarrhena bertolonii (Desv.) Jord. & Fourr.

Soil 10,900 Li et al. (2003)

Alyssum caricum T.R.Dudley & Hub.-Mor.
synonym of Odontarrhena carica (T.R.Dudley &

Hub.-Mor.) Španiel, Al-Shehbaz, D.A.German
& Marhold

12,500

Alyssum corsicum Rob. ex Gren. & Godr.
synonym of Odontarrhena robertiana (Bernard ex

Gren. & Godr.) Španiel, Al-Shehbaz,
D.A.German & Marhold

18,100

Alyssum pterocarpum T.R.Dudley
synonym of Odontarrhena pterocarpa

(T.R.Dudley) Španiel, Al-Shehbaz, D.A.German
& Marhold

13,500

Alyssum heldreichii Hausskn.
synonym of Odontarrhena heldreichii (Hausskn.)

Španiel, Al-Shehbaz, D.A.German & Marhold

Soil 11,800 Bani et al. (2010)

Alyssum markgrafii O.E.Schulz
synonym of Odontarrhena chalcidica (Janka)

Španiel, Al-Shehbaz, D.A.German & Marhold

19,100

Alyssum murale M.Bieb.
synonym of Odontarrhena alpestris (L.) Ledeb.

4730–20,100

Alyssum serpyllifolium Desf. Soil 10,000 Prasad (2005)

Isatis pinnatiloba P.H.Davis Soil 1441 Altinozlu et al. (2012)

Cd Phytolacca americana L. Soil 10,700 Peng et al. (2008)

Sedum alfredi Hance 9000 Xiong et al. (2004)

Prosopis laevigata (Humb. & Bonpl. ex Willd.)
M.C.Johnst.

Soil 8176 Buendía-González et al. (2010)

Arabis gemmifera (Matsum.) Makino
synonym of Arabidopsis halleri subsp. gemmifera

(Matsum.) O'Kane & Al-Shehbaz

– 5600 Kubota and Takenaka (2003)

Salsola kali L. Water 2075 de la Rosa et al. (2004)

Azolla pinnata R.Br. Water 740 Rai (2008)

Deschampsia cespitosa (L.) P.Beauv. Soil 236.2 Kucharski et al. (2005)

Rorippa globosa (Turcz. ex Fisch. & C.A.Mey.) Soil > 100 Wei et al. (2008)

Thlaspi caerulescens J.Presl & C.Presl
synonym of Noccaea caerulescens (J.Presl &

C.Presl) F.K.Mey.

Soil 263 Lombi et al. (2001)

Azolla pinnata R.Br. Water 740 Rai (2008)

Pteris vittata L. Water and soil 20,675 Kalve et al. (2011)
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category of phytoremediation. Usually, sunflower (Helianthus
annuus L.), Indian mustard (Brassica juncea L.), tobacco
(Nicotiana tabacum L.), rye (Secale cereal L.), spinach
(Spinacia oleracea L.), and corn (Zea mays L.) are found
enough for their great metal alleviation property (Raskin and
Ensley 2000; Lasat 2000; Akpor and Muchie 2010).

Phytoextraction is also termed as phytoaccumulation as it
removes soil contaminants with no significant change in soil
fertility and textures (Ghosh and Singh 2005; Prasad et al.
2006). Mostly, contaminants accumulate into the biomass of
the plants. However, it is good for the area where concentra-
tion of toxic metals was observed to be comparatively low
(Rulkens et al. 1998). The efficiency of the Phytoextraction

approach relies on the natural competence of the vegetation
(Salt et al. 1997; Teuchies et al. 2013).

Different plants may have dissimilar capacities of up-
taking pollutants, and commonly, zinc, copper, lead, chromi-
um, and nickel are reported to have been accumulated by the
hyperaccumulator plants (Lasat 2000; Akpor and Muchie
2010; Patra et al. 2020). Further, phytoextraction has been
categorized into natural phytoextraction (Henry 2000) and
phytochelatin-assisted phytoextraction (Cobbett 2000;
Ghosh and Singh 2005; Akpor and Muchie 2010).

The phytofiltration process is somehow similar to the pro-
cess of rhizofiltration. However, rhizofiltration may be a part
of it as this process takes place only in the Rhizosphere zone of

Table 4 (continued)

Toxic metal Plant Medium Uptake of heavy
metal (mg/kg)

References

Eleocharis acicularis (L.) Roem. & Schult. Water 11,200 Sakakibara et al. (2011)

Thlaspi calaminare (Lej.) Lej. & Courtois
synonym of Noccaea caerulescens subsp.

calaminaris (Lej.) Holub

Soil 10,000 Sheoran et al. (2009)

Deschampsia cespitosa (L.) P.Beauv. Soil 966.5–3614 Kucharski et al. (2005)

Hg Achillea millefolium L. Soil 18.275 Wang et al. (2012)

Marrubium vulgare L. Soil 13.8 Rodriguez et al. (2003)

Rumex induratus Boiss. & Reut. 6.45 Rodriguez et al. (2003)

Silene vulgaris (Moench) Garcke Soil 4.25 Pérez-Sanz et al. (2012)

Festuca rubra L. Soil 3.17 Rodriguez et al. (2003)

Poa pratensis L. Soil 2.74 Sas-Nowosielska et al. (2008)
Helianthus tuberosus L. 1.89

Armoracia rusticana G.Gaertn., B.Mey. & 0.97

Juncus maritimus Lam. – 0.315 Zheng et al. (2011)

Cicer arietinum L. Soil 0.2 Wang et al. (2012)

Eleocharis acicularis (L.) Roem. & Schult. Water and soil 20,200 Sakakibara et al. (2011)

Aeollanthus biformifolius De Wild.
is a synonym of Aeollanthus subacaulis var.

linearis (Burkill) Ryding

Soil 13,700 Chaney et al. (2010)

Ipomoea alpina Rendle is a synonym of Ipomoea
linosepala subsp. alpina (Rendle) Lejoly &
Lisowski

– 12,300 Mitch (2002)

Haumaniastrum katangense (S.Moore)
P.A.Duvign. & Plancke

Soil 8356 Sheoran et al. (2009)

Pteris vittata L. Soil 91.975 Wang et al. (2012)

Cr Pteris vittata L. Soil and water 20,675 Kalve et al. (2011)

Pb Medicago sativa L. Soil 43,300 Koptsik (2014)
Brassica juncea (L.) Czern. 10,300

Brassica nigra (L.) W.D.J.Koch 9400

Helianthus annuus L. 5600

Betula occidentalis Hook. 1000

Euphorbia cheiradenia Boiss. & Hohen. Soil 1138 Chehregani and Malayeri (2007)

Deschampsia cespitosa (L.) P.Beauv. Soil 966.5 Kucharski et al. (2005)

Euphorbia cheiradenia Boiss. & Hohen Soil 1138 Chehregani and Malayeri (2007)

Note: International Plant Names Index (http://www.ipni.org) has been used to verify the name of plants. [Accessed on August 14, 2020]
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plants (Akpor and Muchie 2010) and seedlings (or
blastofiltration) can also remove heavy metals either through
absorption and/or adsorption process (Alkorta et al. 2004;
Gardea-Torresdey et al. 2004; Olguín and Sánchez-Galván
2012).

In phytovolatilization, plants attract the metallic contami-
nants from the soil and/or water and release them into the
atmosphere through the leaves after converting them into vol-
atile nature. It has been found very effective in the volatiliza-
tion of mercury metal after changing into a less harmful form
of mercury (Henry 2000). An isotope of hydrogen, i.e., tritium
(3H, radioactive in nature), is also removed by using this tech-
nique (Dushenkov 2003).

Phytostabilization can remove heavy metals from a variety
of mediums such as sludge, soil, and sediments. It is a poten-
tial approach for rapid immobilization of metallic contami-
nants of water (both groundwater as well as surface water)
(Ghosh and Singh 2005).

Phytostimulation is a process in which some natural
matter is secreted by plants from the roots or else as food
for the microorganisms living in symbiotic ecological re-
lation to them. These microbes get stimulated and degrade
the contaminants present in soil or water. This process can
also be referred to as biological degradation of pollutants
through the symbiotic ecological relationship of plants and
microorganisms (Lasat 2000; Meers and Tack 2004; Akpor
and Muchie 2010).

Fig. 5 Overview of phytoremediation and mechanism of heavy metal uptake

Fig. 6 Mechanism of heavy metals uptake through phytoremediation
(adapted from Tangahu et al. 2011)
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Immobilization of metallic chemicals can also be achieved
by retarding mobility and their biological accessibility in soils
(Li et al. 2014a, b). Many advantages have been observed
when immobilizations of heavy metals are achieved in com-
bination with another material such as better adsorption po-
tential, easy operation, and protection of adsorptive capacities
etc. (Ni et al. 2012; Sukumar et al. 2014; Qin et al. 2020).
Recently, several studies have been reported to immobilize
heavy metals present in soil and water using modified algae
(Mwangi and Ngila 2012), activated carbon (Gilmour et al.
2013), zeolite (Wen et al. 2016), peat (Kim et al. 2017), clay
(Zang et al. 2017), synthesized magnetic biochar (Son et al.
2018), waste fish scale (Pal and Maiti 2020), etc.

Mwangi and Ngila (2012) modified algae using a chemical,
i.e., ethylenediamine, which could improve the adsorption
potential of algal cells for copper and lead because of the
immobilization of the amine group on the surface of algae.
Son et al. (2018) synthesized magnetic biochar using a waste
of marine algae and achieved significant removal of heavy
metals from the water. Fajardo et al. (2019) synthesized two
nanoparticles like nZVI and Fe3O4 for the stabilization of
heavy metals from both soil and water. Results have indicated
that nZVI nanoparticle was efficient to improve soil from the
metallic contaminations. However, the active period of nZVI
was relatively less. nZVI nanoparticles are one of the mostly
used materials to reduce the biological availability of heavy
metals present in water and soil (Mueller et al. 2012). Huang
et al. (2019) remediated heavy metals from the soil contami-
nated by e-waste processing unit using jointly biochar and
phosphate fertilizer. 0.8% fertilizer and 3% biochar were used
in combination and found effective to remove 34.8% cadmi-
um, 29.4% copper, 46.6% lead, and 41.0% zinc from the soil.
Lago-Vila et al. (2019) stated that the combination of
nanoparticles and plants is found very effective in the

immobilization of lead present in soil of a firing range area.
Immobilization of Pb was achieved through combined
application of hydroxyapatite nanoparticles and three plant
species, i.e., Festuca ovina L., Lactuca sativa L., and
Sinapis alba L. Pal and Maiti (2020) successfully remediated
Cd and Pb from the aquatic sediment using a biosorbent gen-
erated from the waste fish scale in different proportions. The
adsorption capacities of the biosorbents were 89.30 mg/g and
92.65 mg/g for Cd and Pb, respectively. Moreover, it was also
observed that 20% biosorbents could reduce 70–80% of heavy
metals (Cd and Pb) from the aquatic sediment which was
previously available for the plants.

Influencing factors for phytoremediation
of heavy metals

The growth rate of plants, selectivity of metals, immunity of
plants, species of plants, and harvesting method are vital fac-
tors which may affect the efficiency of phytoremediation
(Cunningham and Ow 1996; Ghosh and Singh 2005).
Further, the effectiveness of phytostabilization could also be
attributed to the capability of the root system of the vegeta-
tions (Ghosh and Singh 2005). Some geographical indicators
are also among the governing factors of phytoremediation of
contamination which include altitude, climatic conditions,
temperature, humidity, etc. required by the plant species.
Moreover, the immunity of plants could also affect the rate
of contamination uptake (Akpor and Muchie 2010; Tangahu
et al. 2011). The plants which have a shallow root system are
not found suitable for the groundwater contaminant remedia-
tion (Gardea-Torresdey et al. 2005). Some common factors
are shown in Fig. 7.

Fig. 7 Influencing factors for phytoremediation of heavy metals
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Another example of having a low phytoextraction potential
of plants for lead is also reported elsewhere but it can also trap
leadmetal after adding synthetic chelators in the contaminated
soil (USEPA 2000). The uptake mechanism of heavy metals
by any plant relies on several chemical factors such as the
chemical nature of the metallic species, presence of competing
ions, pH of the medium, abundance of metallic species, the
selectivity of plants, etc. (Gardea-Torresdey et al. 2004).
Therefore, it can be understood that many environmental, cli-
matic, metallic nature as well as nature and species of plants
are among the most important fac tors affect ing
phytoremediation of heavy metals either from soil or water.

Conclusion

Inappropriate urban and industrial expansions have severely
degraded the quality of the environmental system (air, water,
and soil), which ultimately cause threats to human health.
Developing countries like India and China are at great risk
because of an extremely large population. Heavy metals are
one of the most toxic chemicals which affect the health of
human beings including other creatures as well. Heavy metals
are observed as carcinogenic, genotoxic, hepatotoxic,
immunotoxic, neurotoxic, reproductive organ disruptor, neph-
rotoxic, etc. These metals can enter the body mostly through
the intake of contaminated drinking water and food items.
Therefore, their qualitative as well as quantitative determina-
tions in the environmental and biological system are very
crucial while developing remedial measures. However, now,
many advanced techniques have been developed for this pur-
pose, such as AAS, ICPs, XRF, NAA, etc. These techniques
have the capacity to detect even the trace levels (ppm and/or
ppb and/or ppt) of heavy metal presence with high precision
and accuracy. However, synchrotron-based XRF technique is
observed as widely accepted and accurate for the elemental
analysis of samples (for example, environmental, biological,
geological, etc.). Further, many researchers have proposed
some remedial measures to reduce the problems of heavy
metals from the water and soil environment such as
phytoremediation, bioremediation, phytoextraction, sorption,
phy t ovo l a t i l i z a t i o n , e t c . Phy t o ex t r a c t i o n and
phytovolatilization methods are preferred to decontaminate
soil and water environments, respectively, from the toxic
metals. Finally, change in human behavior and adoption of
the principles of sustainable development can help in the ho-
listic management of all the environmental problems.
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