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Abstract
A review of the applicability of electron beamwater radiolysis for sewage sludge treatment is presented. Electron beam treatment
has been proven to be a successful approach to the disinfection of both wastewater and sewage sludge. Nevertheless, before 2000,
there were concerns about the perceived high capital costs of the accelerator and with public acceptance of the usage of radiation
for water treatment purposes. Nowadays, with increased knowledge and technological development, it may be not only possible
but also desirable to use electron beam technology for risk-free sewage sludge treatment, disposal and bio-friendly fertiliser
production. Despite the developing interest in this method, there has been no attempt to perform a review of the pertinent
literature relating to this technology. It appears that understanding of the mechanism and primary parameters of disinfection is
key to optimising the process. This paper aims to reliably characterise the sewage sludge electron beam treatment process to
elucidate its major issues and make recommendations for further development and research.

Keywords Electron beam irradiation . Sewage sludge treatment . Water radiolysis . G value . Free radical scavengers . Electron
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Historical background

The interest in using accelerated electrons for sewage and
sewage sludge treatment has been rising for several decades,
and the earliest large-scale studies were started in North
America in 1974 (Trump et al. 1984). This led to experiments
with a first pilot plant system at the Deer Island Wastewater
Treatment Plant in Boston. There was also a research plan
undertaken in the Miami-Dade Virginia Key Wastewater
Treatment Plant in 1976. The Electron Beam Research
Facility (EBRF) was built, and it operated for 1 year (Waite
et al. 1985). Extensive industrial-scale research on the appli-
cation of electron beams for the spent water treatment was
conducted in EBRF in 2000 (Kurucz et al. 1995; Nickelsen

et al. 1994; Tobien et al. 2000; Waite et al. 1985). There was
also an investigation of the acceleration technology efficiency
in the sewage treatment plant in Kolo, Poland, in cooperation
with the Institute of Nuclear Chemistry and Technology in
Warsaw (Chmielewski et al. 1995).

The largest commercial venture was the removal of dye
from wastewater at the Daegu Dyeing Industrial Complex
(DDIC) in Korea. After the construction of a pilot plant, the
purification of wastewater from this textile dyeing was applied
commercially from 2005 (Han et al. 2012).

Apart from industrial pilot plants, there have also been
numerous research studies of electron beam (EB) treatment
on the laboratory scale. These fundamental studies have re-
vealed that EB has a profound influence on bacteria, virus and
parasite removal (Borrely et al. 1998; Capodaglio 2017;
Chmielewski et al. 1995; Engohang-Ndong et al. 2015;
Farooq et al. 1992; Getof 1995; Hossain et al. 2018; Maruthi
et al. 2013, Maruthi et al. 2011a; Moraes et al. 2004; Praveen
et al. 2013; Pribil et al. 2007; Rawat and Sarma 2013) and the
solubility of carbohydrates, proteins and lipids (Changqing
and Min 2012; Engohang-Ndong et al. 2015; Lim et al.
2016; Park et al. 2009; Shin and Kang 2003), as well as colour
and odour removal (Bae et al. 1999; Engohang-Ndong et al.
2015; Kim et al. 2007; Paul et al. 2011; Tobien et al. 2000).
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Another crucial issue is the electron beam irradiation effect on
biochemical oxygen demand (BOD) and chemical oxygen
demand (COD), which are used worldwide to measure the
number of organic compounds in water (Royal Commission
on Sewage Disposal 1915; U.S. Environmental Protection
Agency 2011). Many papers claim that BOD and soluble
COD increase after penetration by accelerated electrons
(Changqing and Min 2012; Han et al. 2012; Kim et al.
2007; Lim et al. 2016; Park et al. 2009; Paul et al. 2011;
Shin and Kang 2003), which is thought to be caused by the
conversion of non-biodegradable compounds into biodegrad-
able form. Nonetheless, several others say that BOD and COD
decrease after EB irradiation (Bae et al. 1999; Farooq et al.
1992; He et al. 2016; Maruthi et al. 2011b; Rawat and Sarma
2013; Zheng et al. 2001), which might be a result of the
breakdown of biodegradable components into simple, harm-
less products such as water, carbon oxides and salts (Cross
and Jayaram 1998; Son 2017). Therefore, a closer look at the
literature reveals complications in understanding the mecha-
nisms of pollutant removal from the spent water after electron
beam application and the need for a review.

The mechanism of the electron beam
irradiation

Sewage sludge direct and indirect radiolysis

The microbicidal action of ionising radiation (IR) is achieved
by its direct (physical) and indirect (chemical) action. When
the high energy electrons interact with sewage sludge matter,
the ionisation and excitation of molecules can occur (Borrely
et al. 1998):

R. 1:XY + e −➔ XY ∗ + XY + + e−

R. 2:XY + + e −➔ XY∗

R. 3:XY ∗➔ X • + Y•
R. 4:XY +➔ X + + Y•

Where R. 1—electronic excitation and ionisation, R. 2—
recombination, R. 3 and R. 4—fragmentation, *—excited
molecule, +/−—cation/anion and •—radical.

Once the irradiation is applied, the electrons can interact
with the genetic material or some other cellular elements that
are essential to the persistence of the organism. This is called a
direct effect, and it may ultimately affect the ability of the cell
to reproduce and survive. The direct effect of the radiation is
thought to play a small part in treating pathogens (Lemée et al.
2017) and may only be significant, > 10% of removal, with
organic compounds when the concentration of the contami-
nant is ≥ 0.1 M (William et al. 2001).

As a result of water radiolysis, several reactive species are
formed which can further interact with each other and with the

components of the sewage sludge (Cross and Jayaram 1998).
This is called an indirect effect. During the water treatment,
free radicals and hydrogen peroxide might be generated di-
rectly in the biological cell, resulting in its damage or perma-
nent impairment. The biological material destruction efficien-
cy is correlated with the amount of energy absorbed. Actively
reducing reactive components (e−aq, hydrated electron, and
H•, hydrogen radical) and strongly oxidising radical (OH•,
hydroxyl radical) are formed all but simultaneously, within
10−7 s of exposure, and in the same order of magnitude con-
centration (Table 2). This is beneficial to degrade mixed con-
taminants that could be removed via either oxidation or reduc-
tion and that aspect differentiates the EB process from
other advanced oxidation technologies (Wang and Chu
2016). The reactions that take place are given in
Table 1, along with their rate constants.

The primary species H•, OH• and e−aq, as well as H2O2, can
penetrate the organic molecules, and they are the most
reactive.

G value for water irradiation-induced reactive species

In order to determine the number of radicals produced, the G
parameter can be used. G radiation chemical yield (1) is the
number of molecules, atoms or free radicals created (or
destroyed) per 100 eV of energy deposited in water (Buxton
et al. 1988).

G ¼ No: of formed molecules
100 eV

ð1Þ

The main reactive compounds formed after the injection of
electrons into the water and theirG values (neutral conditions)
are as follows (Cross and Jayaram 1998; Engohang-Ndong
et al. 2015; Nickelsen et al. 1994; Tobien et al. 2000; Wang
and Chu 2016):

R. 5:H2O ➔ [2.7] OH• + [2.6] e−aq + [0.6] H• + [2.6]
H3O

+ + [0.45] H2 + [0.7] H2O2

Using theG value in the SI unit of μmol of product formed
(or destroyed) after the absorption of 1 J of energy, the ap-
proximate concentration of the reactive species can be evalu-
ated (Cooper et al. 2004):

CRC ¼ D� GvalueRC ð2Þ

Where CRC—reactive compound concentration [μmol
/kg], D—applied dose [J /kg] and GvalueRC—G value of the
reactive compound [μmol /J]. This can be calculated by mul-
tiplying the values in R. 5 by 0.1036.

The approximate content of radicals, hydrogen perox-
ide and the hydrated electron in pure water at various
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doses using high energy electron acceleration is present-
ed in Table 2 (Cooper et al. 2004).

As the dose increases, such a simple estimation may no
longer be strictly accurate, and the concentration might be

Table 1 Reactions occurring in pure water after the electron beam irradiation and corresponding rate constants according to different authors

Reaction Rate constant [mol−1 dm3 s−1] Reference

H• + O2•
− ➔ HO2•

− 2.0 × 1010 William et al. (2001)

H• + H2O2 ➔ H2O + OH• 9.0 × 107 Buxton et al. (1988), William et al. (2001)

H• + O2 ➔ HO2• 2.1 × 1010 William et al. (2001)

H• + H• ➔ H2 7.8 × 109 Le Caër (2011)

5.0 × 109 William et al. (2001)

1.3 × 1010 Sun and Chmielewski (2017)

H• + H2O ➔ H2 + OH• 1 × 101 Buxton et al. (1988), William et al. (2001)

H• + HO2• ➔ H2O2 1.0 × 1010 William et al. (2001)

H• + OH− ➔ e−aq + H2O 2.2 × 107 William et al. (2001)

e−aq + H2O2 ➔ OH• + OH− 1.2 × 1010 Kurucz et al. (1991), William et al. (2001)

1.1 × 1010 Buxton et al. (1988)

e−aq + OH• ➔ OH− 3.0 × 1010 Buxton et al. (1988), Khan et al. (2015), Le Caër (2011), William et al. (2001)

e−aq + H+ ➔ H• 2.3 × 1010 Buxton et al. (1988), Tobien et al. (2000), Wang and Chu (2016)

e−aq + H3O
+ ➔ H• + H2O 2.3 × 1010 Le Caër (2011)

e−aq + e aq + 2H2O ➔ H2 + 2OH− 5.5 × 109 Buxton et al. (1988), Le Caër (2011)

e−aq + H• + H2O ➔ H2 + OH− 2.5 × 1010 Le Caër (2011)

e−aq + H2O ➔ H• + OH− 1.9 × 101 Buxton et al. (1988)

8.9 × 102 William et al. (2001)

e−aq + H• ➔ H2 + OH− 2.5 × 1010 Buxton et al. (1988)

e−aq + O•− ➔ 2OH− 2.2 × 1010 Buxton et al. (1988), William et al. (2001)

e−aq + HO2
− ➔ 2OH− + OH• 3.5 × 109 William et al. (2001)

e−aq + O2 ➔ O2•
− 1.9 × 1010 Buxton et al. (1988), Getof (1995), William et al. (2001)

e−aq + O2
−• ➔ O2

2− 1.3 × 1010 Buxton et al. (1988)

OH• + H2 ➔ H• + H2O 4.2 × 107 Buxton et al. (1988)

OH• + OH• ➔ H2O2 5.5 × 109 Khan et al. (2015), Le Caër (2011)

OH• + HO2• ➔ H2O + O2 6.0 × 109 Buxton et al. (1988)

OH• + H• ➔ H2O 7.0 × 109 Buxton et al. (1988), Khan et al. (2015), Wang and Chu (2016)

2.0 × 1010 Le Caër (2011)

OH• + OH− ➔ O•− + H2O 1.2 × 1010 Wang and Chu (2016)

1.3 × 1010 Buxton et al. (1988), William et al. (2001)

OH• + HO2
− ➔ H2O + O2•

− 7.5 × 109 William et al. (2001)

OH• + O2•
− ➔ OH− + O2 8 × 109 Buxton et al. (1988)

1.1 × 1010 William et al. (2001)

O• + H2O2 ➔ O2•
− + H2O 2.7 × 107 William et al. (2001)

O•− + H2O ➔ OH− + OH• 1.8 × 106 Buxton et al. (1988)

O•− + H2 ➔ H• + OH− 8.0 × 107 Buxton et al. (1988)

O•− + HO2
− ➔ O2•

− + OH− 4.0 × 108 Buxton et al. (1988)

O•− + O2•
− ➔ 2OH− + O2 6.0 × 108 William et al. (2001)

H3O
+ + OH− ➔ 2H2O 1.4 × 1011 Le Caër (2011), Sun and Chmielewski (2017)

HO2• + O2•
− ➔ H2O2 + O2 + OH− 9.7 × 107 William et al. (2001)

HO2• + HO2• ➔ H2O2 + O2 8.3 × 105 William et al. (2001)
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over-estimated (the contribution of direct effect increases).
However, in the highly contaminated environment of sewage
sludge, where the reactive species action is being rapidly
inhibited, this assumption provides an order-of-magnitude es-
timation of the compounds available for reaction with the
organic or inorganic contamination (William et al. 2001).
An approximate removal percentage can be calculated for
each species (3) (Nickelsen et al. 1994). As an example, the
estimated e−aq, H• and OH• contributions in toluene and ben-
zene removal are presented in Table 3.

Cx ¼ kx � Gx � 100%

kx � Gx þ ky � Gy þ kz � Gz
ð3Þ

Where kx,y,z are rate constants [mol−1 dm3 s−1] of reactions
between the contaminant and the x,y,z reactive species; Gx,y,z

are the G values of x,y,z radical formation; and Cx is the x
radical contribution in contaminant removal.

Using the G value allows the identification of the most
substantial radicals for specific contaminants and should be
one of the first steps when designing wastewater or sewage
sludge electron beam installation, where specific contami-
nants are present.

Free radical scavengers

In order to extend the laboratory data to natural conditions, the
composition of sewage sludge should be considered.
Nonetheless, while thousands of experiments have been car-
ried out on the radiolytic destruction of various groups of

environmental contaminants, these were tested mostly on sin-
gle-component, synthetic solutions. In real conditions (sewage
sludge, wastewater/natural water with a complex matrix),
many constituents naturally present in solution were observed
to scavenge the production of the reactive chemical species
during electron beam irradiation (e.g. O2, HCO3

-;, CO3
2

−, Cl−, NO2
-, NO3

-) decreasing or increasing the overall
process efficiency (Capodaglio 2017; Wang and Chu
2016; William et al. 2001).

Scavengers are defined as chemical compounds (or ions
and radicals), which react with reactive species produced by
radiolysis. Such additional, both organic and inorganic,
chemicals can compete with the target pollutant. Some well-
known natural water scavengers are oxygen, bicarbonate/
carbonate ions, and nitrate ions as well as dissolved organic
carbon (DOC) (Wang and Chu 2016; William et al. 2001) or
heavy metal (HM) ions (Duarte et al. 2004; William et al.
2001). Oxygen is reduced by rapid reaction with both e−aq
and H•, while nitrate ions act as an e−aq scavenger, and during
radiolysis, they are reduced to nitrite ions. The NO2

− can
further react with the OH• and this promotes the addition of
NO2 to aromatic solutes if present (Wang and Chu 2016;
William et al. 2001). The carbonate ion is an ascertained hy-
droxyl radical scavenger, and both carbonate and bicarbonate
ions are used for the alkalinity estimation of natural systems.
However, the scavenging effect of alkalinity on OH• radical is
strictly dependent upon the solution pH (William et al. 2001).
This phenomenon is described in detail in the “pH influence”
section. The metal concentration is also a parameter of high
importance. It has been reported that some of the main prod-
ucts of water irradiation are scavenged by the metal ions
(Duarte et al. 2004). As described in “Heavy metal influence
and removal” section, this makes it possible to use the electron
beam for HM removal.

Rate constants of reactions between chemical species typ-
ically found in natural water (nitrate, nitrite, carbonate, bicar-
bonate ions and oxygen) and reactive components created
during the water radiolysis are listed in Table 4.

Scavengers are mostly known as harmful components,
which can react with radicals and make them no longer avail-
able for the contamination removal. While the negative aspect
of scavenger occurrence is indisputable, the benefit from its
presence might not be as evident. After the identification of a
potential reactive species, which is responsible for removing
the pollution of interest, it is necessary to study its main reac-
tions with other radicals. It may be favourable to remove ex-
pendable reactive species using scavengers, for overall effi-
ciency improvement. For instance, if the destruction of CCl4,
which reacts with hydrated electron is an objective, one way to
raise the removal efficiency (the effective concentration of
e−aq) is to dispose of OH•, because the hydroxyl radical reacts
with e−aq (Table 1), but does not react with carbon tetrachlo-
ride (International Atomic Energy Agency 2005; William

Table 2 The estimated concentration of reactive components at various
doses using the electron beam (based on Cooper et al. 2004)

Dose [kGy] Concentration [mM]

e−aq H• OH• H2O2

1 0.27 0.06 0.28 0.07

5 1.4 0.3 1.4 0.4

10 2.7 0.6 2.8 0.7

15 4.1 0.9 4.2 1

Table 3 The approximate responsibility of each reactive species for
toluene and benzene removal (based on Nickelsen et al. 1994)

Component Contribution in disinfection effect [%]

e−aq H• OH•

Toluene 0.1 2.5 97.4

Benzene 0.4 16.1 83.5
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Table 4 Examples of chemical reactions and rate constants for various scavengers

Scavenger Reaction Rate constant [mol−1 dm3 s−1] Reference

Carbonate ion CO3
2− + OH• ➔ CO3•

− + OH 3.9 × 108 (Buxton et al. (1988), Nickelsen et al. (1994),
Wang and Chu (2016)

CO3
2− + e−aq ➔ PDTS 3.5 × 105 William et al. (2001)

Bicarbonate ion HCO3
− + OH• ➔ CO3•

− + H2O 8.5 × 106 Nasseri et al. (2017), Nickelsen et al. (1994),
Wang and Chu (2016)

HCO3
− + H• ➔ PDTS 4.4 × 104 William et al. (2001)

HCO3
− + e−aq ➔ PDTS 1.0 × 106 William et al. (2001)

Nitrite ion NO2
− + OH• ➔ NO2• + OH− 8.0 × 109 Wang and Chu (2016)

NO2
− + e−aq ➔ NO2•

− 3.5 × 109 Wang and Chu (2016)

Nitrate ion NO3
− + e−aq ➔ NO3•

2− 9.7 × 109 Buxton et al. (1988), Wang and Chu (2016),
William et al. (2001)

NO3
− + H• ➔ PDTS 1.4 × 106 William et al. (2001)

DOC DOC + e−aq ➔ PDTS 1.0 × 107 William et al. (2001)

DOC + OH• ➔ PDTS 1.0 × 107 William et al. (2001)

DOC + H• ➔ PDTS 1.0 × 108 William et al. (2001)

Methanol CH3OH + OH• ➔ H2O +
CH2OH• (93%) + CH3O• (7%)

9.7 × 108 Buxton et al. (1988), Nickelsen et al. (1994),
Wang and Chu (2016)

CH3OH + e−aq ➔ H• + CH3O
− < 1.0 × 104 Wang and Chu (2016)

CH3OH + H• ➔ H2 + CH2OH• 2.6 × 106 Nickelsen et al. (1994)

t-BuOH C4H9OH + OH• ➔ H2O + C4H8OH• 6.0 × 108 Buxton et al. (1988), Tobien et al. (2000),
Wang and Chu (2016), Wojnarovits et al. (2005)

3.8–7.6 × 108 Nasseri et al. (2017)

C4H9OH + e−aq ➔ H• + C4H9O
− 4.0 × 105 Wang and Chu (2016)

C4H9OH + H• ➔ H2 + C4H8OH• 8.0 × 104 Zona et al. (2008)

105 Buxton et al. (1988)

Thiourea H2NCSNH2 + OH• ➔ PDTS 3.9 × 109 Wang and Chu (2016)

H2NCSNH2 + e−aq ➔ PDTS 2.9 × 109 Wang and Chu (2016)

Isopropanol C3H7OH + OH• ➔ H2O + C3H6OH• 1.9 × 109 Wang and Chu (2016)

C3H7OH + H• ➔ H2 + C3H6OH• 7.4 × 107 Wang and Chu (2016)

Nitrous oxide N2O + H• ➔ OH• + N2 2.1 × 109 Wang and Chu (2016)

N2O + e−aq + H2O ➔ OH• + N2 + OH− 9.1 × 109 Buxton et al. (1988), Getof (1995), Tobien et al. (2000),
Wang and Chu (2016), Wojnarovits et al. (2005)

Chloride ion Cl− + OH• ➔ ClOH•− 4.3 × 109 Wang and Chu (2016)

6.1(+/− 0.8) × 109 Nasseri et al. (2017)

Sulfate ion SO4
2− + e−aq ➔ SO4

3− 1.0 × 106 Wang and Chu (2016)

Bromide ion Br- + H• ➔ PDTS 2.8 × 107 William et al. (2001)

Br- + OH• ➔ PDTS 1.1 × 1010 William et al. (2001)

Chloramine NH2Cl + e−aq ➔ PDTS 1.0 × 108 William et al. (2001)

NH2Cl + OH• ➔ PDTS 1.0 × 108 William et al. (2001)

Ferrocyanide ion Fe (CN)6
4− + OH• ➔ Fe (CN)6

3− + OH− 1.1 × 1010 Buxton et al. (1988)

Chloroacetic acid ClC2H3O2 + H• ➔ C2H2ClO2 + H2 1.8 × 105 Stadlbauer et al. (1997)

ClC2H3O2 + e−aq ➔ C2H3O2• + Cl− 1.9 × 109 Buxton et al. (1988)

Oxygen O2 + e−aq ➔ O2•
− 1.9 × 1010 Buxton et al. (1988), William et al. (2001)

O2 + H• ➔ HO2• 2.1 × 1010 William et al. (2001)

PDTS products

42428 Environ Sci Pollut Res  (2020) 27:42424–42448



et al. 2001). Such a procedure would leave a hydrated electron
to react with the contaminant, and the removal efficiency is
increased. The same course of action may be repeated for any
radical–pollutant pair, and after a deep investigation of sewage
sludge components, the presence of scavengers may be used
to improve efficacy.

Nonetheless, the sewage sludge composition is often the
main problem when considering the strengthening of the pos-
itive scavengers’ influence or their detrimental effect reduc-
tion. In the past two decades, the numerous, emerging con-
taminants have been detected in wastewaters and their sludge,
such as persistent organic pollutants (POPs) (pesticides, in-
dustrial chemicals, chemical by-products like hexachloroben-
zene, polychlorinated dibenzofurans) (Changqing and Min
2012), anti-inflammatory drugs and antibiotics (Wang and
Chu 2016) as well as antibiotic-resistant genes (Liao
Yinguang Chen 2018) and microplastics (Carr et al. 2016;
Eckert et al. 2018; Gies et al. 2018; Lasee et al. 2017;
Murphy et al. 2016; Prata 2018; Talvitie et al. 2017;
Ziajahromi et al. 2017). The electron beam is proven to be
efficient for the reduction of 4-chlorophenol (International
Atomic Energy Agency 2005), chloroform, dichloroethane,
methyl isobutyl ketone, xylene and phenol (Duarte et al.
2004, 2002), pesticides, polycyclic aromatic hydrocarbons
(PAHs) and polychlorinated biphenyls (PCBs) (Changqing
and Min 2012), various azo dyes (Han et al. 2012, 2002; He
et al. 2016; Kim et al. 2006; Paul et al. 2011; Takács et al.
2007; Wojnárovits and Takács 2008), benzene (Duarte et al.
2004; Gholami et al. 2014; Nickelsen et al. 1994), toluene
(Duarte et al. 2004, 2002; Nickelsen et al. 1994) and trichlo-
roethylene (Cross and Jayaram 1998) as well as personal and
pharmaceutical care products (PPCPs) and many others.
However, when the contaminants’ content is very high (i.e.
industrial discharges), the initial radical attack results in the
by-products’ formation, known as transformation products.
These by-products may consequently react with the free rad-
icals and play a role of the scavenger by competition with the
pollutant of interest. Therefore, as the treatment proceeds (or
dose increases), the removal efficiency may decrease. For low
concentrated solutions, the process more likely destroys
the reaction by-products along with the initial solute;
hence, the removal efficiency increases with time and
with higher doses (William et al. 2001). Nevertheless,
since the likelihood of by-product occurrence is relative-
ly high due to the complexity of the sewage sludge
matrix, the content of the mentioned, dangerous contam-
inants should always be considered. Examples of chem-
ical reactions between reactive species and various scav-
engers as well as their rate constants (in pure water) are
listed in Table 4. However, the more complicated the
wastewater and sewage sludge matrix is, the more elab-
orate the assessment of scavenging influence, because it
may be affected by the presence of different chemicals.

pH influence

The electron beam-induced decomposition of organic and in-
organic pollutants is a result of their reaction with the water
treatment products, such as e−aq, H• and OH•. Since radicals
and hydrated electron can also react with the products of water
hydrolysis (H3O

+, OH−), the pH value can significantly
change their initial yields (G values), as shown below (Fig. 1).

At acid conditions, e−eq might react with hydrogen ion to
produce a hydrogen radical (Table 1), which most likely leads
to the radical recombination reaction (Wang and Chu 2016).
Therefore, the amount of OH• radicals is reduced. At alkaline
pH, the highly oxidising OH• transforms readily to less reac-
tive O•− radical (Buxton et al. 1988; Wang and Chu 2016;
William et al. 2001). It is claimed (William et al. 2001) that
the scavenging effect on hydroxyl radicals in untreated water
(pH 9) is 2.5 times higher than in secondary wastewater (pH
7). It is well documented that pollutant destruction efficiency
is profoundly lower in alkaline conditions. Likewise, in many
cases, the degradation of contaminant decreases in strong acid
conditions (generally pH < 2.0), but it is favoured at weak acid
to neutral conditions (Bae et al. 1999; Getof 1995; Nickelsen
et al. 1994; Park et al. 2009; Paul et al. 2011; Shin and Kang
2003; Tobien et al. 2000; Wang and Chu 2016; William et al.
2001; Zona et al. 2008).

It can be seen (Fig. 1) that the range of interest for highly
productive treatment (e−aq, OH•) is relatively wide. The num-
ber of priority reactive species is significant at pH between 4
and 10. Regarding the complex composition of sewage
sludge, the presence of both oxidising (OH•) and reducing
(e−aq) elements is strongly desirable. A closer look at the lit-
erature reveals that the general assessment of the most bene-
ficial environment (pH) for electron beam sewage sludge irra-
diation has not been done so far. Nevertheless, the chemistry

Fig. 1 The pH value impact on the main water radiolysis products. G
values of the primary reactive species formed after the electron beam
water irradiation is shown as a function of pH (based on Getof 1995;
Wang and Chu 2016; Zona et al. 2008)
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of such waste should always be considered first. The consti-
tution of sludge or wastewater of different origins may require
the use of different radicals. Thus, controlling of solution pH
is a parameter, which may relatively easily increase the elec-
tron beam treatment efficiency.

Heavy metal influence and removal

Since the heavy metals can react with the water radiolysis
products, they are known as scavengers. Simultaneously, it
is possible to use the EB installation to remove HMs from
liquid waste. The method is based on the radiation chemical
reduction of the metal ions to their respective metals or to
lower oxidation state ions which can then be removed by
filtration (Pikaev et al. 1997; Schmelling et al. 1998). The
reduction upon electron beam treatment can be a result of
reactions of the ions with hydrated electrons e−aq and H•
atoms, formed from water radiolysis. There are two require-
ments for heavy metal removal to take place: the absence of
oxygen in the water (in the case of CdII and PbII) and scav-
enging of OH• radicals (e.g. by formate presence),
which can oxidise the reduced metal ions (Pikaev
et al. 1997). Since the hydroxyl radicals are the main
components responsible for chemical and biological
contaminant destruction, it is not possible to remove
the HMs simultaneously with the other contaminants.

Influence of the presence of pathogens

There have been multiple pathogens detected in sludge
samples, and their presence is mostly dependent on
sludge origin (whether industrial, pharmaceutical or mu-
nicipal) and geographical location (Maruthi et al. 2013;
Tell et al. 2019). The list of the most common patho-
gens that have been found in the raw sludge can be
seen in Table 5.

Amongst all of the pathogen groups, there are several
species of particular importance due to the severity of
the disease they cause or their infectiousness and prev-
alence. The summary of the most significant representa-
tives is shown in Table 6.

Both the indirect and direct effects (see “Sewage sludge
direct and indirect radiolysis” section) on pathogens caused
by the EB are thought to result in the damage of DNA and
RNA molecules. Nevertheless, the sensitivity of microorgan-
isms to the accelerated electron beam varies significantly from
one species to another. Decimal reduction dose (D10) is de-
fined as the dose required for killing 90% of the microorgan-
ism population or the dose required for a one-log inactivation
and is given by (van Gerwen et al. 2016)

log
b
b0

¼ −
1

D10
D ð4Þ

Table 5 List of pathogens that can be found in raw sludge (adapted from Skowron et al. 2018)

Pathogen type Detected group Pathogen type Detected group

Bacteria Coliforms
Faecal coliforms
Faecal streptococci
Enterococci
Clostridium perfringens
Staphylococcus (coagulase positive)
Pseudomonas aeruginosa
Acid-fast bacteria
Coliphages
Bacteroides

Viruses Adenovirus, Alfavirus (African swine fever)
Enterovirus
Herpesvirus
Parvovirus
Picornavirus (foot and mouth disease)
Reoviridae
Rinovirus

Fungi Candida spp.
Cryptococcus spp.
Geotrichum spp.
Rhodotorula spp.
Trichosporon spp.
Torulopsis spp.
Mucor spp.
Penicillium spp.
Aspergillus spp.
Botryotrichum spp.

Parasites Trichostrongylus colubriformis
Cooperia punctata
Fasciola hepatica
Toxocara vituloru
Ascaris spp.
Taenia spp.
Strongylus spp.
Dictyocaulus spp.
Dicrocoelium spp.
Moniezia spp.
Oesophagostomum spp.

Protozoa Giardia spp.
Cryptosporidium spp.
Eimeria spp.
Balantidium spp.
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Where b is the number of surviving microorganisms,
b0 is the initial number of microorganisms present and
D is the dose absorbed by the microorganism. The mea-
sured D10 values for a number of microorganisms are
shown in Table 7.

Determination of the applied dose for the sewage
sludge treatment purpose is therefore related to microor-
ganisms’ presence. Identification of the pathogen with
the highest D10 allows the choice of the minimum radi-
ation dose (lowest cost) that guarantees sufficient micro-
bicidal effect.

Technical aspects of sewage sludge electron
beam irradiation

Electron beam accelerator—principle of operation

Particle acceleration is an act of propelling the charged parti-
cles. For an electron beam accelerator, this particle is an elec-
tron which is negatively charged. There are three main
components of the electron beam accelerator: electrons
source, accelerating structure and delivery system
(Hamm and Hamm 2012).

Table 6 Pathogens of the most prevalence, infectiousness or importance found in sludge

Pathogen Disease caused Additional information Reference

E. coli strains (STEC, EHEC, EIEC, EPEC, ETEC) Enteric and diarrheal
diseases, urinary tract
infections,
sepsis/meningitis

6619 confirmed cases of
severe foodborne disease
infections in EU/EEA in
2016

Ram et al. (2007), WHO (2018)

Salmonella species (mostly Salmonella enterica) Salmonellosis, asymptomatic
infection, gastroenteritis
or typhoid fever

Global non-typhoid salmo-
nella cases estimated for
200 million to 1.3 billion,
with possible 3 million
deaths a year in 2007

Coburn et al. (2007), Mumy (2014)

Shigella (S. dysenteriae is the most severe) Shigellosis, gastroenteritis
with dysentery

A total of 80 million cases
occurred with 700,000
deaths a year, calculated in
2005

WHO (2005)

Enteroviruses (most significant Poliovirus) Multiple, i.e. hand, foot and
mouth disease,
poliomyelitis, Bornholm
disease, polio-like
syndrome, pericarditis,
myocarditis

A total of 57,628 cases
occurred with 3,145
deaths and 21,269
paralysed patients, in
1952, in the United States

Zamula (1991)

Vibrio cholerae Cholera A total of 1,041,422 cases
occurred with 9642 deaths
in 1991 in America

Skowron et al. (2018)

Clostridia (mostly C. perfringens) Type A food poisoning,
necrotising enteritis,
enterotoxaemias,
bacteraemia, gas gangrene

Widely distributed in the soil
and in faeces of humans
and animals, dominant
cause of food poisoning in
the USA and Canada

Labbe and Juneja (2017),
McClane (2014)

Cryptococcus (mostly Cryptococcus neoformans) Meningitis,
meningoencephalitis or
disseminated disease

Major life-threatening fungal
infection in patients with
severe HIV infection, may
complicate organ
transplantation, reticulo-
endothelial malignancy,
corticosteroid treatment or
sarcoidosis

Kaplan et al. (2002)

Roundworms (mostly Ascaris lumbricoides) Helminthiasis (incl.
soil-transmitted):
ascariasis, necatoriasis,
cestodiasis, also
malnutrition, anaemia, and
others

Ascariasis classified as the
most prevailing parasitic
infection, about 1/5 of the
world’s population affect-
ed

Amoah et al. (2018),
Vieira Da Rocha et al. (2016)

Giardia (G. lamblia) Giardiasis, severe diarrhoea About 1/3 of the developing
countries population
affected, from 3 to 7% of
people affected in the
USA

Auerbach (2011)
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The electrons are released from a cathode via thermionic
emission and the beam density is dependent on the tempera-
ture and cathode material properties (Zimek 1998). The cath-
ode is usually the most crucial part of the electron source and
its lifespan is defined by the cathode quality. After emission
from the cathode, the electrons are accelerated towards the
anode, which is positively charged, under the influence of a
force (Fe) created by the electric field (Zimek 1998):

Fe ¼ q� Ed ð5Þ

Where q—particle charge, for electron 1.602 × 10−19 [C];
and Ed—density of electrical field [Vm ¼ N

C ].
The main difference amongst EB accelerators types is the

method of electric field generation, and three main categories
can be identified: high voltage direct current (DC), radio
frequency (RF) and microwave linear accelerators
(LINACs). Direct current acceleration involves putting the
electrons through the voltage drop to give the particles the
necessary velocity. There are many technical developments
in this widespread EB category, but all of them require a high

Table 7 D10 value of various
microorganisms Microorganism D10 value (kGy) Reference

Absidia sp. ≤ 6 Maruthi et al. (2013)

Acinetobacter radioresistens 1.3–2.2 van Gerwen et al. (2016)

Ascaris lumbriccoides ≤ 0.45 Maruthi et al. (2013)

Aspergillus fumigatus 0.6 Garcia et al. (1987)

Aspergillus niger 0.5 van Gerwen et al. (2016)

Bacillus pumilus 1.4 to 1.8 van Gerwen et al. (2016)

Bacillus subtilis 0.6 van Gerwen et al. (2016)

Brucella abortus 0.15 Somers (2004)

Campylobacter sp. < 0.2 Somers (2004)

Candida albicans 0.9 Garcia et al. (1987)

Clostridium botulinum 1.4 to 4.2 van Gerwen et al. (2016)

Clostridium difficile 0.9 Garcia et al. (1987)

Clostridium sporogenes 1.6 to 2.2 van Gerwen et al. (2016)

Clostridium tetani 2.4 van Gerwen et al. (2016)

Cryptococcus albidus 2.7 Moreira et al. (2012)

Cryptococcus laurentiii 3.1 to 4.5 Maruthi et al. (2013), Moreira et al. (2012)

Cryptococcus uniguttilans 1.4 Moreira et al. (2012)

Escherichia coli 0.3–0.4 Borrely et al. (1998), Sommers and Boyd (2006)

Klebsiella pneumonia 0.12–0.28 Gautam et al. (2015)

Lactobacillus brevis 1.2 van Gerwen et al. (2016)

Listeria monocytogenes 0.62 Rajkowski (2016)

Micrococcus radiodurans 2.2 van Gerwen et al. (2016)

Mycobacterium fortuitum 0.6 Garcia et al. (1987)

Mycobacterium tuberculosis 0.3 Borrely et al. (1998)

Pseudomonas spp. 0.06 van Gerwen et al. (2016)

Poliovirus 1.85 Borrely et al. (1998)

Saccharomyces cerevisiae 0.5 van Gerwen et al. (2016)

Salmonella muenster 0.6 Garcia et al. (1987)

Salmonella sp. 0.6 Somers (2004)

Salmonella typhimurium 0.2 to 1.3 van Gerwen et al. (2016)

Shigella dysenteriae 0.6 Borrely et al. (1998)

Staphylococcus aureus 0.2–0.5 Somers (2004), van Gerwen et al. (2016)

Streptococcus faecalis 1.56 Garcia et al. (1987)

Yersinia enterocolitica 0.2 Somers (2004)

Vibrio cholerae 0.48 Borrely et al. (1998)
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voltage supply (Chao and Chou 2017). The most important
representatives of these category in relation to wastewater
treatment are dynamitron, insulating core transformer (ICT)
and coreless transformer (ELV) models. Radio frequency ac-
celerators operate on the basis of the large, single volume
called a resonance cavity, which is fed by radio waves (oscil-
lating electromagnetic fields). There are two main installation
within this category: the ILU- and Rhodotron-type devices.
Excluding the ILU accelerator (also a linear device),
LINACs are built from several small coupled copper cavities
for resonating at microwave frequencies, and two main bands
may be distinguished: L-band for 1–2 GHz and S-band for 2–
4 GHz (Hamm and Hamm 2012). The cavities gain energy
from the microwave generator, klystron or magnetron (Chao
and Chou 2017). A detailed comparison can be found in
Table 8.

Current technical developments and trends in electron beam
accelerators favour the more widely researched DC systems based
on the well-proven ELV and Dynamitron technology. Moreover,
smaller, more compact and self-shielded devices are desirable, if
possible. The RF Rhodotrons and microwave LINACs are also
being extensively developed, but they are significantly more ex-
pensive and space-consuming so their application for sewage
sludge treatment only is not economically justified.

Electron beam irradiation parameters

The numerous chemical parameters that affect the electron
beam irradiation have been addressed in detail in the previous
sections. However, there are also some technical features of
the accelerator itself and the treatment process, which have
implications for the implementation of the technology on the
industrial scale. These are as follows (Borrely et al. 1998;
Kurucz et al. 1991; Capodaglio 2017; Farooq et al. 1992;
Hossain et al. 2018; International Atomic Energy Agency
2005; Kurucz et al. 1995; Nickelsen et al. 1994; Skowron
et al. 2013; Trump et al. 1984; William et al. 2001):

Accelerating voltage [V]

Electron beam power [kW]
Electron beam current [mA]
Applied dose [kGy]
Exposure time [s]

There are relationships between groups of these parame-
ters. The applied voltage determines the energy of the accel-
erated electrons, which is usually expressed in MeV and
1 MeV = 1.602 × 10-13 J (Kurucz et al. 1991). The direct
correlation between the power, beam current, and electron
energy is usually described according to the following equa-
tion:

P ¼ U � I ð6Þ

Where P is power [kW], U is the energy of the electrons
[MeV] and I is the beam current [mA].

The electron beam dose depends on the beam power and
the exposure time and is the key parameter upon which the
pollutant decomposition efficiency depends. When relatively
low accelerating voltage is implemented, the exposure time
and/or the beam current has to be increased in order to main-
tain the efficiency of removal. The overall accelerator capital
cost increases with both the accelerating voltage and the beam
current (not to confuse with waste unit treatment cost). The
running cost depends on power, as this determines the elec-
tricity requirement. The efficiency for converting electrical
power into beam power depends on the accelerator technology
but is in the range of 60–80% (International Atomic Energy
Agency 2005).

The decrease in pollutant concentration during the treat-
ment might be expressed exponentially as a first-order chem-
ical kinetics reaction, using the formula (Takács et al. 2007;
Wang and Chu 2016):

X ¼ X 0 � e−kD ð7Þ

Where X (mol/l) is the solute concentration at the applied
doseD (J/kg), X0 (mol/l) is the initial solute concentration and
k (kg/J) is the dose constant representing the reaction rate, i.e.

Table 8 Comparison of accelerator types (Chao and Chou 2017; Cleland 2006; Hamm and Hamm 2012; Zimek 1998)

Accelerator type Accelerator model Principle of operation Capability [MeV]

Direct current Cockcroft–Walton Capacitive, series-coupled Up to 5

Dynamitron Capacitive, parallel-coupled 0.5 to 5

Insulating core transformer (ICT) Magnetic, series-coupled 0.3–3

Coreless transformer (ELV) Magnetic, parallel-coupled 0.2–2.5

Van de Graaf Positive charge-carrying belt 1–10

Radio frequency ILU-type One pass along the axis of the toroidal cavity Up to 5

Rhodotron-type Multiple passes within the coaxial cavity 5–10

Microwave linear LINACs Several small coupled copper cavities Up to 10
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the amount of solute reduced per unit of the irradiation energy
absorbed. It is possible to calculate the k constant from mea-
surements, and it is related to the solution pH, the molecular
structure of the pollutant, the water matrix, and the presence of
some inorganic anions as well as radical scavengers (Le Caër
2011; Shin and Kang 2003; Takács et al. 2007;Wang and Chu
2016).

Continuous slowing down approximation range of
the electrons

The first consideration regarding an e-beam irradiation instal-
lation for both wastewater and sludge sterilisation is the ener-
gy of the applied electrons. To reduce the operation cost, it
should be as low as possible (Sabharwal 2013). However, that
energy determines the penetration depth of the electrons (or
the range of the electrons). This parameter is critical when
relatively high pollutant destruction effectiveness is required
in one pass (William et al. 2001). The shape of the energy
deposition curve as a function of depth is presented below
(Fig. 2). The electrons range defined as the continuous
slowing down approximation range (CSDA) in pure water is
shown in Table 9. Note that the maximum energy that can be
used is 10 MeV, as above this, the electron beam can start to
activate the material.

It is possible to determine the most beneficial depth of the
sample for electron beam irradiation, where the value of
absorbed energy reaches a peak (Fig. 2). The electron deposits
its energy by interacting with atomic electrons (elastic and
inelastic interactions; Krumeich 2018) and that loss depends
on the energy of the electron and the time spent around the
ion. Doses at the surface are relatively high, reaching 80–
100% of the maximum energy absorbed (Strydom et al.

2006). Along with the energy loss, deceleration occurs, and
time spent in the nearest area of nuclei increases, which results
in a relatively larger energy deposition. However, as a signif-
icant amount of energy has been already lost, the absolute
deposition is less. The optimal solution for these two contra-
dictory processes can be seen as a peak in the energy deposi-
tion as a function of the sample depth. The maximum dose
occurs at a specific distance called depth of maximum dose
D100 (Fig. 2). Furthermore, since the approximate density of
the water at the temperature of 20 °C is 1 g/cm3, the MPD of
electrons [cm] may be determined directly from the CSDA
[g/cm2] range plot. The relationship between the CSDA range,
MPD and material density is given below:

MPD ¼ CSDA
d

ð8Þ

Where d is the sludge density [g/cm3].
The higher the initial energy of the electron beam is, the

deeper the dose can be delivered. When the CSDA range is
expressed in the uniform unit of g/cm2, it only slightly de-
pends on the type of material.

The density of the irradiated material

In the energy range between 100 keV and 10 MeV, the max-
imum penetration depth is proportional to the beam energy but
inversely proportional to the density of the material to be
treated ( (8).

Since the sludge as well as the anaerobic digestate (Gerber
and Schneider 2015) consists of solids and water, the content
of total solids (TS) is the primary parameter upon which the
average density of sludge depends. However, the density at
the most stages of their treatment is similar to water

Table 9 CSDA range and total stopping power for electrons of various
energies in pure water (20 °C) (data from the National Institute of
Standards and Technology 2018)

The energy of the
accelerator [MeV]

Total stopping power
[MeV/cm]

CSDA range
[g/cm2]

0.1 4.119 0.01

0.5 2.041 0.18

1 1.862 0.44

2 1.85 0.98

3 1.889 1.51

4 1.931 2.04

5 1.971 2.55

6 2.01 3.05

7 2.047 3.55

8 2.082 4.03

9 2.116 4.51

10 2.149 4.98

Fig. 2 The energy deposition curve as a function of penetration depth,
where D100 is the depth of maximum energy deposition, D80 is the depth
of 80% energy deposition and DP (or MPD) is the maximum penetration
depth (based onGann et al. 2004; Kurucz et al. 1995; Strydom et al. 2006)
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(Fernandes et al. 2007; Sperling 2005) and typical values vary
from 1.02 g/cm3 for liquid sludge to 1.1 g/cm3 for dewatered
sludge (Fernandes et al. 2007; Sperling 2005). The MPD
values for different sludge densities are shown in Table 10.
Due to the small differences in density, there are only relative-
ly small changes in the MPD, indicating that the same beam
energy can be used for different types of sludge.

General sewage sludge composition

As has been adduced before, there are many specific com-
pounds in sewage sludge, which have a significant influence
on the treatment process (free radical scavengers, PPCPs,
POPs—“Free radical scavengers” section; hydroxide
and oxon ium ions—“pH in f l uence” s ec t i on ) .
Nevertheless, there are also some general categories of
sewage sludge components, reacting differently when
undergoing the electron beam treatment.

Using one of the most common wastewater quality indica-
tors, chemical oxygen demand, the total organic matter can be
divided into biodegradable (BCOD) and an inert (non-
biodegradable) fraction (ICOD) (Orhon and Cokgor 1997).
The biodegradable part can be further subdivided into readily
biodegradable (RBCOD) and slowly/par t icula te

biodegradable (SBCOD). The non-biodegradable fraction
has two major components: soluble (ISCOD) and particulate
(IPCOD). Therefore, the total COD can be represented ac-
cordingly (9, Fig. 3) (Choi et al. 2017; Myszograj et al.
2017; Orhon and Cokgor 1997):

COD ¼ RBCODþ SBCODþ IPCODþ ISCOD gO2=m3
� � ð9Þ

The RBCOD refers to matter that can be quickly and easily
degraded bymicroorganisms, like volatile fatty acids or leach-
ate from municipal landfills, whereas SBCOD decomposition
is slow, caused by various microbial metabolism processes
(Choi et al. 2017). Both RBCOD and SBCOD have to be
hydrolysed prior to destruction (Myszograj et al. 2017). The
IPCOD fraction is insoluble and impossible to decompose by
microorganisms, but it is effortlessly removable by sedimen-
tation, while the ISCOD poses a serious challenge to tradition-
al WWTPs as it usually means the presence of such persistent
pollutants as organic, aromatic compounds (benzene, toluene,
other substances with a benzene ring).

Multiple and sometimes inconsistent information have
been reported regarding the EB influence on both BOD and
COD of the sewage sludge. Many researchers reported the
COD to be only slightly changed after the irradiation

Table 10 Sludge density relation
to total solids content in sludge
(based on Fernandes et al. 2007)

Types of sludge % TS Density of sludge (g/cm3) MPD [cm]

2 MeV 10 MeV

Min Max Max Min Max Min

Primary sludge 2.0–6.0 1.003 1.01 0.98 0.97 4.96 4.93

Thickened mixed sludge 3.0–8.0 1.004 1.01 0.97 0.97 4.96 4.93

Primary thickened sludge 4.0–8.0 1.006 1.01 0.97 0.97 4.95 4.93

Digested mixed sludge 3.0–6.0 1.007 1.02 0.97 0.96 4.94 4.88

Secondary anaerobic sludge 3.0–6.0 1.01 1.02 0.97 0.96 4.93 4.88

Dewatered sludge 20.0–40.0 1.05 1.1 0.93 0.89 4.74 4.52

Fig. 3 Distribution of chemical
oxygen demand fractions in
sewage sludge (based on Choi
et al. 2017; Myszograj et al. 2017;
Orhon and Cokgor 1997)
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(Farooq et al. 1992; Kim et al. 2007; Zheng et al. 2001), while
others noted significant growth in soluble COD parameter
(Changqing and Min 2012; Park et al. 2009), reaching
2400% increase, when the EB at 6 kGy (1 MeV ELV-4
Model, Pyrex tray 35 × 22.5 × 5.6 cm) was applied as the
sludge anaerobic digestion pretreatment (Shin and Kang
2003). Nonetheless, the considerable changes were only ob-
served in the SCOD part. Therefore, it can be indicated that
using the EB, the insoluble part of the COD can be converted,
increasing the SCOD contribution but not changing the over-
all COD value.

It is not possible now to explicitly determine the EB influ-
ence on BOD as there are both reports on its increase (Kim

et al. 2007; Paul et al. 2011) and decrease (Han et al. 2012; He
et al. 2016), and this issue should be investigated further.

Sewage sludge thickness

Given the fact that the ability of electrons for sludge matrix
penetration is one of the most important parameters on which
e-beam system efficiency depends, the optimal technical so-
lution of sludge delivery system should be implemented.
Therefore, it requires an accordingly thin layer of waste to
be irradiated (Fig. 4). Various options of such technology have
been examined so far, both continuous and batch. The sum-
mary of the layouts reported so far can be found in Table 11.

Batch layout was usually applied during laboratory tests,
and various sludge thickness options were provided in accor-
dance to the available accelerator. In general, there have been
two different ways of continuous sludge delivery system so
far: sludge cascade using gravity (Engohang-Ndong et al.
2015; Kurucz et al. 1995; Trump et al. 1984; Waite et al.
1985) (Fig. 5) and a mechanical conveyor belt, usually with
the nozzle-type injector (Kim et al. 2007, 2009; Mckeown
1996; Shin et al. 2002) (Fig. 6 and Fig. 7). It can be clearly
seen that the crucial factor during the low-energy EB applica-
tion is material thickness as the MPD in pure water for 1 MeV
is only 0.44 cm. Nevertheless, the effective penetration of the
electrons into the sewage sludge is claimed to be only
about 2.5–3.0 mm per 1 MeV (Alcántara and Cruz
1997) due to the presence of several scavengers, and
the relationship between the sludge thickness and ener-
gy can be introduced linearly as (10, Fig. 4):

Fig. 4 The effective penetration of the electrons into the sewage sludge
within the 1-10-MeV range (Alcántara and Cruz 1997)

Table 11 Sewage sludge irradiation layouts reported so far. Best results, if determined, are presented in italics

Process layout EB energy
[MeV]

Treatment dose
[kGy]

Sludge thickness [cm]
and/or throughput [per min]

Reference

Batch 1.8 2–20 0.3–1 (0.5) Changqing and Min (2012)

1 0.5–6 5.6 Shin and Kang (2003)

1 1–7 0.25–1 Park et al. (2009)

10 0.2–10 Not determined, probably < 0.5 cma Praveen et al. (2013)

10 1–10 Not determined, probably < 1 cmb (Skowron et al. (2013)

Continuous sludge cascade 3 2.7–30.7 Not determined, sludge flow 113 l/min Engohang-Ndong et al. (2015)

1.5 4 ~ 0.38, sludge flow 460 l/min Kurucz et al. (1995), Waite et al. (1985)

1.5 4 Not determined, sludge flow 450 l/min Trump et al. (1984)

Continuous, conveyor belt,
with the nozzle-type injector

2.5 10 0.7, sludge flow 8.3 kg/min Kim et al. (2009)

1 1–3 0.4, sludge flow 40 l/min Shin et al. (2002)

10 5–7 2.5-3, sludge flow 48.6 kg/min Chmielewski et al. (1995)

10 5–15 Not determined, sludge flow 67.4 kg/min Mckeown (1996)

2 2–5 0.1–1, 5 kg/min Takeshita and Naramoto (1992)

a Samples triple bagged in Whirl-Pak® bags (12.5 cm L × 7.5 cm W, 0.057 mm), 20 ml of sludge each
b Samples bagged in plastic, synthetic bags, 100 ml of sludge each
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y ¼ 0:3636x ð10Þ

Where y—energy of the accelerator within the range 1–10
MeV and x—effective penetration depth/required sludge
thickness [mm].

When a high energy accelerator might be used (MPD
around 5 cm for 10MeV), the treatment dose becomes critical
since electrons can penetrate a large volume of sludge and
high-dose application ensures desired sterilisation effect. The
average dose absorbed by the material with the low atomic
number (Z) can be described as (Zimek 1998):

D ¼ E � j� t � 106

CSDA
ð11Þ

Where D—dose [Gy], E—electron energy [MeV], j—
beam current density [mA/cm2], t—time [s] and CSDA—
penetration range [g/cm2].

There were various doses tested for sludge sterilisation so
far, ranging from 1 up to above 30 kGy (Table 11), but the 10-
kGy absorption is enough for sludge to meet the U.S. EPA
Guideline Class A Biosolids requirements (Kim et al. 2009;
US EPA 2003).

Cost–benefit analysis and dose optimisation

One of the most important factors to consider while designing
any industrial process is cost investigation for both capital and
operational expenditure. Detailed analysis for various acceler-
ation parameters is presented below (Table 12).

Despite the fact that literature lacks many examples of
industrial-scale EB sludge treatment facilities, the throughput
and related cost might be relatively easily scaled up for a
certain accelerator type, when cost is only dependent on elec-
tricity consumption. As the EB system irradiation dose rate is
directly related to beam current (11), higher currents ensure
certain dose delivery in a shorter treatment time, allowing for

Fig. 6 The scheme of the nozzle-
type sludge sterilisation system
(based on Kim et al. 2009)

Fig. 5 The scheme of the cascade-type sludge sterilisation system (based
on Waite et al. 1985). Cross-section of the sludge stream falling over the
weir
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increased waste load throughout the year and decreased cost.
It can be clearly seen that for EB treatment both operating and
capital costs per waste unit decrease with capacity increase,
and therefore, treatment of a small amount of sludge is not
competitive with currently existing methods, but the 100-mA
(with 50 times higher dose rate compared to 2 mA) option is
much less expensive (Table 13) than any other traditional
system. There is no additional treatment (such asAD) required
for 15 kGy dose (Pillai and Reimers 2013).

Accelerator operation

The existing accelerator technology is not able to operate con-
tinuously, as time is required for maintenance and repairs.
Most current technology can be used reliably for 16 h a day,
20 days per month. This means that the sewage sludgemust be
stored before treatment. In most plants, this will not cause any
problems as storage already takes place. The technology used
in the accelerators is constantly being improved and the time
for which the accelerator can be operated and the reliability is
being increased.

Electron beam comparison with other
techniques

Electron beam comparison with AD, THP and
incineration

Currently, around 84% of sewage sludge in the UK is treated
by anaerobic digestion (Ofwat 2016). This technology is
based on the breakdown of organic material by microorgan-
isms in the absence of oxygen, and it has an additional advan-
tage of producing biogas, which can be transformed into elec-
tricity and fuel in the combined heat–power plant (Mills
2015). However, anaerobic digestion is limited by relatively
slow dry solids hydrolysis, and it requires large environmental
footprints (Xue et al. 2015). Therefore, several improvements
have been developed to make the anaerobic digestion more
efficient and beneficial. The most notable of these is thermal
hydrolysis process (THP). It is also common to use incinera-
tion with energy recovery, where temperatures range between
800 and 1200 °C (DEFRA 2012). There were some tests on
implementing the EB before the AD unit (Park et al. 2009;
Rawat and Sarma 2013; Shin and Kang 2003), but most of the
studies have been done on EB radiolysis of the already anaer-
obically treated sludge. The list of the most important param-
eters of the AD itself, EB + AD and THP + AD and of the
incineration processes is shown in Table 13.

Removal of bacteria, viruses and pathogens

The main purpose of the sewage sludge treatment is to remove
the pathogenic microorganisms so that it can be safely treated as
substrate (usually fertiliser), landfilled or stored (Świerczek et al.
2018). The overall efficiency of this hygienisation for the AD,
THP and EB is 99% (2 log reduction), 99.99% (4 log reduction)
and > 5 log reduction for 10 kGy EB, respectively (Chmielewski
et al. 1995; Chmielewski and Sudlitz 2019; Levantesi et al. 2015;
Mills 2015; Taboada-Santos et al. 2019).

Table 12 Operational and capital
costs for various EB treatment
parameters (adapted from Han
et al. 2012; Kim et al. 2009; Pillai
and Reimers 2013)

Accelerator type Dry solids
content [%]

Capacity
[TDS/year]

Capacity
[m3/day]

Operating cost
[$/TDS]

Capital
cost [$]

Dual, ~ 2 mA, 18 kW, 10
MeV, 15 kGy

2.6 7875 28.63 378 15
million4.3 11,250 38.78 232

Duala, 100 mA, 50 kW, 15
kGy

2.6 393,750 1332 6.79

4.3 562,600 1927 4.75

40 mA, 100 kW, 2.5 MeV,
10 kGy

18–20 15,660 226 4.4 1.98
million33,556 484 2.2

400 mA, 400 kW, 1 MeV,
1 kGy

N/A 10,000 0.3 per m3 b 4 million

a Theoretical calculation, scaled-up from 2 mA scenario (Pillai and Reimers 2013)
b Textile wastewater treatment plant operating in Daegu Dyeing Industrial Complex in Korea. Operating cost per
m3 instead of per TDS as there are mostly liquid impurities present in textile waste (Han et al. 2012)

Fig. 7 The picture of nozzle-type sludge sterilisation system. Image cour-
tesy of Kim et al. (2009)
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Although all of the methods have very good performance, the
mechanism of pathogen removal is different for each of them. AD
treatment is based on the combination of competitive microbial
interactions, time spent in the reactor and temperature influence as
well as build-up or presence of toxic metals (Appels et al. 2008).
The pathogens’ die-off kinetic models for these parameters are
well-known and widely described in the literature (Avery et al.
2014). THP reduction in hazardous microorganisms is based on
high temperature and high pressure which are applied simulta-
neously and are detrimental to the biological cells of pathogens
and their proliferation functions, significantly increasing treatment
efficiency when compared to AD only (Levantesi et al. 2015). EB
hygienisation, although affected by several similar parameters like
toxic metal presence, induces microorganism destruction by high
energy electron penetration into the sludge and the production of
radicals (see “Sewage sludge direct and indirect radiolysis” and
“Influence of the presence of pathogens” sections). The incinera-
tion process involves converting sludge into gases, water and ash
by extremely high temperature, which is lethal for all pathogen
types but has been recognised as no longer a viable option for
waste management (Greenpeace 2019).

There are multiple organisms reported to be resistant to AD
and THP, and some pathogens can be enriched, but THP
treatment is able to meet the class A biosolids requirements
(Mocé-Llivina et al. 2003; Sassi et al. 2018; Wang et al. 2018;
Zhao and Liu 2019). It is worth noting that the EB pathogen
removal capability is only dependent on the applied dose

(Table 7), and there is no organism resistant to irradiation
present in the literature. Summary of the AD, THP and EB
efficiency in the removal of several microorganisms is pre-
sented in Table 14.

Electron beam comparison with other irradiation
techniques

As mentioned, irradiation by electron beam for sludge
hygienisation has been introduced several decades ago.
Nonetheless, the ionising radiation for such treatment is not
only limited to acceleration techniques (Priyadarshini et al.
2014). There are several other techniques with a similar prin-
ciple of treatment and method efficiency, which uses different
irradiation sources, such as alpha, beta, gamma and X-ray.
Amongst them, only the gamma installations have been im-
plemented on the industrial scale (Rathod et al. 2009). There
are many gamma irradiation plants successfully operating all
over the world, accounting for the majority of facilities using
the ionising radiation for liquid wastewater treatment purposes
(Asgari Lajayer et al. 2019).

Gamma radiation, also known as γ rays, refers to short
wavelength, high-frequency electromagnetic radiation of very
high energy (photons with no charge and rest mass). It is
emitted by unstable nuclei during its transition to a lower-
energy state. Given the nature of γ rays as photons, they are
also the most penetrating amongst other types of

Table 14 Compilation of log drop for different types of treatment

Pathogen AD Reference THP Reference EB (10 kGy)a Reference

Total coliforms 0.3–3 Avery et al. (2014) Unknown - 4 Chmielewski et al. (1995)

Faecal coliforms 1.3–3.0 4b Wang et al. (2018) > 8 Chmielewski et al. (1995)

Enterococcus No change–1.6 > 2.70 > 8 van Gerwen et al. (2016)

C. perfringens No change 0.3–2.5c Carrington (2001) > 8 Kim et al. (2018)

E. coli 1–2 3.2–5.3 Levantesi et al. (2015) > 8 Borrely et al. (1998)

Salmonella 0.2–2.23 0.9–2.3 Levantesi et al. (2015) > 8 Garcia et al. (1987)

Protozoa
Cryptosporidium

0.3 > 4 Blewitt (1989) > 2 Demirci and Ngadi (2012)

L. monocytogenes 2.23 > 4d Environment Agency (2003) > 8 Rajkowski (2016)

C. jejuni − 1.0 > 5d Environment Agency (2003) > 8 van Gerwen et al. (2016)

Enteroviruses No change–2.0 > 4 Astals et al. (2012) 2–2.9 Demirci and Ngadi (2012)

Somatic coliphage 0.09 3.9–5.2 Levantesi et al. (2015) 2.5 Praveen et al. (2013)

Poliovirus 6.2 Unknown – 4.4–5.4 Borrely et al. (1998)

Protozoa Giardia No change–2.0 > 4 Blewitt (1989) > 2 Lenaghan (2008)

Ascaris suum ova No change > 3c Carrington, (2001) > 8 Capizzi-Banas
and Schwartzbrod (2001)

a Data extrapolated for the dose required for meeting the class A biosolids efficiency (Kim et al. 2009; US EPA 2003)
b Assuming that the faecal coliform concentration in untreated sewage sludge is ~ 106 microorganism per 100 ml (Kim et al. 2009)
c Assuming that THP complies with the class A biosolids requirements (Wang et al. 2018)
d Assuming that THP has better performance than pasteurisation in 70 °C for 1 h (Pickworth et al. 2012)
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electromagnetic radiation and thus themost biologically hazardous
(Freita-Silva et al. 2015). A gamma irradiation system involves
using radioactive (self-disintegrating) isotopes, and amongst hun-
dreds of gamma emitters, only cobalt 60Co or caesium 137Cs is
permitted for radiation processing (da Silva Aquino 2012).

Currently, ionising radiation techniques for sludge treat-
ment are only considered through gamma and electron beam
irradiation. Both systems, although inducing water radiolysis
and consequently highly reactive radical formation, have great
differences that should be considered prior to irradiation treat-
ment plant design. The up-to-date list of known γ rays and EB
features can be seen in Table 15.

The main differences about the EB and gamma systems are
penetration possibilities and irradiation generation. Due to
high energy, no charge and no mass, photons can easily pen-
etrate most of the waste both solid and liquid, while electrons
can be relatively easily attenuated and dispersed by high-
dense matter (see “Continuous slowing down approximation
range of the electrons” section). Therefore, the material to be
irradiated has to be accordingly thin for EB treatment, while
gamma source can penetrate as far as 120 cm of 0.4 g/cm3

dense product (GIPA and iia 2017). Nonetheless, despite this
undeniable advantage of gamma ray over EB accelerator, us-
age of a radioactive source, its handling and safe disposal
should be considered very carefully. Electron beam technolo-
gy has been improved significantly throughout the last 20
years, and it is no longer a highly expensive equipment, only
available for limited use (Hossain et al. 2018). Therefore, giv-
en the current worldwide trends towards more eco-friendly,
reliable and long-lived installations, it is advised to avoid
technologies dependent on highly biological hazardous com-
ponents, when possible (Cordella and Kaps 2018).
Nevertheless, usage of gamma rays for other industries that
benefit from radiation processing including medicine, food,

polymers and automotive industries might be more justified
due to the high-density material to be irradiated.

Conclusions

The following can be concluded from the literature:

& A microbicidal action of ionising radiation is achieved by
its direct (physical) and indirect (chemical) action. Direct
interaction with the organic compound may only be sig-
nificant when the concentration of the contaminant is ≥ 0.1
M. The indirect effect of irradiation is the result of free
radicals forming in water that can interact with each other
and with the molecules of the pollutant.

& The sensitivity of microorganisms varies significantly
from one species to another. Hence, identification of the
pathogens existing in the sludge to be irradiated and their
lethal doses are necessary when designing the EB treat-
ment facility. The pathogenwith the highestD10 should be
determined.

& In real conditions (sewage sludge, wastewater/natural wa-
ter with a complex composition), some components natu-
rally found in water scavenge reactive chemical species
produced during treatment (e.g. O2, HCO3

-, CO3
2− , Cl−,

NO2
-, NO3

-) both decreasing (more likely) or increasing
(less likely) overall process efficiency.

& In some cases, the addition of the non-water origin scav-
enger may lower the dose (cost) requirement by increasing
the overall efficiency of the EB irradiation process.

& The solution pH has a noteworthy influence on the main
water radiolysis products and their initial yields.
Degradation of pollutants is favoured at weak acidic to
neutral conditions. Thus, controlling of solution pH is a

Table 15 Ionising radiation techniques for sludge hygienisation comparison: electron beam versus gamma rays (Freita-Silva et al. 2015; GIPA and iia
2017)

Parameter Gamma irradiation Electron beam

Irradiation doses Low to medium, cannot be quickly adjusted Medium to high, can be quickly adjusted

Processing timea Slow, typically < 24 h Fast, typically < 8 h

Operation Inflexible, cannot be turned off; gamma
rays emitted in all directions

Flexible, can be turned off; electrons aimed directly at the product

Penetration Excellent, high efficiency for all product types Low, efficiency depends on product density

Eco-friendliness Low, uses radioactive material that needs
proper disposal, necessary radionuclides
are produced by nuclear reactor

High, uses electricity to generate high energy electrons

Operation cost Low, requires additionally gamma rays
source replacement and disposal annually

Low, greater demand for electricity than gamma installation

Capital cost Medium, cost of irradiation source, conveyor +
safety/control systems, specific and common infrastructure

High, cost of irradiation source higher than for
gamma rays, conveyor + safety/control systems,
specific and common infrastructure

aWhen the same volume of product, typical 45-ft tractor trailer (~ 85 m3 ) is treated (GIPA and iia 2017)
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parameter, which may relatively easily increase the elec-
tron beam treatment efficiency and further investigation of
this issue is recommended.

& The most important reactive species amongst water radi-
olysis products responsible for contamination removal
should always be identified.

& For the EB influence on the BOD and COD parameter deter-
mination, it is necessary to investigate the content of the mi-
croorganisms and the biodegradable and inert part of the
sludge as it can be critical to fully understand the chemical
action of the reactive species created by accelerated electrons.

& Since such chemicals like hormones or pharmaceuticals
can not only react with reactive species but also be a
source of toxic by-products (transformation products), fur-
ther examination of their reactions with electron beam
origin radicals is highly recommended.

& Within the energy range between 100 keV and 10MeV, the
maximum penetration depth is inversely proportional to the
density of the material to be irradiated. It is claimed that the
penetration of the electrons into sludge matrix is only 2.5–
3 mm per 1 MeV due to the presence of distorting com-
pounds and differences in total solids content. However,
due to the small differences in density, there are only minor
changes in the MPD, indicating that the same beam energy
can be used for different types of sludge.

& The electron beam facility needs to be designed with suf-
ficient electron beam power and high electron beam
utilisation capacity, as well as high accelerator electrical
efficiency, to reduce unit operation cost and increase pro-
ductivity along with possibly low electron energy for cap-
ital and operation cost reduction.

& The most important benefits of the electron beam sewage
sludge treatment system are the possibility of removing
various pollutants at the same time by both oxidation
and reduction, low exploitation costs, the eco-friendly
character of technology and the unit cost decrease along
with the increase of the throughput and sludge biodegrad-
ability improvement. The most important disadvantages
of the electron beam sewage sludge treatment are electron
penetration limit and appropriate material distribution.

& Sludge sterilised with the e-beam can be used as soil
fertiliser immediately after treatment, and no large land
areas are needed for disposal for long periods.

& It is necessary to develop a normalised testing procedure
and standardised requirements to enable cross-referencing
between research facilities.
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cess; BCOD, biodegradable COD; BOD, biochemical oxygen demand;
COD, chemical oxygen demand; CFU, colony forming unit; CSDA,

continuous slowing down approximation range; DDIC, Daegu Dyeing
Industrial Complex; DNA, deoxyribonucleic acid; DOC, dissolved or-
ganic carbon; DS, dry solids; EB, electron beam; EBRF, Electron Beam
Research Facility; HM, heavy metal; HOC, halogenated organic com-
pound; HRT, hydraulic retention time; ICOD, inert COD; IPCOD, inert
particulate COD; IR, ionising radiation; ISCOD, inert soluble COD;
MPD, maximum penetration depth; PAH, polycyclic aromatic hydrocar-
bon; PCB, polychlorinated biphenyl; POP, persistent organic pollutant;
PPCP, pharmaceutical and personal care product; RBCOD, readily bio-
degradable COD; RNA, ribonucleic acid; SBCOD, slowly/particulate
biodegradable COD; SCOD, soluble COD; THP, thermal hydrolysis pro-
cess; TS, total solids; WWTP, wastewater treatment plant
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