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Abstract
Microplastics (MPs) with an average size of less than 5 mm, along with nanoplastics (NPs) of an average size of fewer than
0.1 μm are the result of huge plastic waste fragmentation or straight environmental emissions. Pollution from micro- and
nanoplastics is a worldwide paradigm that raises environmental and human health concerns. They may also comprise very
harmful chemicals that are implemented in plants and animals when MPs/NPs are used that may lead to higher accumulation
of these compounds in food chains. In addition, higher surface area-to-volume ratio, characteristic of MPs/NPs can contribute to
their potentially harmful impact as other pollutants, like continuous organic contaminants, can also be bio-accumulated and
adsorbed. A complex issue correlated with MPs/NPs is their ability to absorb and interact with other common pollutants in the
environment, such as metals, pharmaceuticals, and other contaminants. Thus, MPs/NPs can directly influence on destiny and
toxicity of these substances to the environment and organisms. In this review, first, we introduce possible sources and formation,
their destinies, and environmental impact of MPs/NPs and then explain feasible paths of all these particles entering the human
body. Then, the review highlights the effect of MPs/NPs on human health. Finally, it provides a brief summary of the potential as
well as the neurological toxicity of MPs/NPs.
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Introduction

In recent decades, plastics have been commonly used for our
purposes and feasibility since the last century and have con-
siderably improved. Currently, industrial manufacturing of

plastics reaches 320 million tons in a year, which is used as
single-use packaging by more than 40%, leading to plastic
waste. The plastic products shelf life may differ from 1 to
more than 50 years before disposal as plastic waste, depending
on their use. In which, 9% of recycled energy was recovered
by 12%, and 8% was disposed of in the land, or 71% was lost
to the environment. Plastic products were mostly degradable
due to weathering and aging, i.e., ultraviolet (UV) exposure
catalyzes plastic photo-oxidation. The plastic degradation pro-
cess develops with an exaggerated period within the surround-
ings and should ultimately contribute to nanoparticles being
formed. They have accumulated and persisted for years to
centuries in aquatic habitats (Jeong et al. 2016) and are the
main problem for the toxicity of plastic waste (Bergmann et al.
2015). An approximately 4.8 to 12.7 million tons (MT) of
plastic waste reached the oceanic ecosystem in 2010 and is
forecast to improve significantly more than 100–250 MT by
2025 (Peng et al. 2018).

Microplastics (MPs) are commonly known as plastic debris
0.1–1000; whereas, plastic particles are categorized as
nanoplastics (NPs) ≤ 0.1 μm (Peng et al. 2018). MPs are
intentionally manufactured for various applications, like
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microbeads in exfoliates for personal care products (Farrell
and Nelson 2013). Many of the substances contain
nanoplastics like electronics, paints, drug delivery systems,
and adhesives (Kosuth et al. 2018). For instance, 3D printing
can emit polymer nanoparticles (Stephens et al. 2013). This
substance is emitted continuously from textile washing ma-
chines into the public wastewater containing plastic
microfibers (Browne et al. 2008, 2011). It is characterized
byMPs as smaller or larger MPs when their size was less than
or greater than 1 mm, respectively (Eriksen et al. 2014).
Whereas a further study detected particle resolution level to
categorize MPs or NPs by a 100-μm increase. They are com-
monly found in the ocean and aquatic areas, such as river
water (Wang et al. 2017), beaches (Van et al. 2012), sediments
(Dekiff et al. 2014), marine water (Woodall et al. 2014), and
sometimes in polar zones (Kanhai et al. 2018). The smaller
size and the highly accurate surface area of MPs or NPs allow
living beings to consume and increases the chances of
adsorbing and desorbing harmful substances in tissues of or-
ganisms or in water (Chae et al. 2017, Farrell and
Nelson 2013). Current researches have shown that NPs have
enhanced negative impacts relative to MPs (Chen et al. 2017),
although, owing to analytical challenges in their identification,
there is still a comprehension of the existence of NPs in the

water (Hidalgo-Ruz and Thiel 2013). Overall representation
of the environmental fate of microplastics is shown in Fig. 1.

Plastic ocean pollution has evidently become a primary
environmental problem.While long-term effects in the aquatic
ecosystem of micro- and nanoplastics remain a challenge to
estimate, this element could be a major enterprise for our
community (Villarrubia-Gómez et al. 2018). A risk that has
been underestimated so far is the effect on the terrestrial envi-
ronment of microplastics in sediments and soils (De Souza
Machado et al. 2018). Recently, research has started in this
path, as 80% of calculable microplastic pollution in the seas
comes from territory (Rochman 2018; Awet et al. 2018) (Fig.
2). Microplastics are readily accumulated in aquatic environ-
ments by various species because of their smaller size (Cole
et al. 2013). So, MPs are spread at different tropic levels;
microplastic levels can improve at greater tropic levels
through bioaccumulation in the body. MPs are also transmit-
ted to humans through the food chain (Gong et al.
2009, Bouwmeester et al. 2015). It, thus, indicates individuals
may face the most destructive impacts of microplastic toxicity.
Besides microplastic toxicity itself, it also causes unknown
toxicity due to the absorption of toxins (Li et al. 2016), com-
prising poly nuclear aromatic hydrocarbons (Teuten et al.
2007), organochlorine (OC) pesticides, likes DDT (Ivar Do

Fig. 1 An overall representation of the environmental fate of microplastics
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Sul and Costa 2014), and polychlorinated biphenyls (Zarfl and
Matthies 2010) from environment and transferred to the food
chain (Reisser et al. 2014). Microplastic consumption can
contribute to oxidative stress, abrasion, satiation, ulcers, de-
creased growth rate, and decreased fitness for reproduction
(Miao et al. 2011, Fossi et al. 2016). Therefore, it is essential
to assess microplastic hazards to human health.

Nanoplastic communication with the environment, espe-
cially with living organisms on behalf of the assessment of
prospective health risks is very crucial, especially as
nanoplastic particles react other than their microsized counter-
parts. On the other hand, the present study directed at solving
plastic findings focuses mostly on the marine environment
and only restricted information can be acquired on the effects
of NPs on human health (Wright and Kelly 2017; Revel et al.
2018). We identify the most appropriate sources and forma-
tion ofMPs/NPs in this review and give some outlook on their
fate once it is released into the environment (Fig. 2).

Formation of micro/nanoplastics

This study examines the physical and chemical processes
leading to theMP formation, followed by NPs. These process-
es correlate with the tendency of NPs/MPs to occur in water as
single particles or agglomerates. MPs are categorized as pri-
mary (10) MPs, once it finds itself within the surroundings as
microsized particles and secondary (20) MPs once produced
from plastic waste that is already a presence in the
environment.

The fragmentation of huge plastic things happens follow-
ing totally different mechanisms, severally or put together,

like a photo oxidation by chemical reaction, ultraviolet light,
and mechanical shock, leading to soil abrasion or mechanical
turbulence in water or biological assimilation by microorgan-
isms (Neves et al. 2015; Gewert et al. 2015). Oxidation of
plastic pellets like poly(lactic acid) (PLA), terephthalate
(PET), poly(ethylene) (PE), poly(styrene) (PS), and poly(pro-
pylene) (PP) happens when subjected to ultraviolet light in
soil and water environments (Cai et al. 2018; Lambert and
Wagner 2016a, b). Hydrolysis is one among the first processes
of degradation of heteroatom polymers like poly(urethane)
(PU) and PET (Lambert and Wagner 2016a, b). The effect
on the atmosphere is increasing as concentrations fall (in the
case of chlorofluorocarbons (CFCs)) or rise (in the case of
hydrofluorocarbons (HFCs), which are used as replacements
for CFCs in refrigeration and insulation) into the global set-
ting. Trifluoroacetic acid, a minor product of the atmospheric
decomposition of certain HCFCs and HFCs and the pyrolysis
of fluoropolymers, is distributed uniformly in seawater of over
4000 m (Suquet et al. 2018; McCulloch 2003). In the aqueous
world, trifluoroacetate is widespread; it is present in fog, rain,
rivers and lakes, groundwater, and, most importantly, in sea-
water (Yadav et al. 2020; Naik et al. 2000; Hayman and
Derwent 1997).

The bond breakage of organic compound results in the
chemical group formation creating the autocatalysis, subse-
quently increasing the hydrolysis rate of the acidic conditions.
Both processes of photo-oxidation and degradation of the re-
sponse trigger breaks split and trap to form on the surface of
items, plastic induction embrittlement. Plastic fragments are
so weakened and mechanical stress like abrasion or friction
breaks into microplastic particles (Cai et al. 2018). The frag-
mentation process relies on the environmental circumstances,

Fig. 2 How microplastics
contaminate the earth’s
ecosystems
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the polymer substance, as well as plastic additives that can
impact the material’s physico-chemical characteristics
(Veresoglou et al. 2015; Gewert et al. 2015). It is therefore
possible to rapidly generate MPs of distinct sizes, forms, den-
sities, and chemical and mechanical properties based on envi-
ronmental circumstances and plastic products ( Lambert and
Wagner 2016a, b). However, the mechanism and fragmenta-
tion rate of MPs in the environment are still uncertain and
desires to be studied in order to assess the rate of MPs gener-
ated by fragmentation.

Nanoplastics formation

It is also anticipated that MPs will be fragmented into NPs as
well as the formation ofMPs. Even though NPs are difficult to
identify, discharge of NPs up to 30 nm in size was recorded
after being exposed to the outdoor aquatic microcosm of PP,
PS, and PE pellets and thus demonstrated by the absence of
bulk material (Zhao et al. 2018; Lambert et al. 2013). The
nanofragment’s number improved by 5 orders of magnitude
after being exposed to outdoor circumstances compared with
PEmention not subjected to weathering (Lambert andWagner
2016a, b). The existence of NPs proves that theory of degra-
dation of big plastic products intoMPs can be expanded to the
degradation of MPs into small products like NPs. This re-
search proposed that the physical breakage of MPs in cos-
metics during manufacturing or use could lead to the dis-
charge of produced NPs in water, and 2° MPs/NPs could lead
to plastic pollution. As stated previously for big fragments of
plastic, the process of manufacturing has an impact on the
fragmentation of MPs because, as a consequence of their pro-
duction, defects can be introduced in particles. Primary MPs
like powders, fillers and pellets are commonly generated
through comminution (Chadwick 1988). In which the solid
particle size reduced by effect, compression, or shear force is
intentionally (Somani et al. 2017). The comminution is per-
formed generally by milling and grinding to trigger defect like
breaks on the particles that propagate into fragments until they
are totally broken (Yigit 1976). In the case of MPs ending up
in water, these abnormalities would damage particle construc-
tions and improve the ESC owing to environmental variables
including the turbulence of water, resulting in the conversion
of MPs to NPs. No experimental information was recorded
demonstrating the breakdown ofMPs into NPs in water owing
to the proliferation of abnormalities.

Environmental impact of micro/nanoplastics

Microplastics are rapidly growing contaminant to the environ-
ment, and their biological effects have attracted extensive at-
tention in the last year (De Sá et al. 2018). Land systems have

obtained much less scientific exposure than water counter-
parts. Nevertheless, microplastic pollution on territory could
be 4 to 23 times than the ocean (Horton et al. 2017). MP-
littered environment extends from the equator to the pole
(Barnes et al. 2009). The highest quantity of MPs in ground-
water could exceed 100,000 products/m3 and 100,000 prod-
ucts /m3 on the shores (Desforges et al. 2014). Pollution by
MPs have spread all over the world, distributed widely in soil
ecosystems, coastal waters, marine waters (Barnes et al.
2009), freshwater systems (Li et al. 2018; Peng et al. 2018),
and even polar regions (Obbard et al. 2014).

Some considerations have been given to the environmental
impacts of MPs/NPs in freshwater environments (Eerkes-
Medrano et al. 2015). Due to its small size, MPs/NPs can be
ingested by aquatic species more readily immediately and
indirectly than larger particles, sometimes consumed for food,
resulting in adverse physical impact. For instance, data from
marine research shows that MP/NP intake can lead to shock,
blocked digestive tract, organ damage, weakening, and even-
tually death (Derraik 2002). Furthermore, MPs/NPs can ab-
sorb persistent organic pollutants (POPs), which could lead to
toxicity across the food chain (Bakir et al. 2012). This could
finally reach people through bioaccumulation. Desorption of
POPs, as well as other producing additives, may boost the
concentration of pollutants in water and enhance the suscep-
tibility of bigger parts to degradation (Dubaish and Liebezeit
2013). However, data onMP leaching and sorption of POPs is
limited and almost all of the toxicity knowledge comes from
marine and laboratory studies (Eerkes-Medrano et al. 2015),
even while freshwater information is still restricted. In addi-
tion, MP/NP surfaces can give natural habitats both for micro-
bial colonization and biofilm development, enabling opportu-
nistic microorganisms and invasive species to migrate (Zettler
et al. 2013). The latter can be important to WWTP as it may
impact the working of therapeutic procedures and improve the
transportation of WWT bacteria from these facilities to water
(Tagg et al. 2015; Zettler et al. 2013).

The combined microplastic impacts can influence plants
through physicochemical modifications in soil appearance
and composition, resulting in water cycling and the working
of the ecosystem in terrestrial environments and different
feedback from plants (Bergmann et al. 2016). In this sense,
microplastic-driven modifications in soil hydrological charac-
teristics could affect soil microbial growth, with prospective
effects on important symbiotic connections in terrestrial eco-
systems such as mycorrhizal groups (Hallett et al. 2009) and
N-fixing organizations. Such prospective physical effects on
the structure of soil and operation are of specific interest to the
soil microbiome because the mechanistic knowledge of the
loss of biodiversity and extinction in those ecosystems are
not completely understood (Mattsson et al. 2015). Plastic hy-
drophobic surfaces and their eco-corona associate are also
recognized with hydrophobic compounds (Barnes et al.
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2009; Galloway et al. 2017; Zhan et al. 2016). Trophic im-
pacts as well as other ecological effects were noted when
adsorbed chemicals on microplastic were connected to intra-
or interspecies interaction processes in the marine environ-
ment (Galloway et al. 2017). Many amphiphilic and hydro-
phobic compounds already control the communication of spe-
cies and ecosystem processes in soils. For example,
hydrophobins are ubiquitous amphiphilic protein in soil that
is naturally produced by the fungus. These polypeptides, rich
in cysteine, play significant functions like hydrophobicity and
aggregate stabilization with immediate impacts on soil erosion
and biogeochemical cycles. MPs were suggested to have sep-
arate sorption characteristics for inorganic soil components (
Hodson et al. 2017) and research laboratory findings indicate
that hydrophobins play a function in protecting filamentous
fungi from nanoplastic toxicity (Nomura et al. 2016). Highly
appropriate biogeochemical modifications may happen when
hydrophobic surfaces of microplastics interact significantly
from natural hydrophobic soil particles or other soil structure
chemical drivers. Therefore, further study is needed to explain
to which level of microplastic pollution can impact soil com-
position, texture, composition and activity.

Impact of MPs/NPs on terrestrial and marine
organisms

One influencing mechanism is acknowledged as significant
for both designed nanomaterials and nano/microstructures,
i.e., physical interactions between particles and organisms
(Wagner et al. 2018). It includes interference and inflamma-
tion of energy balance induced by the adsorption and absorp-
tion of particles into the intestine, thereby restricting food
consumption. Various types of designed nanomaterial along
with nanoplastic were noted to attach to the microalgae sur-
face, possibly triggering a cellular shading impact (Wright
et al. 2013). Recent reviews of the physical effect of MPs on
marine organisms are shown in Wright et al. (2013).
Mechanisms mentioned as possibly appropriate include diges-
tive blockage, tissue abrasion, blockage of invertebrate feed-
ing appendages, tissue embedding, enzyme blockage
manufacturing, nutrient dilution, reduced feeding stimulus,
lower development rate, and lower steroid hormone concen-
trations and impaired breeding. MP effectiveness for causing
these physical impacts on species relies on a variety of vari-
ables. MP effectiveness for causing these physical impacts on
species relies on a variety of variables. Particles with large
accumulation ability in organisms and translocation into tis-
sues are anticipated to have a greater physical effect (Wright
et al. 2013). As described below, this is tightly associated with
particle size. The shape also serves a significant part as un-
even, sharp pieces are more probable than round, soft particles
to cause damage. Fibers in the digestive system are more

probable to accumulate. The ability of individual species to
consume microplastic is also considered to be vital due to the
reason that this technique will find how quickly an organism is
introduced to particle (Wright et al. 2013).

Several types of research have described that fish and other
organisms, particularly in marine environment, can intake
MPs owing to their smaller size and UN degradability (Ivar
Do Sul and Costa 2014). In these studies, the MP toxicity to
parameters include tissue distribution (VonMoos et al. 2012),
rate of growth (Jeong et al. 2016), biological enzyme activity,
reproduction, and oxidative damage (Yu et al. 2018), which
are mainly evaluated. The presence of huge quantities of
microplastics destroys a number of species, including plank-
ton, vertebrates, and invertebrates, resulting in numerous un-
expected effects (Frydkjær et al. 2017). Furthermore, MPs
also have harmful impact on certain microorganisms like fun-
gus and bacteria. For instance, polystyrene nanoparticles can
have harmful impacts on yeast cells (Nomura et al. 2016).
MPs can prevent their formation for marine bacteria
Halomona salkaliphila and disrupt the environmental role
(Lee et al. 2013).

In addition, MPs have a number of harmful impacts on
marine animals, which include invertebrates like zooplankton
and certain benthonic animals, vertebrates like fish, seabirds,
and amphibians (Fig. 1). The impacts on zooplankton are
triggered primarily by obstruction of the digestive system,
decreased appetite, eating impact, malnutrition, slow develop-
ment, and sometimes even death (Lee et al. 2013). MPs effect
on marine benthic organisms including oysters and mussels is
due primarily to their presence of sediments in the deep sea
(Van et al. 2013) that mussels moveMPs through endocytosis
into the gastrointestinal system, This ultimately leads to in-
flammation and reduction in stability of lysosome mem-
branes. MPs may increase mortality of oysters, slow growth,
influence absorption of energy, and interferes with reproduc-
tive ability and progress of offspring. Furthermore, MPs al-
ready have a harmful impact on certain microorganisms such
as fungus and bacteria. For instance, polystyrene (PS) nano-
particles can have harmful impacts on yeast cells (Nomura
et al. 2016). MPs can prevent their formation for marine bac-
teria Halomonas alkaliphila and disrupt the environmental
role (Sun et al. 2018).

The researches of MPs on terrestrial ecosystems are com-
paratively rare compared with the research of aquatic organ-
isms. Scientists have started paying attention in the latest years
to the MP effect on terrestrial organisms and ecosystems
(Rillig 2012). In reality, contamination of MPs in the soil
can be more severe than the aquatic environment because of
the plastic agricultural film and fibers used in industrial
manufacturing applications (Ramos et al. 2015). MPs cause
a risk to terrestrial organisms and can also harm human health
via the food supply chain and other routes (Sharma and
Chatterjee 2017). Polystyrene MPs can prevent proliferation
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and even kill earthworms in the soil (Cao et al. 2017). These
findings indicate that soil pollution from MPs has a negative
impact on soil organisms, implying the environmental impact
of MPs in terrestrial ecosystems. At the moment, MP evalua-
tion of the toxicity of terrestrial mammals is comparatively
inadequate.

Several aquatic species were used for NPs to show the
hydrophobic organic polymer (POP) adsorption and the
chemical leaching and POPs to illustrate their significant en-
vironmental biological and toxicological effects (Galloway
2015). Several studies are indicating negative impacts includ-
ing ROI manufacturing and dysfunction of reproduction when
NPs are exposed to aquatic organisms. The levels of orders of
different magnitudes were greater than those expected to be
essential for the environment, such as 1 pg/L–15 μg/L for NPs
of approximately 50 nm (Lenz et al. 2016). Focusing on the
above reality will assist in comprehending the effect of envi-
ronmentally appropriate nanoplastic levels. There is also a
lack of understanding about how NPs are transported to the
food supply chain and how they accumulate and communicate
with the environment especially with organisms.

Routes of human exposure

MPs as contaminants in the larger and more diverse environ-
ment poses risks to human health because it has been shown
that they can be ingested via a wide range of aquatic organ-
isms, both freshwater and marine and can therefore be accu-
mulated via the food web. Aquatic species for which the in-
gestion of MPs has been reported in the discipline consist of
fish, turtles, seabirds, worms, and crustaceans throughout the
marine food web (Wright et al. 2013). Experimental trials
have shown that several other organisms are capable of
ingesting microplastic-containing zooplankton (Setala et al.
2014). Most experiments have reported microplastics in or-
ganism guts, an organ that is not normally immediately
bumped off by humans now.

Exceptional cases to this are shellfish like clams and mussels,
and a few other shrimpswere consumedwith their intestines or in
total. The threat of ingestion ofMPs in further tissues is based on
the level to which uptake of microplastics and translocation and
redistribution and retention happens within distinct bodily tis-
sues. Moreover, in regard to human ingestion, this idea is
discussed below in comparison with the possible consequences
of ingestion owing to intestinal blockages and/or harmor reduced
energy conversion (Wright et al. 2013). The huge floor vicinity
of MPs is capable of continuously absorbing environmental pol-
lutants on the surface of the particles, with the possibility of being
moved to the tissues of the body once consumed. Microplastics
are used for a wider spectrum of natural world species. The
change in the adjacent environment to hydrophobic pollution
tissues makes the reader conscious of outstanding recent reviews

and various chapters in this problem (Engler 2012). With regard
to this problem, no information are presently accessible to dem-
onstrate the uptake or biological results of terrestrial or marine
debris nanoplastics ingested through the food chain by
individuals.

NP exposure could possibly occur through oral consump-
tion/absorption, inhalation of plastic products through the skin
or involuntarily (Figs. 3, 4, and 5). Inhalation is probably
important in work advertising instances involving
nanoplastic-constituting aerosols (Oriekhova and Stoll
2018), whereas achievable skin contact may occur through
the use of contaminated air, water, and products like pores,
skincare, and washing products that contain NPs. Particle in-
gestion of NPs is probably the primary route of intake, accord-
ing to contemporary understanding, because particles of NPs
can be ingested either through consumption of seafood or
through the ingestion of contaminated water. In fact,
nanoplastic consumption and accumulation have been verified
under experimental circumstances as correctly as trophic
nanoplastic change inside aquatic organisms; this increases
the potential for NPs to accumulate in the food chain and
consequently resulting in human toxicity (Mattsson et al.
2015). Microplastic particles have been recognized in many
kinds of seafood, like bivalves, shrimps, and fish also in var-
ious foods including salt, beer, sugar, and honey (Li et al.
2015). Current investigations of the use of Fourier transform
infrared spectroscopy also showed that MPs are also identified
from groundwater sources, boiled water and tap water. In 159
samples of worldwide faucet water, the integration of
microplastic particles were discovered to be around 81%,
more often than not lower than 5 mm fibers with a prevalent
implication of 5.45 particles/L (Kosuth et al. 2018). In a total
of 11 personal water cans from 11 particular products and 27
outstanding lots, 93% reported presence of microplastic dis-
ease with a standard 10.4 particles/L (Kosuth et al. 2018).
Floor water analysis from the northwest region of Germany
disclosed that a normality of 0.7 MPs/m3 can be identified
(Mintenig et al. 2019). All these investigations reiterate that
the prevalence of NPs in a variety of meal merchandises can-
not be excluded. Currently, there are no achievable movement
approaches that allow NPs to be detected in food, and as a
consequence, there are no statistics beyond the lookup activ-
ities listed previously in this thread.

It can also influence human health even though chemical
additives are leached or switched from the plastic fabric itself.
The chemicals including stabilizers, plasticizers, and pigments
are supplied in the plastic-producing method to supply the
closing product’s required characteristics, e.g., their stability,
flexibility, and color. There are currently lots of chemicals
used for these reasons, and it is known that some of these
chemicals may pass out into the atmosphere at some point in
the item life process, mainly to disrupt endocrine or acute
toxicity when organism publicity occurs (Lithner et al.
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2011). The same applies to the practice of the monomers (i.e.,
chemical structural blocks) used in the first area to generate
the polymers (in which small quantities can stay in polymers),
and products evolved through the degradation of chemical
polymers. Bisphenol A (BPA) is used in polycarbonate and
secure epoxy resins, it is also the best instance of a leaching
monomer. BPA has been shown to cause harmful impacts in
humans owing to its estrogenic activity (EA), including count-
less metabolic disorders as well as sexual and behavioral im-
pacts (Lang et al. 2008; Ehrlich et al. 2012). Containers of
polycarbonate used for newborns confirmed higher BPA
leaching. Newborns are at a risk of greater danger than ado-
lescents because of the fact that increased physical stress is
expressed as blood or plasma consciousness, owing to en-
hanced absorption or reduced withdrawal relative to the inter-
nal physical burden of adults (Hengstler et al. 2011).

Impact on human health
of micro/nanoplastics

Fewmarines and terrestrial organisms show theMP translocation
across the gastrointestinal tract (Rodriguez-Seijo et al. 2017), but
fewer reviews on mammals (Schmidt et al. 2013). A variety of
forms and sizes of MPs (among 0.1 to 150 μm) have been
created in research concerning individuals (0.2–150 μm) via
the mammalian stomach in the lymphatic system (Hussain
et al. 2001). PVC (5 to 110 m) appeared in the portal vein of
dogs, which then reaches the liver (Volkheimer 1974). Uptake of
2 μm latex particles are shown in small intestines in rodents
(0.04–0.3%) (Carr et al. 2012). Restrained intake of 0.2%
poly(lactic-co-glycolic acid) microplastics of 3 μm in human
colon mucosal tissue were evaluated in an in vitro study. The
patient’s colon mucosal tissue with severe illness such as

Fig. 4 Potential routes of
exposure and toxicity pathways
for microplastics in the human
body

a

c

b

Fig. 3 Pictorial representation
displaying the three primary paths
of human exposure to NPs, i.e.,
via a lungs, b gastrointestinal (GI)
system, and c skin
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inflammatory bowel disease (IBD) revealed rapid transportation
(0.45% in healthy controls relative to 0.2%) compared with
greater intestinal permeability (Schmidt et al. 2013). Few studies
have explored the feasible MP absorption system. Due to their
small size, endocytosis or phagocytosis may be the preferable
uptake path for MPs. Phagocytosis may also occur with particles
> 0.5μmby usingmacrophages in the intestinal epithelium (Yoo
et al. 2011). The endothelial cells may also internalize a huge
5-μm particles by endocytosis (Gratton et al. 2008).
Biodistribution information on microplastics is not available
(Yoo et al. 2011). The capacity to enter cells and the gut epithe-
lium is a unique problem of NPs. Oral consumption of polysty-
rene NPs has been researched for several centuries, and translo-
cation of gastrointestinal digestion (in vivo as well as in vitro) of
manufactured NPs (zinc oxide, titanium dioxide, silver) has been
investigated (Brun et al. 2014). NPs can enter the circulation,
following translocation through the gut barrier, based on their
surface charge and size. The PS NP oral bioavailability (50
nm)was projected to differ among 0.2 and 2% in rodent (in vivo)
and human (in vitro) research. The relationship between the com-
position, size, and uptake of NPs has not yet been established.
Various polystyrene particle uptakes (50 to 500 nm) were eval-
uated in different intestinal models (in vitro) varying from 1.5 to
10%, with different NP sizes and surface composition (He et al.
2010). Interestingly, oral in vitro exposure to 50 nm PS particles
has resulted in increased iron absorption, suggesting that NP
exposure impacts the barrier characteristics of the intestinal epi-
thelium (Mahler et al. 2012).

Toxicity of micro- and nanoplastics

MPs may also be harmful because of their intrinsic capacity to
cause tissue obstruction (Pedà et al. 2016). According to re-
searchers, damage reported after 90 days of advertising should
be entirely liable for compromising intestinal activity. To date, it
is possible to determine in vitro studies on the toxicity of MPs to
human health. After advertising to 10 mg/L of polystyrene (PS)
MPs (10 μm) and NPs (40 and 250 nm), the researchers evalu-
ated oxidative stress in epithelial and cerebral human cells
through reactive oxygen species (ROS) (Schirinzi et al. 2017).
Polystyrene MPs have recently been investigating fitness danger
particularly to tissue distribution, accumulation, and tissue in
mice (Deng et al. 2017). Outcomes stated that MP ingestion
(0.5 mg daily of 5 and 20 μm polystyrene) resulted in particle
accumulation in the kidney, lungs, and intestine (Fig. 6).
Therefore, the kinetics of accumulation of tissue and distribution
samples was once correlated with the particle size of MPs.
Furthermore, analysis of biochemical biomarkers and metabolo-
mics characteristics in mice brain proposed that advertising from
MPs precipitated changes in oxidative stress, lipid, and energy
metabolism and also neurotoxicological effects. These impacts
increase the cell toxicity scenario in the manner of human liver
cells. MPs in the lumen can interfere with the fluid through
adsorptive reactions backed by big surface area and charging.
The surface of plastic particles can be adsorbed with large pro-
teins, which may contribute to modifications in the immune sys-
tem of the intestine and adjacent inflammation (Powell et al.

Fig. 5 Potential pathways of
exposure and particle toxicity for
microplastics in the human body
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2007). This should also lead to the adoption of MPs through the
gut (Handy et al. 2008).

Furthermore, toxicity can be associated with the nanoparti-
cles’ surface area-to-volume ratio, which leads to change in their
reactivity. Because NPs are completely inert substances, a
starting variable should be the fate of inert nanoparticles such
as gold (Au) in finding out how toxic NPs are. The earlier study
assessed the intake of Au nanoparticles in vivo macrophages in
spleen and liver and verified the stimulation of acute inflamma-
tion and apoptosis in the liver. These findings were considered
size dependently and endorsed by the use of a differential expres-
sion of genes in terms of lipid metabolism, detoxification, and
reactions to protection. NPs have one type of physicochemical
habitats relative to nanoparticles, which could have accurate ef-
fects (Lambert et al. 2017). Although studies with these accurate
steel nanoparticles should provide valuable insights into NP tox-
icity, new nanoparticle schemes should be regarded for future
studies evaluating the feasible NP toxicity. The toxicity of
micro- and nanoplastics are shown in Table 1.

Neurotoxicity

A few studies have discussed MPs/NPs neurotoxicity so far
(Barboza et al. 2018; Zhao et al. 2017). The researcher’s first
explored motor behavior includes modifications and different
kinds ofmovement-correlated nematode neurons afterMP/NP
exposure. The findings indicated that polystyrene MP/NP ex-
posure increased frequently in worm twisting and head
thrashing. In addition, in nematodes exposed to 0.1 and
2.0 μm MPs/NPs, substantial rises in the speed of crawling

were found. These suggested that polystyreneMPs/NPs might
lead to exciting organism’s motor behavioral toxicity. The
motor behaviors of Caenorhabditis elegans which are con-
trolled by various neuronal subtypes, such as dopaminergic
neurons, cholinergic, and GABAergic are normal. These cho-
linergic neurons are equally probable to cause subsequent
rhythmogenesis during nematode forward locomotion
(Fouad et al. 2018). Furthermore, unc-17 codes the vesicular
acetylcholine transporter (VAChT) which sets up the flow of
acetylcholine from presynapse to synapse and justifies its mo-
tor motion significance (Alfonso et al. 1993; Zhu et al. 2001).
In the current research, changes of dat-1, unc-17, and unc-47
expression involving the motor modulation function of these
neurons were examined. The analysis showed that micro- and
nanosized polystyrene particles can substantially prompt
down-regulated expression of these prospective neurodegen-
eration markers, which showed an important damage to
GABAergic and cholinergic neurons, and there was no change
in dopaminergic neurons. These results show the toxicity of
polystyrene MPs/NPs’ selective neurodegeneration on organ-
isms. The MP/NP excitation influences the locomotion of
C. elegans. They conclude that the impacts on cholinergic
neurons may be damaging. In addition, the observed disabil-
ities of GABAergic inhibitory neurons may lead to an imbal-
ance excito-inhibitory process and have exciting impacts on
locomotive manners in C. elegans. Apart from contemplating
the absence of blood–brain barrier (BBB) in C. elegans (Li
et al. 2017; Xu et al. 2017), NPs may be more likely to interact
with neurons and practice nematodes neurotoxicity.
Moreover, more underlying neurotoxicity mechanisms re-
quire more studies.

Fig. 6 Human health effect of
microplastics
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Table 1 The toxicity of micro and nanoplastics

Tested system Details of micro/
nanoplastics

Concentration Effects Reference

Chlorella spp. and
Scenedesmus spp.

Nanosized plastic beads Induction of ROS generation Bhattacharya et al.
(2010)

Scenedesmus and Obliquus Nanopolystyrene particles 0.22 and 103 mg/l Reduced growth rate and decreased
chlorophyll content

Besseling et al.
(2014)

Dunaliella tertiolecta,
Thalassiosira
pseudonana, and
Chlorella vulgaris

Polystyrene particles Size between 0.05 and
6 μm

No changes in algal growth with
significant reduction in photosynthesis

Sjollema et al.
(2016)

Chlamydomonas reinhardti High density polyethylene
and poly propylene
particles

Significant growth inhibition Lagarde et al.
(2016)

Protozoan and Paramecium
spp

Polystyrene microparticels 1 μm size Ingestion of polystyrene microplastics Holm et al. (2013)

Cnidarians and Hydra
attenuata

Polyethylene flakes
(< 400 μm)

0.01, 0.02, 0.04, and
0.08 g/ml

Effective ingestion of microplastic particles
and significant changes in morphology
not leads to lethality

Murphy and Quinn
(2018)

Crustaceans and Daphnia
magna (Cladoceran)

Carboxylated polystyrene
microplastics

20–100 nm size Accumulation in gut epithelial layer with
faster depuration for larger beads

Rosenkranz et al.
(2009)

Daphnia magna Polymethyl methacrylate 29.5 ± 26 μm size 100% ingestion of exposed microplastics Imhof et al. (2013)

Daphnia magna Polystyrene microparticels 1 μm size Ingestion of polystyrene particles Holm et al. (2013)

Daphnia magna Micro- and nanoplastics 50–10 μm Significant phenanthrene bioaccumulation,
dissipation, and transformation are noted
in daphnids

Ma et al. (2016)

Daphnia magna Primary and secondary
microplastics

1–5 μm Lower feeding and reproduction at high
microplastic levels

Ogonowski et al.
(2016)

Daphnia magna Polyethylene
microplastics

1–100 μm;
concentration
ranges from 12.5 to
400 mg/L

1 μm size particles are ingested and cause
immobilization

Rehse et al. (2016)

Daphnia magna Fluorescent polystyrene
beads

2 μm–100 nm 5 times higher ingestion rate for 2 μm; 21%
decreased feeding rate with no significant
effects on reproduction

Rist et al. (2017)

Oryzias latipes (Medaka fish) LDPE 3 mm Altered immune response, changes in
metabolic function, and tumor formation

Rochman et al.
(2013)

Daphnia pulex Polystyrene 75 nm, 0.1 mg/L, and
1 mg/L

Biochemical processes such as cellular
energy homeostasis and oxidation in vivo

Liu et al. (2018)

Oyster gametes (Crassostrea
gigas)

PS-COOH PS-NH2 100 nm and 0.1–100
mg/L

Reactive oxygen species production Gonzalezfernandez
et al. (2018)

Nematode (Caenorhabditis
elegans)

PS and TiO2 nanoparticle 108.2 ± 4.5 and 10 ±
2 nm and 0.01–1
mg/L

Change the molecular basis of oxidative
stress

Ding et al. (2018)

Rotifer (Brachionus
plicatilis)

PS-COOH PS-NH2 40–50 nm and 0.5–50
mg/L

Acute toxicity in rotifers Machado et al.
(2017)

Mussel (Mytilus
galloprovincialis)

Polystyrene 110 ± 6.9, 0.5–50
mg/L
carbamazepine, and
6.3 mg/L

Decrease enzymatic activity, induced effects
on neurotransmission

Brandts et al.
(2018)

Dicentrarchus labrax Poly(methylmethacrylate)
PMMA

45 nm and 0–20 mg/L Change molecular signaling pathway and
potentially interfere with the metabolism
of lipids

Barboza et al.
(2018)

Zebrafish (Danio rerio) Polystyrene 50 nm and 1 mg/L Significant inhibit acetylcholinesterase
activity

Chen et al. (2017)

Acorn barnacles
(Amphibalanus
amphitrite)

PMMA 45 nm and 5–25 ppm Nanoplastics could persist in the body
throughout stage of growth

Bhargava et al.
(2018)

Mussel hemocytes (Mytilus
galloprovincialis)

PS-NH2 50 nm and 1–50 mg/L PS-NH2 could decrease lysosomal
membrane stabilization

Canesi et al. (2016)
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Conclusion

An expanding information base has demonstrated the adverse
impacts of MPs/NPs on aquatic and terrestrial species. But,
apart fromMPs, NPs in aquatic structures can reach intestinal
tissue and thus the human food chain ends. Thereby, the in-
vestigation of the existence and fate of nanoplastics in the
environment seems crucial. In comparison with research, the
impacts of NPs on marine species affect humans by the risk of
exposure to people through the food chain. The MPs/NPs
accumulate throughout the entire environment and food chain
in both animals and humans. It is vital to systematically assess
the impact ofMPs/NPs on living organisms, especially as they
are capable of adsorbing potential toxicants including organic
macromolecules, pollutants, and heavy metals that intermin-
gle in the environment. It is obvious that our interpretation of
the prospective toxicity of the human species by environmen-
tal MPs/NPs is in its early stages and has left many unan-
swered questions. Is there substantial bioaccumulation and
trophic transfer in the environment for MPs/NPs? If it does,
which species are at greatest risk? How the aging of plastics
eventually affects the environment and animals?

Moreover, the long-term data of ingested NPs’ destiny in
human and aquatic species are restricted, and several major
problems remain for future studies, including what would be
the concentration of water nanoplastics? Can this concentra-
tion influence the aquatic environment, and hence the food
supply chain, leading to significant dangerous human im-
pacts? In order to determine potential human exposure, can
we verify the existence of nanoplastics in the human food
chain? In view of these unresolved issues, new technological
approaches to detect the particles of NPs in the environment
and in humans are required. Future studies should shift to-
wards an even lesser recognized terrestrial environment.
Research including terrestrial but still freshwater ecosystems
will support the general explanation of environment MP/NP
pollution and its potential effects on human health.
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