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Abstract
Improving carbon emissions performance in Chinese cities is a crucial way to promote China’s sustainable development.
Employing the super-efficiency SBMmodel, we first estimate the carbon emissions efficiency (CEE) of 262 Chinese cities from
2003 to 2016. Then we study and explain the club convergence of CEE combining Markov and spatial Markov models and
Moran’s I test method. The results show that CEE has improved, especially for the western and northeastern cities. The efficiency
of the northwest cities is low, while those of the central and coastal cities are relatively high. Club convergence exists in China’s
urban CEE. Cities with high- and low-level efficiency have much higher convergence levels. There are significant spatial
agglomeration and spillover effects in China’s urban CEE, contributing to the club convergence. Our analysis suggests that
“cross-border” cooperation and communication between cities in different clubs should be highly promoted. Cities in high-level
efficiency clubs are encouraged to play its role in radiating the lower-level cities. And the Chinese government is encouraged to
strengthen carbon emissions mitigation in low-level areas through combining the green “Belt and Road” construction with the
establishment of a national carbon market.
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Introduction

The path to rapid economic growth in China since the 1980s is
engraved by fast CO2 emissions increase. Globally, China has
been considered to be the second largest economy and largest
CO2 emitter during the last decade. In 2018, it produced
15.8% of global gross domestic product (GDP) and emitted
29.3% of global greenhouse gases (GHG) (International
Monetary Fund 2019; BP 2019). At present, China is strug-
gling with reducing high CO2 emissions and keeping fast
growth simultaneously as a response to its ambitious

sustainable development targets. To be concrete, this country
tries to abate its CO2 emissions per unit of GDP by 60–65%
before 2030 compared with 2005 level and keeps the annual
GDP growth rate higher than 6% (State Council 2019).

It has been widely recognized that improving carbon emis-
sions performance is a crucial way to reduce CO2 emissions
during economic activities and promote sustainable develop-
ment (Tang et al. 2016a; Yang et al. 2018; Chen and Xu 2019;
Iram et al. 2020; Tang and Hailu 2020). Many researchers
have focused on measuring and evaluating carbon emissions
efficiency (CEE) using various approaches in different
countries/regions (e.g., Mirza and Kanwal 2017; Tang et al.
2019; Chang 2020). Due to the geographic differences in car-
bon emission levels and performance, the continuous high
emissions and low CEE in some countries have increased
the difficulty in global carbon emission reduction (Battisti
et al. 2015). Hence, scholars have tried to explore whether
countries with low CEE can catch up with those with high
efficiency. This is the main research field of international car-
bon emissions efficiency convergence.

Since traditional β convergence, σ convergence, and ran-
dom convergence tests (e.g., Barro and Sala-I-Martin 1992;
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Liu et al. 2017) do not consider individual heterogeneity,
Barro et al. (1991) and Quah (1997) delivered the club con-
vergence theory, saying that there exists convergence in the
economic growth of regions which share similar initial devel-
opment and economic structural characteristics. Exploring the
club convergence of CEE can demonstrate the dynamics and
influencing factors of regional CEE in different convergence
club areas (Haider and Akram 2019). This will provide theo-
retical insights and decision-making reference for reducing
regional CEE differences and promoting the coordinated
low-carbon development among regions. Therefore, it is es-
sential to know the club convergence of CEE in different
regions, especially within a country. However, few have con-
ducted empirical studies on this topic.

In terms of Chinese context, the majority of the existing
studies utilize provincial-level data or sectoral-level data
(Yang et al. 2017; Lin and Wang 2019; Wang et al. 2019b;
Zhou et al. 2020a). Nevertheless, few have investigated the
trend of China’s carbon emissions performance from a city
perspective. In China, cities contribute more than 70% of the
national CO2 emissions (Wang et al. 2018). Accordingly, cit-
ies are expected to transform from the current emission-
intensive growth path to a more sustainable way. As such, it
is necessary to understand carbon emissions performance
trend across China’s cities which will provide insights into
this country’s sustainable transition patterns. Moreover, city-
level analysis, compared with provincial-level or sectoral-
level studies, provides a more robust evidence support since
it shows intra-provincial heterogeneity and distribution dy-
namics. There are substantial heterogeneities in resources en-
dowment, energy structure, sectoral structure, development
pattern, and other socioeconomic factors for cities in China,
a country with vast territory and 1.4 billion population (Wu
et al. 2019; Tang et al. 2020a). This leads to distinct differ-
ences in both energy intensity (Zhu and Lin 2020) and CEE
(Tian and Zhou 2019) among various types of cities.
Therefore, it is useful to conduct city-level convergence anal-
ysis in terms of carbon emissions performance, which will
help formmore diverse and targeted reduction and sustainable
development policies for different types of cities.

To fill this knowledge gap, we attempt to analyze the car-
bon emissions performance trend across China’s cities using a
total factor framework. A super-efficient SBM model is ap-
plied to capture the CEE (Tone 2001; Tran et al. 2019; Tang
et al. 2020b). Then, the distribution dynamics model is intro-
duced to analyze the club convergence of CEE. Because the
traditional Markov model usually only examines the situation
of one-step change (Herrerias 2012; Pan et al. 2015), it is
impossible to know the dynamic characteristics of the region
over a long period. The distribution dynamics model, which
contains a transfer matrix with variable time length of change,
can solve this problem. Moreover, we explain the club con-
vergence of urban CEE from the perspective of space

spillover. By doing so, we could have more comprehensive
and detailed understandings on the carbon emissions perfor-
mance trend across Chinese cities and develop practical in-
sights for improving the effectiveness of related reduction and
sustainable development policies.

In general, the contributions of this study are in several
ways. Firstly, a detailed picture of carbon emissions perfor-
mance trend across China’s cities is depicted, facilitating
policymakers to refine policy instruments with a more com-
prehensive view. Secondly, this paper constructs the matrix of
transition probability with different time length to examine the
changes of club convergence characteristics in urban CEE
over time, revealing more spatiotemporal trends of the con-
vergence of urban CEE. Thirdly, we explain the club conver-
gence of CEE from a spatial spillover perspective, providing
new insightful evidence to characterize the trend of carbon
emissions patterns. Fourthly, we compile a new panel city-
level dataset including dynamic energy use data of 262
Chinese cities from 2003 to 2016.

The remainder of our study is organized as follows.
Literature is reviewed in Section 2. Methods and data are
described in Sections 3 and 4, respectively. Results are pre-
sented in Section 5. Finally, we conclude in the last section.

Literature review

Evaluating carbon emissions performance is usually within a
multiple-factor production process; energy and other inputs
are used to produce products and other undesirable by-
products including CO2. Therefore, early studies employing
various ratio methods (e.g., Yamaji et al. 1993; Lu et al. 2007),
which simply use the ratio of a certain economic value to CO2

emissions to evaluate carbon emissions performance, are con-
sidered to have limits since they are hardly able to reflect the
multiple-factor characteristic. In recent years, there is a grow-
ing literature which measures carbon emissions performance
within a total factor framework. This framework is thought to
be capable of dealing with multiple-factor production issues
(Tang et al. 2016b, 2018; Chen et al. 2019; Tang et al. 2020a)
and therefore employed in our study.

Two efficiency evaluation methods, stochastic frontier
analysis (SFA) and data envelopment analysis (DEA), are
popular in terms of measuring carbon emissions performance.
The parametric SFA is popular among many researchers be-
cause it is able to tackle statistic noise and not sensitive to
outliers (Wang et al. 2019a). It has been applied to measure
CEE at national (Bai et al. 2019), regional (Dong et al. 2013),
provincial (Wang et al. 2013; Lin and Du 2015), and sectoral
levels (Chen et al. 2019; Li et al. 2019). Nevertheless, SFA
requires the assumptions of a specific production function
form and random component distribution, as Wu et al.
(2019) comment. Such requirements mean the evaluated
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results may be influenced by the potential wrong choice of
function or distribution. In practice, it is difficult for re-
searchers to know whether the chosen function and distribu-
tion are correct and avoid arbitrary choices.

The nonparametric DEA overcomes this weakness; it does
not need to assume a function form or random component
distribution in analysis. Besides, DEA is flexible in applica-
tion and does not need big samples. Accordingly, DEA is
gradually employed in estimating carbon emissions perfor-
mance. Various DEA-based methods have been used in this
field, including non-radial distance function (Kang et al.
2018), output-based DEA (Pang et al. 2015), fuzzy DEA
(Egilmez et al. 2016), slacks-based DEA (Zhou et al.
2020b), Malmquist-based DEA (Liu et al. 2017), and super-
efficient SBMmodel (Tone 2001; Tran et al. 2019; Tang et al.
2020b). Compared with other DEA-based methods, the super-
efficient SBM model has the advantage of considering radial
as well as non-radial possible enhancements in the production
process, thereby delivering more comprehensive performance
evaluation results. Therefore, this study also employs super-
efficient SBM model to evaluate carbon emissions perfor-
mance, avoiding the unnecessary assumptions and fully taking
into account potential production improvements.

It is generally believed that the neoclassical growth model
introduced the concept of convergence in economic analysis
(Solow 1956), including absolutely convergence and
conditional convergence. Baumol (1986) firstly conducted
an empirical analysis on this topic using Maddison data.
Since the 1990s, the convergence of economic growth has
gradually become a hot issue in development economics and
international economics. Generally speaking, the early empir-
ical studies about convergence mainly focus on σ conver-
gence, absolute β convergence, conditional β convergence,
and random convergence using regression methods (Barro
and Sala-I-Martin 1992; Friedman 1992; Mankiw et al.
1992; Islam 1995; Caselli et al. 1996). Additionally, some
tried to use time series analysis method for random conver-
gence test, such as co-integration test (Bernard and durlauf
1995) and unit root test (Carlino and mills 1993; Carlino and
mills 1996).

It is believed that only the economies with the same struc-
tural characteristics and similar initial states will eventually
converge to the same steady state, which is called club con-
vergence (Barro et al. 1991). The main distinction between
club convergence and other convergence concepts is that club
convergence analysis takes into account heterogeneity across
the individuals. Some scholars empirically tested the club con-
vergence under the neoclassical framework (Durlauf and
Johnson 1995; Masanjala and Papageorgiou 2004).
However, some argued that this regression-based approach
is not reliable due to the possibility of existence of Galton’s
fallacy (Friedman 1992; Quah 1993; Hart 1995). Thus, Quah
(1996) proposed the distribution dynamics approach to tackle

this problem, which has been applied in various areas (López-
Bazo et al. 1999; Rey 2001; Herrerias 2012; Pan et al. 2015).
In addition to the distribution dynamics approach, Phillips and
Sul (2007) proposed a method in determining endogenous
convergence club based on clustering, which has been used
in some recent studies (Camarero et al. 2013; Apergis and
Christou 2016; Haider and Akram 2019). Compared with
the method of Phillips and Sul (2007), the advantage of the
distribution dynamics method is that it can examine the mo-
bility between differing clubs and quantify the solidification
within different clubs, allowing to incorporate spatial factors
into club convergence analysis.

There are a growing number of studies in the existing lit-
erature that test the existence of convergence in environmental
indicators, such as emissions and energy consumption. Those
studies on environmental and energy convergence have been
inspired by the abovementioned economic growth literature.
They can be roughly divided into three categories. The first is
using the unit root test method to test random convergence,
which has been used to analyze carbon emissions (Strazicich
and List 2003; Aldy 2006; Barassi et al. 2011; Acaravci and
Erdogan 2016; Karakaya et al. 2019), energy consumption
(Lean et al. 2016), and ecological footprint (Yilanci and Pata
2020). The second category uses discrete trends for σ conver-
gence tests or the regression analysis methods for β conver-
gence (Aldy 2006). Related studies have discussed energy
intensity between Eastern Europe and EU countries
(Markandya et al. 2006), carbon intensity of China’s industrial
sectors (Yu et al. 2018), and China’s provincial energy inten-
sity (Jiang et al. 2018). The third category is about club con-
vergence. Since the study on the first two kinds of conver-
gence tests do not consider individual heterogeneity, more and
more researchers apply club convergence test to avoid this
drawback, especially in the Chinese context. For instance,
both Wang et al. (2014) and Huang et al. (2015) examine
the club convergence of China’s provincial CO2 emissions
for different periods. They confirm the club convergence to
multiple steady equilibriums for those provinces. However,
the city-level study on the club convergence of China’s CO2

emissions is still rare.
Regarding results robustness, convergence evaluation usu-

ally needs relatively large samples, which imply that the city-
level study has its own advantage. Additionally, the city-level
study could also involve intra-provincial heterogeneity, an
essential feature of Chinese social-economic context (Wu
et al. 2019). City-level energy consumption and related CO2

emissions panel data, however, are not virtually available.
This probably explains why related studies are scarce. We
try to fill this gap by conducting a club convergence analysis
based on a newly compiled panel dataset including 262
Chinese cities from 2003 to 2016. This dataset is constructed
through analyzing major energy use sources including natural
gas, liquefied petroleum gas, and electricity. Conducting such
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an analysis could help us to better understand the city-level
CO2 emissions’ heterogeneity and dynamics.

Little literature has tried to provide explanations of the club
convergence in terms of China’s CO2 emissions. To the best
of our knowledge, only Wang et al. (2014) utilize the ordered
logit model to explore the determinants underlying the club
convergence in provincial emissions. They find that economic
level, energy use pattern, and energy intensity have an impact
on the long-term dynamics of provincial CO2 emissions.
However, their method, in essence, is a static regression and
therefore does not reflect the dynamic process of club conver-
gence. In our analysis, the club convergence of CEE is ex-
plained from a spatial spillover perspective, which is dynamic
and provides new insightful evidence. This is another knowl-
edge gap we try to fill.

In total, our study differs from the existing literature in sev-
eral ways. Firstly, instead of focusing on provincial- or sectoral-
level analysis, we depict a detailed picture of carbon emissions
performance trend across China’s cities based on the super-
efficient SBM and convergence analyses. Secondly, the club
convergence of emissions efficiency is explained from a spatial
spillover perspective. Thirdly, a new panel city-level dataset is
constructed including dynamic energy use data of 262 Chinese
cities for 14 years (2003 to 2016).

Methods

Estimating carbon emissions efficiency

The super-efficient SBMmodel (Tone 2002) is an increasing-
ly popular method for estimating efficiency (Tran et al. 2019;
Zhang et al. 2019). Since it can not only effectively tackle
pollutants redundancy but also distinguish the efficient
DMU at the frontier, this study also uses the super-efficient
SBM model to explore CEE across China’s cities as follows:
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where ρmeans the urban CEE and n is the cities’ number.
There are m input variables, s1 expected outputs, and s2 unde-
sired outputs. x, yd, and yurepresent input, desirable output,
and pollutant vectors, respectively. kindicates the evaluated
decision units.

Evaluating club convergence

Markov chain is a discrete time stochastic process. It studies
the characteristic probability of movement from a discrete
state to another. This study uses the Markov method proposed
by Zhou et al. (2018) to study the club convergence of carbon
emissions efficiency. The method expands the Markov transi-
tion probability matrix to a given time period. Thus, the trend
of CEE can be examined more accurately.

Specifically, the method to construct the Markov transition
probability matrix of a multi-year duration is as follows.
Assuming that all cities are classified into k types according
to the difference in CEE, the transition probability of a d-year

period is recorded as Pt;tþd
ij ¼ P X tþd ¼ j X t ¼ ijf g. It repre-

sents the probability that a city’s CEE transfers from type i in
year t to type j after d years. Combining all cities and all
possible transitions during the whole study period, we obtain

the Markov transition probability Pd
ij in the study period T and

estimate it with Eq. 2.

Pd
ij ¼ ∑T−d

t¼t0n
t;tþd
ij =∑T−d

t¼t0n
t
i ð2Þ

In Eq. 2, nt;tþd
ij indicates the number of cities with the CEE

transferring from i in t to j in t + d. nti means the cities’ number
whose CEE are type i in t. Through estimating the different
types of transition probabilities, we obtain the Markov transi-
tion probability matrix with a multi-year duration as shown in
Eq. 3:
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In Eq. 3, ndi� is the scale of type I cities, which is ∑tn−d
t¼t0n

t
i in

Eq. 2. Pd
ii means the probability of type I cities to remain in

type i after d years. Larger value means higher degree of the
CEE solidification, i.e., the club convergence phenomenon of
cities’ CEE is more obvious.

Explaining the club convergence from a spatial
spillover perspective

In this study, we explain the club convergence of CEE from a
spatial spillover perspective. Accordingly, a commonly
employed analysis in regional science, spatial autocorrelation,
is conducted (Liu et al. 2019). The global spatial autocorrela-
tion is tested using the Moran index to understand the spatial
correlation of emissions as Eq. 4 (Ma et al. 2019):
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where n is the cities’ number;yi and yj represent the emissions
efficiency of cities i and j, respectively; y represents the aver-
age of the emissions efficiency; and wijmeans the elements in
the spatial weight matrixw. The specific weight is set as in Eq.
5 (Ding et al. 2017):

wij ¼ 1 i≠ jð Þ
0 i ¼ jð Þ

�
ð5Þ

The globalMoran index ranges between − 1 and 1. Positive
values imply global spatial positive autocorrelation and the
negative ones mean negative autocorrelation. In our study,
positive correlations imply that high-efficiency cities and
low-efficiency cities exhibit high-high and low-low spatial
accumulation characteristics, respectively. Negative correla-
tions, however, indicate that high-efficiency cities and low-
efficiency cities are high-low spatial accumulated with each
other.

The spatial Markov model is obtained by introducing the
concept of “space lag” into the transition probability matrix
(Rey andMontouri 1999). This model can avoid the neglect of
the spatial interaction among research regions and study the
role of spatial factors in the evolution of city CEE. Measuring
the emissions levels of neighboring cities ∑jwijyj requires the
spatial weight matrix constructed in the previous section.

Here, k spatial lag types are used as the transition condi-
tions of city, and then the Markov transition matrix will pro-
duce k conditional transfer matrices. The values in the matrix
are denoted as Pij∣ λt, t + d as shown in Eq. 6:

Pt;tþd
ijjλ ¼ P X tþd ¼ j X t ¼ i;X spatial lagt ¼ λjf g ð6Þ

It indicates the probability of CEE in this region to shift
from i type to j type after d years under the condition of the
spatial lag of carbon emissions efficiency type λ in the current
year. Considering all possible transfer situations during the
whole study period, we obtain the Markov transition proba-
bility of the conditions and estimate it by Eq. 7:

Pd
ijjλ ¼ ∑T−d

t¼t0n
t;tþd
ijjλ =∑T−d

t¼t0n
t
ijλ ð7Þ

By comparing the corresponding probability values of
Markov and spatial Markov transition probability matrices, we
can explore the transfer relationship of CEE between a city and

its neighboring one. For example,Pd
12 > Pd

12 1j means the neigh-

boring city is also inefficient, indicating neighbors with low
CEE have negative influence on improving a city’s emissions

efficiency. The spatial Markov model adopted by us can also
investigate the spatial spillover effects at different time lengths.

In this study, the chi-square test is used to test the signifi-
cance of the difference between the two types of Markov
transition matrices. The statistics are constructed as follows
(Le Gallo 2004):

Q ¼ −2log ∏k
h¼1∏

k
i¼1∏

k
j¼1

pdij
pdij hð Þ

" #nijd hð Þ8<
:

9=
; ð8Þ

where k is the type of CEE in each region and also the type of
spatial lag; pdij is the estimated spatial transition probability

with the duration of d years over the entire period; pdij hð Þ is
the spatial transition probability when the spatial lag type is h
and the duration is d years; ndij hð Þ indicates the number of

cities corresponding to pdij hð Þ (h = 1, 2, 3…k). Statistic Q pro-

gressively obeys the chi-square distribution with freedom de-
gree k × (k − 1) and the difference between the cities’ number
has a transition probability of zero.

Data

In this article, we compile a dataset including China’s
prefecture-level city data on inputs and desirable and undesir-
able outputs. The dataset includes 262 prefecture-level cities
for the period of 2003–20161,1 and 2003 is set as the base year
(Table 1).

We use the perpetual inventory method (Wu et al.
2019) to calculate the cities’ capital stock based on yearly
fixed asset investment data. The calculated capital data
are adjusted using 2003 constant price. The labor input
data, represented by the sum of employees, are obtained
from China Urban Statistic Yearbook. Since there is cur-
rently no available city-level energy consumption data,
the annual electricity consumption is chosen to represent
energy input according to Han et al. (2018) and Fullerton
Jr and Walke (2019). We use annual GDP of each city,
derived from China Urban Statistic Yearbook (National
Bureau of Statistics of the People’s Republic of China,
2013-2017) using 2003 constant price, as the expected
output. CO2 emissions are used as undesirable output
and calculated based on an accounting method using ur-
ban natural gas, liquefied petroleum gas, and electricity
data (Han et al. 2018).

1 1Some cities are not included in the dataset due to data availability and
abnormal value issue. In total, there are 293 prefecture-level cities in China
in 2016.
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Results and discussions

Carbon emissions efficiency

Using the newly compiled data, MaxDEA software is utilized
to measure the CEE of 262 cities. Using the natural breakpoint
classification method in the ArcGIS 10.0 software, this article
makes a visual comparative analysis on the distribution of
CEE in 2003 and 2016, respectively. The results are shown
in Fig. 1.

Figure 1 shows that the CEE of northwestern cities is gen-
erally low and that of the central region and coastal areas is
relatively high. This is consistent with Cai et al. (2019). The
environment of northwestern cities is fragile and the infra-
structure is less developed (Liu et al. 2017). Local communi-
ties have excessively exploited and highly relied on natural
resources (especially coal) which reduced CEE. Moreover,
northwestern cities have become the main region to undertake
the transfer of China’s high-pollution industry from the coast-
al areas (Cheng and Zhao 2018), causing industrial carbon
emissions to surge.

Although the CEE of the northwestern region is rela-
tively low, its improvement is substantial. In the northeast
region, the CEE of some cities has always been relatively
high, and the radiation effect has pulled neighboring cities
to achieve a faster growth speed in emissions efficiency.
With the fast economic development and technology, as
well as China’s recent emphasis on the protection of the
environment, China’s cities began to adjust the industrial
structure, encourage technological innovation, as well as
make their economy greener. Western cities are gradually
realizing the importance of sustainable development and
paying attention to improving CEE. Additionally, recent
“Belt and Road” construction has effectively expanded
the scale of low-cost and low-emission industries and im-
proved the efficiency of energy use in those cities (Fan
et al. 2019), thus improving CEE. Moreover, the overall
growth rate of CEE in various cities has accelerated signif-
icantly since 2008. This may be due to the decline in de-
mand for Chinese exports after the 2008 financial crisis,
which promote China to further optimize the industrial
structure, increase investment in saving energy and reduc-
ing emissions, and develop a sustainable economy.

Club convergence of carbon emissions efficiency

This article first examines whether there is a club convergence
phenomenon in China’s urban CEE under different time pe-
riods. Considering that China carries out its official develop-
ment plan every 5 years, we evaluate club convergence over
the periods between 1 and 5 years. Cities’ CEE is discretized
into 4 levels, including low, medium-low, medium-high, and
high2,2 to measure the club convergence (Du et al. 2018). The
Markov model based on the transition probability (Eq. 2) is
applied to calculate the transition probability matrix of CEE
for each year.

In the transition probability matrix, each value represents
the probability of the CEE of a certain type of city in China
shifting from one state to another. The diagonal value is the
probability that the city will remain in this state for different
periods. Bigger values mean more obvious club
convergence3.3

The results show that the diagonal probabilities are higher
than the probabilities of moving to other states (Table 2). In
particular, the probabilities that cities with low efficiency as
well as high efficiency converge to their own club are relative-
ly high (between 0.591 and 0.818). This implies that there
exists convergence of high-level and low-level clubs in the
CEE. The convergence level of cities with intermediate CEE
is much lower than those with high-level or low-level values,
indicating that the efficiency competit ion among
intermediate-level cities is fierce; they actively improve CEE
and frequently transfer to other types.

In China, cities with high CEE usually have advanced
production technology, high energy use efficiency, and
well-developed industrial structure. Those advantages con-
tribute to their achievement in balancing economic growth

2 2The classification criterion of this article is that the number of cities in each
level is as even as possible. So the cities are divided into four categories
according to the critical values that are 95, 100, and 105% of the average
CEE of 262 cities in each year, namely, low, medium-low, medium-high,
and high-level.
3 3If the change in carbon emissions efficiency in each city has completely
equal probability, the value is 0.25. If the probability of maintaining the status
is greater than changing it (i.e., transferring to any other status), the value is
0.5. Therefore, this article says that if the diagonal element is greater than 0.5,
the clubmembers of the level are more inclined to maintain the status and there
is a convergence of the club.

Table 1 Descriptive statistics of
variables Variable Unit Minimum Maximum Mean s.d.†

Employment of secondary industry 104 people 0.94 429.13 24.02 33.29

Capital stock 109 yuan 37.23 63,181.28 3732.26 5562.08

Annual electricity consumption 109 kWh 0.23 1486.02 77.61 131.55

GDP 109 yuan 31.77 20,712.21 1237.29 1753.03

Total carbon emissions 104 tons 0.37 16,181.40 797.90 1443.26

† s.d. means standard deviation
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and carbon emissions well. For cities with CEE, multiple
disadvantages, including less-favorable economic and envi-
ronmental endowments, obstruct the sustainable transfor-
mation of local growth patterns. For example, many north-
western cities (e.g., Baotou and Yinchuan) are still highly
relying on heavy industries with massive CO2 emissions.
On the one hand, they lack funds and green production
technology for the transformation. On the other hand, they
have been enjoying large numbers of jobs for local less-
educated labor and substantial revenue provided by those

heavy industries for decades. Therefore, it is hard for those
cities to improve the CEE. For cities with intermediate-level
CEE, the differences are not particularly obvious in the
above aspects, resulting in relatively high liquidity in effi-
ciency. Liu et al. (2018) has a similar conclusion that high-
level and low-level industrial SO2 and soot emissions of
Chinese cities are relatively stable through PS convergence
method.

Unlike previous studies that only consider 1-year transfer
(Du et al. 2018), this article analyzes the transfer situation in
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Fig. 1 Chinese city-level carbon
emissions efficiency in 2003 and
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1–5 years. The results show that the probability of the diago-
nal line declines gradually as the transfer span increase, indi-
cating the club convergence of CEE is alleviating with the
accumulation of time. With a 5-year period, the probability
of the low-, medium-low-, medium-high-, and high-level
clubs maintaining their own states decreases by 0.197,
0.285, 0.345, and 0.227, respectively. This means that the
solidification of differences in the CEE among various cities
has alleviated. Nevertheless, the urban CEE still has obvious
club convergence for high level (0.616) and low level (0.591).
During the study period, cities including Xuchang, Zhoukou,
Xiaogan, Huanggang, Shaoyang, Maoming, Neijiang,
Hulunbeier, and Jiamusi have always been at a high level of
CEE. Dongying, Qingyuan, and Baoji have always been in the
middle-level clubs. Besides, there exists a “low carbon effi-
ciency trap” problem for the cities of the low-level club in
China, such as Baotou, Tongchun, and Yinchuan.

Spatial explanation of club convergence

This study attempts to explain the club convergence of CEE
from a spatial perspective. We first examine the spatial corre-
lation of urban CEE and test the spatial agglomeration degree
through Moran’s I value (Li et al. 2017).

Table 3 presents that there exists a clear spatial agglomer-
ation in the CEE. Except for 2003, the values in all other years
have passed the significant test with a significant level of 0.05.
The spatial distribution of CEE shows a spatial distribution

characteristic of “high-high agglomeration” and “low-low ag-
glomeration” over time. The results are in line with Wang
et al. (2019c) who find that there exist spatial agglomeration
characteristics for urban carbon emissions in China.

Table 4 gives the transfer probability matrix of urban CEE
for both 1 year and 3 years in China. Each value in the matrix
indicates the probability of CEE moving between different
clubs with varying levels of neighboring cities. The diagonal
is the probability that a city remains in that club under differ-
ent time lengths. By examining the difference between spatial
and nonspatial Markov transition probability matrices at dif-
ferent time lengths, we can explore the effect of spatial effects
on club convergence of CEE.

Table 4 shows that when the neighboring cities are in low-
level club, the probability that the low-level city still stays at a
low level after 1 year is 0.839, 2.6% higher than the average
level without spatial effect. Moreover, the possibility of upward
migration of this type of city becomes smaller. The probability
of upward movement to the medium-high level is 0.016, which
is lower than the scenario when the spatial factor is not consid-
ered (0.018). The probability of moving up to the medium-low
level is also lower than the level without considering the spatial
factor. When the city is at a medium-low level, there is a prob-
ability of 0.145 of being pulled down to the low-level club,
higher than the average level of 0.118. For those and their
neighboring both at the high-level club, the probability of main-
taining the original efficiency level is 0.836, higher than the
average of 0.818. However, the probability of the high-level
cities moving down to the middle-high, middle-low, or low

Table 2 The club convergence test results of urban carbon emissions
efficiency in China

Duration (year) Type N† L ML MH H

1 L 722 0.813 0.158 0.018 0.011
ML 981 0.118 0.708 0.153 0.020
MH 962 0.010 0.169 0.709 0.111
H 741 0.009 0.015 0.158 0.818

2 L 673 0.750 0.204 0.025 0.021
ML 899 0.152 0.603 0.207 0.038
MH 892 0.026 0.228 0.589 0.158
H 680 0.010 0.026 0.226 0.737

3 L 625 0.704 0.221 0.042 0.034
ML 816 0.169 0.537 0.229 0.065
MH 829 0.052 0.251 0.498 0.199
H 612 0.011 0.047 0.270 0.672

4 L 564 0.649 0.230 0.069 0.051
ML 746 0.188 0.466 0.267 0.079
MH 768 0.085 0.270 0.406 0.240
H 542 0.022 0.077 0.280 0.620

5 L 500 0.616 0.230 0.094 0.060
ML 679 0.212 0.423 0.253 0.112
MH 707 0.086 0.294 0.364 0.256
H 472 0.036 0.083 0.290 0.591

†The L,ML,MH, andH represent four types of carbon emissions efficiency,
low, medium-low, medium-high, and high, respectively. N is the number of
cities whose carbon emissions efficiency belongs to the type displayed in this
row for each initial transfer year during the investigation period

Table 3 Moran index value of urban carbon emissions efficiency

Variables I† s.d.(I) Z(I) p value‡

2003 0.068 0.038 1.908 0.056
2004 0.100 0.040 2.627 0.009**
2005 0.140 0.036 4.005 0.000***
2006 0.250 0.044 5.836 0.000***
2007 0.233 0.043 5.451 0.000***
2008 0.273 0.043 6.387 0.000***
2009 0.262 0.043 6.244 0.000***
2010 0.313 0.043 7.297 0.000***
2011 0.240 0.043 5.624 0.000***
2012 0.263 0.043 6.168 0.000***
2013 0.159 0.044 3.739 0.000***
2014 0.101 0.043 2.431 0.015*
2015 0.099 0.043 2.391 0.017*
2016 0.106 0.043 2.552 0.011*

† I represents the Moran value; s.d.(I) is the standard deviation of the
Moran value; Z(I) is the Moran value test statistic; Z(I) = (I − E(I))/sd(I);
E(I) = − 1/(n − 1), where n is the sample size. The Moran index value has
an asymptotic normal distribution. The critical value for Z(I) is − 2.58 ~
2.58 with 1% significance level. When the significance levels are 5 and
10%, the critical values applicable to Z(I) are − 1.96 ~ 1.96 and − 1.65 ~
1.65, respectively
‡ ⁎⁎⁎Significant at 0.1% level; ⁎Significant at 5% level
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level is lower than the average level. It is evident that when the
neighboring cities are at a low level, a city is less likely to
improve CEE. However, when the neighboring cities are at a
high level, a city has a smaller probability of decreasing CEE.

To test results reliability, the transition probability of CEE
over a 3-year period is further examined. When the emissions
efficiency levels of a city and its neighbor are both low, the
probability of keeping efficiency at low level after 3 years is
0.769, which is 6.5% higher than the average. If the efficiency
is at high level, the probability of being at a high level after
3 years is 0.650, 2.2% lower than the average. It can be seen
that after 3 years of accumulation, the cities with low CEE has
a “dragger effect” on their neighbor. When the level of the
neighboring city is high, the probability of low-efficient cities
remaining at a low level after 3 years is 0.546, and the prob-
ability of upward transferring is 0.454, 15.8% higher than the
average, indicating that high-level cities have a positive im-
pact on their neighbors’ CEE.

Moreover, we compare the spatial effects of 1 year and
3 years under four spatial types to investigate the temporal
dynamic effects of the above spatial effect. The results indi-
cate that the CEE of neighboring and that of local cities are
more likely to be the same type, which is consistent with the
accumulation characteristics in the earlier section of this study.
In addition, under different spatial types, the degree of spatial
impact under 3 years is generally higher than that of 1 year
(Table 5). The results with other spatial types are similar.
Those results imply that there exists spatial spillover in CEE.

The significance of the difference between the spatial and
nonspatial Markov chain transition probability matrices is ex-
amined by Q statistics (Table 6). The spatial effect of CEE
passes the significance test in all time periods. This conclusion
is consistent with the other studies analyzing provincial data
(Zhou et al. 2019). The difference between the two kinds of
transfer probability matrices can be reflected by Q value
which can measure the degree of spatial spillover. It tends to

Table 4 The spatial Markov transfer probability matrix of urban carbon emissions efficiency in China

Spatial lag Duration (year) 1 year 3 years

N† L ML MH H N L ML MH H

Low-level neighbors L 509 0.839 0.132 0.016 0.014 362 0.769 0.157 0.036 0.038
ML 448 0.145 0.667 0.170 0.018 318 0.189 0.473 0.269 0.069
MH 388 0.016 0.175 0.678 0.131 285 0.063 0.275 0.443 0.219
H 294 0.020 0.027 0.160 0.793 172 0.026 0.077 0.248 0.650

Medium-low-level neighbors L 19 0.737 0.211 0.053 < 0.001 14 0.500 0.250 0.125 0.125
ML 21 0.095 0.571 0.238 0.095 15 0.111 0.500 0.222 0.167
MH 13 < 0.001 0.231 0.692 0.077 10 < 0.001 0.273 0.546 0.182
H 11 < 0.001 0.091 < 0.001 0.909 3 < 0.001 < 0.001 0.286 0.714

Medium-high-level neighbors L 64 0.750 0.250 < 0.001 < 0.001 41 0.556 0.389 0.037 0.019
ML 100 0.160 0.770 0.070 < 0.001 67 0.256 0.646 0.098 < 0.001
MH 55 0.018 0.309 0.618 0.055 35 0.116 0.372 0.326 0.186
H 39 < 0.001 < 0.001 0.205 0.795 22 0.033 0.033 0.367 0.567

High-level neighbors L 130 0.754 0.208 0.031 0.008 83 0.546 0.391 0.055 0.009
ML 412 0.080 0.745 0.151 0.024 279 0.129 0.582 0.218 0.071
MH 506 0.006 0.148 0.743 0.103 377 0.039 0.22 0.556 0.186
H 397 0.003 0.005 0.156 0.836 275 < 0.001 0.029 0.276 0.695

†L, ML,MH, and H represent the four types of carbon emissions efficiency, low, medium-low, medium-high, and high, respectively.N is the number of
cities whose carbon emissions efficiency belong to the type displayed in this row for each initial transfer year while their neighboring cities’ carbon
emissions efficiency (spatial lag) belongs to the corresponding type in the first column during the research period

Table 5 Comparison results of spatial effects

Spatial type 1 year 3 years

Sample size Effect result Degree of influence Sample size Effect result Degree of influence

Neighboring cities: low
Local: low

509 Dragging the local from
moving to a high level

0.026 362 Same as 1 year 0.065

Neighboring cities: low
Local: high

294 Dragging the local from
maintaining at the high level

0.025 172 Same as 1 year 0.022

Neighboring cities: high
Local: low

130 Promoting the local to
move to a high level

0.059 83 Same as 1 year 0.158

Neighboring cities: high
Local: high

397 Promoting the local to
Fmaintain at a high level

0.018 275 Same as 1 year 0.023
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increase, implying the strengthening spillover effect of the
neighboring cities.

We can draw a conclusion from the above analysis that
spatial factors affect the club convergence of CEE of
Chinese cities through spatial agglomeration and spillover.
There is an obvious spatial correlation for China’s urban
CEE which are “high-high agglomeration” and “low-low ag-
glomeration.” Besides, there exists promotion effect from
high-level CEE neighboring cities and inhibition effect from
inefficient ones. Such promotion or inhibition effect could be
summarized as spatial spillover effect. Due to the adjacent
geographical location, convenient transportation, and frequent
communication, the neighboring cities are more likely to share
with each other in carbon emissions reduction technology and
management experience. Additionally, for a city, the reduc-
tion policies of the surrounding cities are potentially useful
reference. The positive spillover effect often occurs in the
high-level agglomeration area, and the “drag effect” usually
occurs in the low-level agglomeration area.

However, the solidification degree of clubs with interme-
diate CEE is relatively low. On the one hand, most cities with
intermediate carbon emissions efficiency are scattered at the
junction of high-level agglomeration area and low-level ag-
glomeration area. There would be a more complex spatial
effect that theymay be positively affected by high-level neigh-
boring cities and may also be hindered by low-level neighbor-
ing cities, thus resulting in unstable efficiency. On the other
hand, the emissions reduction technology and management
level of these cities are consistent with the mean level of the
whole country. They have the possibility of either entering
into high-level clubs or falling into low-level clubs.

Conclusions and policy recommendation

Using the newly compiled data of 262 Chinese cities from
2003 to 2016, we use the super-efficient SBM model to ana-
lyze the CEE of Chinese cities. Then we adopt the extended
Markov and spatial Markov approaches to explore the club
convergence characteristics and their spatial influence factors.

The results show that the CEE of Chinese cities has im-
proved, especially for the western and northeastern. The effi-
ciency of the northwest cities is low, while those of the central
and coastal cities are relatively high. The urban CEE has cer-
tain spatial agglomeration characteristics. There exists signif-
icant club convergence in China’s urban CEE. The conver-
gence degree between clubs varies significantly and is usually
much higher in cities with high- and low-level carbon emis-
sions efficiency. There is an obvious spatial correlation for
China’s urban CEE which are “high-high agglomeration”
and “low-low agglomeration.” Besides, the CEE between cit-
ies has a significant spatial effect. “Drag effect” usually occurs
in the low-level agglomeration area, and positive spillover
effect often occurs in the high-level agglomeration area.

Our analysis has some policy implications. To improve the
CEE of low-level club cities and realize the coordinated and
sustainable development of low-carbon economy, the “cross-
border” cooperation and communication between cities in dif-
ferent clubs should be highly promoted. Technical cooperation
of them will help improve the CEE, especially for the cities in
the low-level club. To allow lower-level clubs to get more pos-
itive spillovers from high-level clubs, cities of high-level effi-
ciency clubs, such as Xuchang and Xiaogan, should be encour-
aged to communicate more frequently with others. Since there
exists a “low carbon efficiency trap” problem, the Chinese gov-
ernment should focus on strengthening the mitigation of carbon
emissions in low-level areas. For the western region, it can be
based on the green “Belt and Road” construction to promote the
development of green investment and green financial system
and to achieve a win-win situation between economic develop-
ment and environmental sustainability. Moreover, the establish-
ment of a national carbon market is also necessary, which can
reduce the abatement cost of carbon emissions and promote the
transformation of regional economic and industrial structure.

Funding information This researchwas supported by the Humanities and
Social Science Fund of Ministry of Education of China (20YJCZH144,
20YJC790191), Guangdong Basic and Applied Basic Research
Foundation (2019A1515010884), Natural Science Foundation of
Guangdong Province (2018A030310025, 2018A030310044), and Pearl
River Talents Plan of Guangdong Province.

References

Acaravci A, Erdogan S (2016) The convergence behavior of CO2 emis-
sions in seven regions under multiple structural breaks. Int J Energy
Econ Policy 6(3):575–580

Aldy JE (2006) Per capita carbon dioxide emissions: convergence or
divergence? Environ Resour Econ 33(4):533–555

Apergis N, Christou C (2016) Energy productivity convergence: new
evidence from club converging. Appl Econ Lett 23(2):142–145

Bai C, Du K, Yu Y, Feng C (2019) Understanding the trend of total factor
carbon productivity in the world: insights from convergence analy-
sis. Energy Econ 81:698–708

Table. 6 The significance test results of the differences between spatial
and nonspatial Markov transfer probabilities

Duration/
year

Q value df value χ2 value P value†

1 78.212 36 50.998 < 0.001***

2 101.705 36 50.998 < 0.001***

3 122.867 36 50.998 < 0.001***

4 131.841 36 50.998 < 0.001***

5 122.936 36 50.998 < 0.001***

† ⁎⁎⁎Significant at 0.1% level

1542 Environ Sci Pollut Res (2021) 28:1533–1544



Barassi MR, Cole MA, Elliott RJ (2011) The stochastic convergence of
CO2 emissions: a long memory approach. Environ Resour Econ
49(3):367–385

Barro RJ, Sala-i-Martin X (1992) Convergence. J Polit Econ 100(2):223–
251

Barro RJ, Sala-i-Martin X, Blanchard OJ, Hall RE (1991) Convergence
across states and regions. Brookings Papers on Economic Activity,
107

Battisti M, Delgado MS, Parmeter CF (2015) Evolution of the global
distribution of carbon dioxide: a finite mixture analysis. Resour
Energy Econ 42:31–52

Baumol WJ (1986) Productivity growth, convergence, and welfare: what
the long-run data show. Am Econ Rev 76(5):1072–1085

Bernard AB, Durlauf SN (1995) Convergence in international output. J
Appl Econ 10(2):97–108

BP (2019) Statistic Review of World Energy. https://www.bp.com/en/
global/corporate/energy-economics/statistical-review-of-world-
energy.html. Accessed 12 Jan 2020

Cai B, Guo H, Ma Z, Wang Z, Dhakal S, Cao L (2019) Benchmarking
carbon emissions efficiency in Chinese cities: a comparative study
based on high-resolution gridded data. Appl Energy 242:994–1009

Camarero M, Castillo J, Picazo-Tadeo AJ, Tamarit C (2013) Eco-
efficiency and convergence in OECD countries. Environ Resour
Econ 55(1):87–106

Carlino GA, Mills LO (1993) Are US regional incomes converging? A
time series analysis. J Monet Econ 32(2):335–346

Carlino GA, Mills L (1996) Testing neoclassical convergence in regional
incomes and earnings. Reg Sci Urban Econ 26(6):565–590

Caselli F, Esquivel G, Lefort F (1996) Reopening the convergence de-
bate: A new look at cross-country growth empirics. J Econ Growth
1(3):363–389

ChangMC (2020) A study on emissions efficiency, emissions technology
gap ratio, room for improvement in emissions intensity, and plural-
ized relationships. Environ Sci Pollut Res 27:14492–14502. https://
doi.org/10.1007/s11356-020-07935-w

Chen Y, Xu JT (2019) An assessment of energy efficiency based on
environmental constraints and its influencing factors in China.
Environ Sci Pollut Res 26(17):16887–16900

Chen J, XuC,Managi S, SongM (2019) Energy-carbon performance and
its changing trend: an example from China’s construction industry.
Resour Conserv Recycl 145:379–388

Cheng A, Zhao F (2018) Quantitative measure on inter-regional industry
transfer and pollution transfer based on the idea of shift share anal-
ysis. Chinese J Popul Resour Environ 28(5):49–57

Ding Q, Cheng G, Wang Y, Zhuang D (2017) Effects of natural factors
on the spatial distribution of heavy metals in soils surrounding min-
ing regions. Sci Total Environ 578:577–585

Dong F, Li X, Long R, Liu X (2013) Regional carbon emission perfor-
mance in China according to a stochastic frontier model. Renew
Sust Energ Rev 28:525–530

Du Q, Wu M, Xu Y, Lu X, Bai L, Yu M (2018) Club convergence and
spatial distribution dynamics of carbon intensity in China’s con-
struction industry. Nat Hazards 94(2):519–536

Durlauf SN, Johnson PA (1995) Multiple regimes and cross-country
growth behaviour. J Appl Econ 10(4):365–384

Egilmez G, Gumus S, Kucukvar M, Tatari O (2016) A fuzzy data envel-
opment analysis framework for dealing with uncertainty impacts of
input–output life cycle assessment models on eco-efficiency assess-
ment. J Clean Prod 129:622–636

Fan JL, Da YB, Wan SL, Zhang M, Cao Z, Wang Y, Zhang X (2019)
Determinants of carbon emissions in ‘Belt and Road initiative’
countries: a production technology perspective. Appl Energy 239:
268–279

Friedman M (1992) Do old fallacies ever die? J Econ Lit 30:2129–2132

Fullerton TM Jr, Walke AG (2019) Empirical evidence regarding elec-
tricity consumption and urban economic growth. Appl Econ 51(18):
1977–1988

Haider S, Akram V (2019) Club convergence of per capita carbon emis-
sion: global insight from disaggregated level data. Environ Sci
Pollut Res 26(11):11074–11086

Han F, Xie R, Fang J, Liu Y (2018) The effects of urban agglomeration
economies on carbon emissions: evidence from Chinese cities. J
Clean Prod 172:1096–1110

Hart PE (1995) Galtonian regression across countries and the conver-
gence of productivity. Oxf Bull Econ Stat 57(3):287–293

Herrerias MJ (2012) World energy intensity convergence revisited: a
weighted distribution dynamics approach. Energy Policy 49:383–
399

HuangG,Ouyang X, YaoX (2015)Dynamics of China’s regional carbon
emissions under gradient economic development mode. Ecol Indic
51:197–204

International Monetary Fund (2019)World Economic Outlook Database.
https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/index.
aspx . Accessed 26 Oct 2019

Iram R, Zhang J, Erdogan S, Abbas Q, Mohsin M (2020) Economics of
energy and environmental efficiency: evidence from OECD coun-
tries. Environ Sci Pollut Res 27(4):3858–3870

IslamN (1995) Growth empirics: a panel data approach. Q J Econ 110(4):
1127–1170

Jiang L, Folmer H, Ji M, Zhou P (2018) Revisiting cross-province energy
intensity convergence in China: a spatial panel analysis. Energy
Policy 121:252–263

Kang YQ, Xie BC, Wang J,Wang YN (2018) Environmental assessment
and investment strategy for China’s manufacturing industry: a non-
radial DEA based analysis. J Clean Prod 175:501–511

Karakaya E, Alataş S, Yılmaz B (2019) Replication of Strazicich and List
(2003): Are CO2 emission levels converging among industrial coun-
tries? Energy Econ 82:135–138

Le Gallo J (2004) Space-time analysis of GDP disparities among
European regions: a Markov chains approach. Int Reg Sci Rev
27(2):138–163

Lean HH, Mishra V, Smyth R (2016) Conditional convergence in US
disaggregated petroleum consumption at the sector level. Appl Econ
48(32):3049–3061

Li W, Sun W, Li G, Cui P, Wu W, Jin B (2017) Temporal and spatial
heterogeneity of carbon intensity in China’s construction industry.
Resour Conserv Recycl 126:162–173

Li Z, Dai H, Song J, Sun L, GengY, LuK,Hanaoka T (2019) Assessment
of the carbon emissions reduction potential of China’s iron and steel
industry based on a simulation analysis. Energy 183:279–290

Lin B, Du K (2015) Modeling the dynamics of carbon emission perfor-
mance in China: a parametric Malmquist index approach. Energy
Econ 49:550–557

Lin B, Wang M (2019) Dynamic analysis of carbon dioxide emissions in
China’s petroleum refining and coking industry. Sci Total Environ
671:937–947

Liu X, Zhou D, Zhou P, Wang Q (2017) Dynamic carbon emission
performance of Chinese airlines: a global Malmquist index analysis.
J Air Transp Manag 65:99–109

Liu C, Hong T, Li H, Wang L (2018) From club convergence of per
capita industrial pollutant emissions to industrial transfer effects:
An empirical study across 285 cities in China. Energy Policy 121:
300–313

Liu H,Nie J, Cai B, Cao L,Wu P, Pang L,WangX (2019) CO2 emissions
patterns of 26 cities in the Yangtze River Delta in 2015: Evidence
and implications. Environ Pollut 252:1678–1686

López-Bazo E, Vayá E, Mora AJ, Suriñach J (1999) Regional economic
dynamics and convergence in the European Union. Ann Reg Sci
33(3):343–370

1543Environ Sci Pollut Res (2021) 28:1533–1544

https://www.bp.com/en/global/corporate/energyconomics/statistical-eviewf-orldnergy.html
https://www.bp.com/en/global/corporate/energyconomics/statistical-eviewf-orldnergy.html
https://www.bp.com/en/global/corporate/energyconomics/statistical-eviewf-orldnergy.html
https://doi.org/10.1007/s11356-020-07935-w
https://doi.org/10.1007/s11356-020-07935-w
https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/index.aspx
https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/index.aspx


Lu IJ, Lin SJ, Lewis C (2007) Decomposition and decoupling effects of
carbon dioxide emission from highway transportation in Taiwan,
Germany, Japan and South Korea. Energy Policy 35(6):3226–3235

Ma L, Long H, Chen K, Tu S, Zhang Y, Liao L (2019) Green growth
efficiency of Chinese cities and its spatio-temporal pattern. Resour
Conserv Recycl 146:441–451

MankiwNG, Romer D,Weil DN (1992)A contribution to the empirics of
economic growth. Q J Econ 107(2):407–437

Markandya A, Pedroso-Galinato S, Streimikiene D (2006) Energy inten-
sity in transition economies: Is there convergence towards the EU
average? Energy Econo 28(1):121–145

Masanjala WH, Papageorgiou C (2004) The Solow model with CES
technology: Nonlinearities and parameter heterogeneity. J Appl
Econ 19(2):171–201

Mirza FM, Kanwal A (2017) Energy consumption, carbon emissions and
economic growth in Pakistan: dynamic causality analysis. Renew
Sust Energ Rev 72:1233–1240

National Bureau of Statistics of the People’s Republic of China (2013-
2017) China’s urban statistical yearbook. China Statistics Press,
Beijing

Pan X, Liu Q, PengX (2015) Spatial club convergence of regional energy
efficiency in China. Ecol Indic 51:25–30

Pang RZ, Deng ZQ, Chiu YH (2015) Pareto improvement through a
reallocation of carbon emission quotas. Renew Sust Energ Rev 50:
419–430

Phillips PC, Sul D (2007) Transition modeling and econometric conver-
gence tests. Econometrica 75(6):1771–1855

Quah D (1993) Galton’s fallacy and tests of the convergence hypothesis.
Scand J Econ 95:427–443

Quah D (1996) Twin peaks: growth and convergence in models of dis-
tribution dynamics. Economic Journal 106:1045–1055

Quah D (1997) Empirics for growth and distribution: stratification, po-
larization, and convergence clubs. J Econ Growth 2(1): 27–59

Rey SJ (2001) Spatial empirics for economic growth and convergence.
Geogr Anal 33(3):195–214

Rey SJ, Montouri BD (1999) US regional income convergence: a spatial
econometric perspective. Reg Stud 33(2):143–156

Solow RM (1956) A contribution to the theory of economic growth. Q J
Econ 70(1):65–94

State Council (2019) China sets 2019 GDP growth target at 6–6.5%.
http://english.gov.cn/premier/news/2019/03/05/content_
281476549639196.htm . Accessed 26 June 2019

Strazicich and List (2003) Are CO2 emission levels converging among
industrial countries? Environ Resour Econ 24(3):263–271

Tang K, Hailu A (2020) Smallholder farms’ adaptation to the impacts of
climate change: Evidence from China’s Loess Plateau. Land Use
Policy 91:104353

Tang K, Hailu A, Kragt M, Ma C (2016a) Marginal abatement costs of
greenhouse gas emissions: broadacre farming in the Great Southern
Region of Western Australia. Aust J Agric Resour Econo 60(3):
459–475

Tang K, Yang L, Zhang J (2016b) Estimating the regional total factor
efficiency and pollutants’ marginal abatement costs in China: A
parametric approach. Appl Energy 184:230–240

Tang K, Hailu A, Kragt ME, Ma C (2018) The response of broadacre
mixed crop-livestock farmers to agricultural greenhouse gas abate-
ment incentives. Agric Syst 160:11–20

Tang K, He C, Ma C, Wang D (2019) Does carbon farming provide a
cost-effective option to mitigate GHG emissions? Evidence from
China. Aust J Agric Resour Econ 63(3):575–592

Tang K, Hailu A, Yang Y (2020a) Agricultural chemical oxygen demand
mitigation under various policies in China: A scenario analysis. J
Clean Prod 250:119513

Tang K, Qiu Y, Zhou D (2020b) Does command-and-control regulation
promote green innovation performance? Evidence from China’s in-
dustrial enterprises. Sci Total Environ 712:136362

Tian Y, Zhou W (2019) How do CO2 emissions and efficiencies vary in
Chinese cities? Spatial variation and driving factors in 2007. Sci
Total Environ 675:439–452

Tone K (2001) A slacks-based measure of efficiency in data envelopment
analysis. Eur J Oper Res 130(3):498–509

Tone K (2002) A slacks-based measure of super-efficiency in data envel-
opment analysis. Eur J Oper Res 143(1):32–41

Tran TH, Mao Y, Nathanail P, Siebers PO, Robinson D (2019)
Integrating slacks-based measure of efficiency and super-
efficiency in data envelopment analysis. Omega 85:156–165

Wang QW, Zhou P, Shen N, Wang SS (2013) Measuring carbon dioxide
emission performance in Chinese provinces: A parametric approach.
Renew Sust Energ Rev 21:324–330

Wang Y, Zhang P, Huang D, Cai C (2014) Convergence behavior of
carbon dioxide emissions in China. Econ Model 43:75–80

Wang S, Su Y, Zhao Y (2018) Regional inequality, spatial spillover
effects and influencing factors of China’s city-level energy-related
carbon emissions. Acta Geographica Sinica 73(3):414–428

Wang L, Long R, Chen H, Li W, Yang J (2019a) A review of studies on
urban energy performance evaluation. Environ Sci Pollut Res 26(4):
3243–3261

Wang M, Wang W, Du S, Li C, He Z (2019b) Causal relationships
between carbon dioxide emissions and economic factors: Evidence
fromChina. Sustain Dev 28:73–82. https://doi.org/10.1002/sd.1966

Wang S, Shi C, Fang C, Feng K (2019c) Examining the spatial variations
of determinants of energy-related CO2 emissions in China at the city
level using geographically weighted regression model. Appl Energy
235:95–105

Wu J, Ma C, Tang K (2019) The static and dynamic heterogeneity and
determinants of marginal abatement cost of CO2 emissions in
Chinese cities. Energy 178:685–694

Yamaji K, Matsuhashi R, Nagata Y, KayaY (1993) A study on economic
measures for CO2 reduction in Japan. Energy Policy 21(2):123–132

Yang L, Tang K,Wang Z, An H, FangW (2017) Regional eco-efficiency
and pollutants’ marginal abatement costs in China: A parametric
approach. J Clean Prod 167:619–629

Yang L, Yang Y, Zhang X, Tang K (2018) Whether China’s industrial
sectors make efforts to reduce CO2 emissions from production? A
decomposed decoupling analysis. Energy 160:796–809

Yilanci V, Pata UK (2020) Convergence of per capita ecological footprint
among the ASEAN-5 countries: Evidence from a non-linear panel
unit root test. Ecol Indic 113:106178

Yu S, Hu X, Fan JL, Cheng J (2018) Convergence of carbon emissions
intensity across Chinese industrial sectors. J Clean Prod 194:179–192

Zhang Y, Shen L, Shuai C, TanY, RenY,WuY (2019) Is the low-carbon
economy efficient in terms of sustainable development? A global
perspective. Sustain Dev 27(1):130–152

Zhou D, Zhou F, Zhong S (2018) Club convergence of per capita water
resource distribution in China: Based on extended Markov chain
model. Arid Land Geography 41(4):867–873

Zhou Y, Xu Y, Liu C, Fang Z, Guo J (2019) Spatial Effects of
Technological Progress and Financial Support on China’s
Provincial Carbon Emissions. Int J Environ Res Public Health 16
(10):1743

Zhou D, Liang X, Zhou Y, Tang K (2020a) Does emission trading boost
carbon productivity? Evidence from China’s pilot emission trading
scheme. Int J Environ Res Public Health 17(15):5522

Zhou Y, Kong Y, Zhang T (2020b) The spatial and temporal evolution of
provincial eco-efficiency in China based on SBMmodified three-stage
data envelopment analysis. Environ Sci Pollut Res 27:8557–8569

Zhu J, Lin B (2020) Convergence analysis of city-level energy intensity
in China. Energy Policy 139:111357

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1544 Environ Sci Pollut Res (2021) 28:1533–1544

http://english.gov.cn/premier/news/2019/03/05/content_281476549639196.htm
http://english.gov.cn/premier/news/2019/03/05/content_281476549639196.htm
https://doi.org/10.1002/sd.1966

	Carbon emissions performance trend across Chinese cities: evidence from efficiency and convergence evaluation
	Abstract
	Introduction
	Literature review
	Methods
	Estimating carbon emissions efficiency
	Evaluating club convergence
	Explaining the club convergence from a spatial spillover perspective

	Data
	Results and discussions
	Carbon emissions efficiency
	Club convergence of carbon emissions efficiency
	Spatial explanation of club convergence

	Conclusions and policy recommendation
	References


