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Abstract
Hydrolysis is one of the most important processes of transformation of organic chemicals in water. The rates of reactions, final
chemical entities of these processes, and half-lives of organic chemicals are of considerable interest to environmental chemists as
well as authorities involved in the controlling the processing and disposal of such organic chemicals. In this study, we have
proposed QSPR models for the prediction of hydrolysis half-life of organic chemicals as a function of different pH and
temperature conditions using only two-dimensional molecular descriptors with definite physicochemical significance. For each
model, suitable subsets of variables were elected using a genetic algorithm method; next, the elected subsets of variables were
subjected to the best subset selection with a key objective to determine the best combination of descriptors for model generation.
Finally, QSPR models were constructed using the best combination of variables employing the partial least squares (PLS)
regression technique. Next, every final model was subjected for strict validation employing the internationally accepted internal
and external validation parameters. The proposed models could be applicable for data gap filling to determine hydrolysis half-
lives of organic chemicals at different environmental conditions. Generally, presence of aliphatic ether and ether functional
groups, high percentage of oxygen content in the molecule and presence of O–Si pairs of atoms at topological distance one,
results in a shorter hydrolysis half-life of organic chemicals. On the other hand, higher unsaturation content and high percentage
of nitrogen content in molecules lead to higher hydrolysis half-life. It is also found that branched and compact molecules will
have a lower half-life while straight chain analogues will have a higher half-life. To the best of our knowledge, the presented
models are the first reported QSPR models for hydrolysis half-lives of organic chemicals at different pH values.
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Introduction

The monetary value of worldwide-produced organic
chemicals is in the range of trillions of US dollars. These
organic chemicals are widely used in several products as well
as processes such as food and beverages, pharmaceuticals,
agrochemicals, water-treatment chemicals, biocides, personal
care products and cosmetics, house hold products, petroleum
industry, polymers industry, and ceramics. In a simple word,
organic chemicals play a pivotal role in human daily life. The
widespread use and release of organic chemicals may produce
direct or indirect toxic effects on the living organisms and the
environmental health. Over the years, an exponential increase
has been observed in the release, discharge, or introduction of
organic chemicals into several water streams, river, lake,
ponds, and seas (Mill and Mabey 1988). Large number of
organic chemicals react with water (OH- and O+ components)
to get metabolized into new chemical entities with half-lives
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accounting from few seconds to years (Mill andMabey 1988).
The half-life of organic chemicals is defined as the time re-
quired for them to reduce their initial concentrations to about
half. The process of transformation of organic chemicals into
new chemical entities different from its precursors in the
aquatic media is known as hydrolysis. Hydrolysis is one the
most important chemical reactions to determine the stability of
chemicals and is considered as one of the major pathways for
transformation of organic chemicals into the environment
(EPA-OPPTS 1998; OECD 2004). Therefore, hydrolysis is a
major transformation process for different varieties of organic
chemicals in water, and the rates of reactions and final chem-
ical entities of these processes are of great concern to the
environmental chemists as well as regulatory authorities in-
volved in controlling the processing and disposal of such or-
ganic chemicals in the environment. Conversion of initial
chemical compounds into new chemical entities may alleviate
potential hazardous effects on the living being as well as en-
vironment health (Mill andMabey 1988). Hence, it is essential
to understand and predict the chemical transformation process
and the final products as quickly as possible. The significance
of abiotic hydrolysis in the aquatic media can be measured
quantitatively from the data of hydrolysis rate constant and
half-lives of organic chemicals (EPA-OPPTS 1998).
Usually, organic chemicals may exist in different environmen-
tal conditions. Therefore, it is an essential task to understand
or examine the hydrolysis behavior of organic chemicals at
different pH and temperature conditions (OECD 2004).

There are several chemometric software tools available
to predict probable transformation products of organic
chemicals in environmental as well as biological systems
such as METEOR (Marchant et al. 2008) (a knowledge-
based expert system developed to predict the probable met-
abolic fate of a chemical based on its chemical structure),
TIMES (Dimitrov et al. 2011) (to predict abiotic and micro-
bial transformation of chemicals in water and soil), enviPath
(Wicker et al. 2016) (useful to determine biotransformation
pathway of environment pollutants), META expert system
(Sedykh et al. 2001) (used to predict transformation path-
ways of organic compounds under UV light, i .e. ,
phototransformation), Zeneth software tool (Kleinman
et al. 2014) (to predict transformation products of active
pharmaceutical ingredients under several conditions used
in stability studies), and the Chemical Transformation
Simulator (Tebes-Stevens et al. 2017) (a web-based soft-
ware tool based on the abiotic hydrolysis reaction library).
All the aforementioned software tools are mostly used to
predict the transformation pathway or transformation prod-
uct of organic chemicals; however, to the best of our knowl-
edge, there are no previously reported quantitative
structure-property relationship (QSPR) models or chemo-
metric software tools to predict the hydrolysis half-life of
organic chemicals in aquatic media.

Over the years, chemometric approaches such as QSPRs
have been proved to be successful for the prediction of diverse
properties of organic chemicals and helpful in data gap filling
for safety assessment of organic chemicals (Roy et al. 2015).
QSPR is a mathematical model which provides a quantitative
correlation between independent (numerical molecular de-
scriptors of obtained from chemical structures) and dependent
(response endpoint, i.e., property) variables. In the current
study, we have generated a number of QSPR models for hy-
drolysis half-life as a function of different pH and temperature
conditions of organic chemicals employing only two-
dimensional variables. The suitable subsets of variables were
chosen employing a genetic algorithm method; then, the rele-
vant subsets of variables were subjected to the best subset
selection with an objective to identify best combination of
descriptors for the model building; next the best combination
of descriptors was used for the final model development using
partial least squares (PLS) regression technique. The final
models were strictly validated using the internationally ac-
cepted internal and external validation parameters. The final
validated models of hydrolysis half-life as a function of dif-
ferent pH and temperature conditions of organic chemicals
may be helpful to predict their environmental persistence (hy-
drolysis half-life as a function of different pH and tempera-
ture) quickly, based on the knowledge of chemical structures
only, thus providing a better alternative to the experimental
testing methods, which are costly and time-consuming.

Materials and methods

Dataset preparation

The response data of the hydrolysis half-life of organic
chemicals as a function of different pH and temperature values
were extracted from the Ambit database (Ambit 2019)
(accessed in March 2019), and it refers to the ECHA registra-
tion dossiers. The extracted data were cleaned covering the
key and supporting studies with experimental data obtained
according with the following guidelines: OECD 111; Method
C.7—degradation—abiotic degradation hydrolysis as a func-
tion of pH. annex v: consolidated version of dir 67/548/EEC
(and similar); EEC directive 67/548, annex v, part c, test c10-
preliminary test (OECD 2004) (and similar); EPA OPPTS
835.2110 (hydrolysis as a function of pH); EPA OPPTS
835.2120 (hydrolysis of parent and degradates as a function
of pH at 25 °C) (EPA-OPPTS 1998); EPA OTS 796.3500
(hydrolysis as a function of pH at 25 °C) (CFR 2012). In
addition, we eliminated the compounds with a qualifier and/
or without a measure unit, the inorganics, and the mixtures.
The response values of the collected raw data were present in
different units such as minutes, hours, days, and years. For
unification of the units of the response endpoint, we have
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transformed the hydrolysis half-life values in the day unit, and
subsequently, the hydrolysis half-life values were transformed
into logarithmic scale (log10). The chemical structures were
cautiously drawn manually using Marvin sketch ChemAxon
tool (http://www.chemaxon.com/) and cross-verified from the
PubChem small molecule database (https://pubchem.ncbi.
nlm.nih.gov/) (Kim et al. 2016). The curated chemical struc-
tures were prepared by cleaning and adding explicit hydrogen
atoms and then saved in the MDL .mol format, a suggested
format for descriptor estimation software tools such as
PaDEL-Descriptor (Yap 2011) and Dragon (Mauri et al.
2006; Todeschini et al. 2004).

The final QSPR analysis of hydrolysis half-life of organic
chemicals was performed using the data points of 45, 63, and
68 organic compounds for pH 4, 7, and 9 at 25 °C respectively
and 27, 34, and 36 organic compounds for pH 4, 7, and 9 at 50
°C, respectively. The temperatures and pH were selected ac-
cording to the OECD 111 guideline (OECD 2004).

Descriptor calculation and dataset division

The prepared chemical structures of organic chemicals were
subjected to descriptor calculation employing the PaDEL-
Descriptor (Yap 2011) and Dragon (Mauri et al. 2006;
Todeschini et al. 2004) software tools. We used Dragon
(Version 7) software to compute a few selected classes of
2D descriptors such as connectivity indices, ring descriptors,
atom type E-state indices, 2D atom pairs, functional group
counts, atom-centered fragment, constitutional indices, and
molecular property descriptors (Mauri et al. 2006;
Todeschini et al. 2004). Only the extended topochemical atom
(ETA) descriptors were computed from the PaDEL-
Descriptor (Version 2.20) program (Yap 2011). The comput-
ed descriptors were easily interpreted and had definite physi-
cochemical significance. The initial pools of estimated vari-
ables for the datasets for pH 4, 7, and 9 at 25 °C comprise 510,
587, and 596 respectively, while 403, 474, and 473 molecular
variables for pH 4, 7, and 9 at 50 °C, respectively, excluding
the redundant variables and constant, intercorrelated descrip-
tors (|r| > 0.9).

The main objective of this analysis was to generate robust
QSPR models for the predicting the hydrolysis half-life of
organic chemicals as a function of various pH and temperature
conditions. In order to meet the primary objective, we have
divided each dataset into a training set (employed for model
training) and a test set (for model rigorous validation) in ap-
proximately 70:30 ratio (Roy et al. 2015) employing three
techniques in-built in the dataset division (ver. 1.2) software
tool (available at http://dtclab.webs.com/software-tools);
these techniques are Kennard-Stone (Kennard and Stone
1969), Euclidean distance (Golmohammadi et al. 2012) and
sorted response. However, in the current study, statistically
significant models for pH 4, 7, and 9 at 25 °C and pH 4 and

9 at 50 °C were obtained using the sorted response based
division, while those for pH 7 at 50 °C were obtained
employing the Euclidean distance based division
(Golmohammadi et al. 2012). The final models for pH 4, 7,
and 9 at 25° for the hydrolysis half-life prediction of organic
chemicals were obtained using 34, 47, and 51 compounds in
the training set (Ntrain) and 11, 15, and 17 molecules in the test
set (Ntest) respectively. Again, for pH 4, 7, and 9 at 50 °C, the
“training sets” comprise 21, 26, and 29 compounds and the
“test sets” comprise 6, 8, and 7 organic chemicals,
respectively.

Model development and validation

In the process of model generation, selection of suitable fea-
tures from the large pool of descriptors was considered as an
essential step. There are a number of feature selection tech-
niques available for this purpose such as step-by-step selection
(with stepping criteria of F-for-inclusion and F-for-exclusion
based on the partial F statistics), genetic algorithm (GA), and
all possible subset selection (Khan and Roy 2018; Roy et al.
2015), which can be used to select relevant subsets of features.
In the present work, we have employed the GA method (tool
available at http://teqip.jdvu.ac.in/QSAR_Tools/) for the
feature selection process. The numbers of variables in the
selected subset for hydrolysis half-life modeling for pH 4, 7,
and 9 at 25 °C are 19, 24, and 26 respectively, while those for
pH 4, 7, and 9 at 50 °C are 22, 25, and 21, respectively. The
selected subsets of variables were separately subjected to best
subset selection (BSS) (tool available at http://teqip.jdvu.ac.
in/QSAR_Tools/) with a goal of identifying the best
combination of descriptors for model development. Finally,
the best combination of descriptors was used for model
generation using the partial least squares (PLS) regression
(Wold et al. 2001) (tool available at http://teqip.jdvu.ac.in/
QSAR_Tools/).

In the present study, we have reported PLS models (Wold
et al. 2001) because it offers numerous advantages over the
MLR technique such as it can deal with strongly collinear,
correlated, noisy data, and it is helpful in modelling with a
large number of X-variables and more than one response end-
points. The PLS algorithm extracts meaningful information
from the original descriptors into the lower number variables
knows as latent variables (LVs). Please note that MLR is only
a special case of PLS. Unlike MLR models, determination of
standard errors of PLS regression coefficients is not straight-
forward. However, the relative importance of the descriptors
in a PLS model can be shown by a variable importance plot
(VIP). The optimum number of latent variables was selected
based on a sequential basis. For example, the initial PLS mod-
el was generated with a single latent variable, and the corre-
spondingQ2 value of the generated model was noted; the next
LV variable was then added based on the 5% rule (Roy et al.
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2015). This suggests that the addition of a latent variable is
permitted only when it results in an increase in the value ofQ2

by 5% or more.
The final best models were strictly validated on the basis of

internal and external validation metric criteria which are ac-
cepted internationally. The quality and validation metrics in-
cluded numerous training set parameters such as determina-
tion coefficient (R2), leave-one-out (LOO) cross-validation
(Q2), r2m LOOð Þ (Roy and Mitra 2011; Roy et al. 2012), and

mean absolute error of training set (MAEtrain100%), and the test
set metrics such as external predictive variance R2

pred, r2m testð Þ;
mean absolute error of test set (MAEtest100%). Finally, the
consistency of each model was tested on the basis of MAE
criteria as proposed by Roy et al. (2016) in terms of “Bad”,
“Moderate”, and “Good” (Roy et al. 2016). The overview of
the methodology followed in the present work is depicted in
Fig. 1.

Applicability domain assessment

The generated models were subjected to the applicability do-
main (AD) analysis, with an objective to define hypothetical
domain of each model in the chemical space. The AD of any
model presents essential information whether the prediction of
each compound obtained by the respective model is reliable or
not. In the current study, we have used the DModX (distance
to model in X space) (Wold et al. 2001) approach embedded
in the SIMCA-P software to define the AD of the generated
models in the chemical space. A compound with a DModX
value greater than the 2.5 times the total SD of the X residuals

shall be known as an outlier in case of the training set and
outside AD in case of the test set.

Results and discussion

QSPR modelling of hydrolysis half-life of organic
chemicals as a function of pH at 25 °C

To model hydrolysis half-life as a function of pH, we have
employed experimental hydrolysis half-life data of organic
chemicals estimated at pH 4, 7, and 9 and 25 °C. The datasets
comprise 45, 63, and 68 organic compounds for pH 4, 7, and 9,
respectively. The curated data of each dataset were divided into a
“training set” and a “test set” prior to model generation using the
different data division approaches. At pH 4, the “training set”
included 34 compounds and the “test set” included 11 com-
pounds (Ntest = 11), at pH 7 the “training set” comprised 47
compounds (Ntraining = 47) and the “test set” 15 compounds
(Ntest = 15), and at pH 9, the “training set” was composed of
51 compounds (Ntraining = 51) and the “test set” 17 compounds
(Ntest = 17). The training dataset was used for model training,
while the test dataset was involved in model validation in each
case. All the final models were obtained by using the partial least
squares regression (PLS) (Wold et al. 2001) algorithm with
different latent variables (LV). The scatter plot (Fig. 2) shows
that observed hydrolysis half-life (log(d)) values of organic
chemicals are well correlated with the predicted hydrolysis
half-life (log(d)) values at pH 4, 7, 9, and 25 °C. The chosen
model for each endpoint shows significant and promising

Fig. 1 The overview of the methodology followed in the present work

1630 Environ Sci Pollut Res (2021) 28:1627–1642



internal and external prediction quality, as shown by below-
mentioned equations:

Model for pH 4

T25 pH4 log value dð Þ ¼ −1:14−3:77 ETA Shape X−0:46 O−059−2:64 nO C ¼ Oð Þ2þ 3:76 ETA Shape Pþ 0:64 Uc

ntrain ¼ 34; ntest ¼ 11;LV ¼ 4;R2 ¼ 0:829; Q2 ¼ 0:773; R2
pred ¼ 0:837; rm2

LOO

���� ¼ 0:690; Δrm2
LOO ¼ 0:114; rm2

test

����

¼ 0:795;Δrm2
LOO ¼ 0:06;MAEtrain100% ¼ 0:566;MAEtest100% ¼ 0:585;Qualitytest ¼ Moderate

ð1Þ

Model for pH 7

T25 pH7 log value dð Þ ¼ 5:374−3:258nO C ¼ Oð Þ2þ 0:601nR ¼ Cs

−9:594ETABetaPsþ 0:358Ucþ 0:129N%þ 0:378B10 C−O½ �
ntrain ¼ 47; ntest ¼ 15;LV ¼ 3;R2 ¼ 0:707; Q2 ¼ 0:620; R2

pred ¼ 0:765; rm2
LOO

————

¼ 0:489;

Δrm2
LOO ¼ 0:217; rm2

test

———

¼ 0:724;Δrm2
LOO ¼ 0:152;MAEtrain100% ¼ 0:625;MAEtest100% ¼ 0:500;Qualitytest

¼ Moderate ð2Þ

Model for pH 9

T25 p29 log value dð Þ ¼ 1:920−3:898 nO C ¼ Oð Þ2−2:301 B01 O−Si½ �−0:097 O%þ 0:519 nROH

þ 0:068 ETAdBeta−0:638 B09 O−O½ �
ntrain ¼ 50; ntest ¼ 16;LV ¼ 4;R2 ¼ 0:787; Q2 ¼ 0:729; R2

pred ¼ 0:775; rm2
LOO

————

¼ 0:625;

Δrm2
LOO ¼ 0:162; rm2

test

———

¼ 0:693;Δrm2
LOO ¼ 0:067;MAEtrain100% ¼ 0:625;MAEtest100% ¼ 0:496;Qualitytest ¼ GOOD

ð3Þ

To identify the relative importance of each descriptor
appearing in the final QSPR model derived from data at pH 4
to predict hydrolysis half-life of organic chemicals, we have
performed the VIP analysis (UMETRICS, S-P 2005), which

revealed that O-059 (presence or absence of Al–O–Al functional
group) (Todeschini and Consonni 2008) and ETA_Shape_X
(Roy and Das 2017) variables with higher VIP score were the
most essential descriptors for model development, while other

Fig. 2 Scatter plots of observed v/s predicted hydrolysis half-life values of organic chemicals a at pH 4, b at pH 7, and c at pH 9 and 25 °C
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descriptors such as Uc (unsaturation count) (Todeschini and
Consonni 2008), nO (C=O)2 (number of anhydrides (-thio) func-
tional group) (Todeschini and Consonni 2008) and
ETA_Shape_P (Roy and Das 2017) were of lower importance
in the final model development (Figure S1 in Supplementary
Information). Subsequently we have also performed loading plot
analysis to identify the most influential variables for the response
(UMETRICS, S-P 2005). The loading plot analysis also suggests
that O-059 and ETA_Shape_X variables with negative correla-
tion towards response endpoint are situated far from the origin
and considered as most influential variables in the final model,
while the rest of least influential variables (situated close to the
origin) are Uc, nO(C=O)2, and ETA_Shape_P (Figure S2 in
Supplementary Information).

The QSPR equation (Eq. 1) comprises five unique two-
dimensional descriptors. Out of the five descriptors, two (Uc
and ETA_Shape_P) show positive contributions towards the
prediction of hydrolysis half-life of organic chemicals, indicat-
ing that higher unsaturation content in the molecules lead to an
increase in the hydrolysis half-life of a particular compound and
vice versa. For example, compounds 83 and 114 show longer

hydrolysis half-lives due to the presence of unsaturated rings
such as benzophenone and tri-phenyl moiety, respectively, in
their chemical structures. On the other hand, compound 67
shows a shorter hydrolysis half-life due to absence of any kind
of unsaturation in the chemical structure (Fig. 3).

On the other hand, the remaining three descriptors (O-059,
nO(C=O)2 and ETA_Shape_X) show negative contributions
towards the response endpoint prediction, suggesting that the
presence of the fragment Al-O-Al (where Al represents ali-
phatic carbon) and the anhydride functional group in the mol-
ecule result in the smaller hydrolysis half-life. For example,
compound 88 (tris-(2-methoxyethoxy) vinylsilane, which hy-
drolyzes to vinyl-silanetriol and 2-methoxyethanol) and 67
(tetra-ethyl orthosilicate, which transforms to silicon tetra-
hydroxide and ethanol) show lower hydrolysis half-lives due
to the presence of a repeated number of Al–O–Al fragments in
the compounds. The hydrolysis of such compounds is based
on selectivity rule, which specifies that the hydrolysis is initi-
ated with the carbon atom with the highest electrophilicity
attached to leaving group (O, S, N) and so on (Tebes-
Stevens et al. 2017) (Figs. 4 and 5).

Fig. 4 Probable hydrolysis mechanism of tri(2-methoxyethoxy) vinylsilane (model for pH 4 and 25 °C)

Fig. 3 Significance of the Uc descriptor in the final equation with examples (model for pH 4 and 25 °C)
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The next descriptor with a negative contribution in the
QSPR equation is nO(C=O)2, which provides information
about the presence or absence of anhydrides functional group
in the molecule and indicate that presence of such fragment in
the molecule leads to a decrease of the half-life of the organic
compound. For example, compound 50 (hexanoic anhydride
easily hydrolyzes into the hexanoic acid) shows lower hydro-
lysis half-life due to the presence of the anhydride functional
group, which can easily be converted into the acid (Fig. 6).

The last descriptor with a negative effect on half-life esti-
mation is ETA_Shape_X, which offers an aspect on the mo-
lecular shape of the molecule based on the sum of core count
of vertices that are joined with four other nonhydrogen verti-
ces in the molecules (Roy and Ghosh 2003). For example,
compound 94 displays a high value of the descriptor due to
presence of vertices that are bound to four other nonhydrogen
vertices that results in a shorter half-life. On the other hand, the
descriptor ETA_Shape_P with a positive contribution towards
the response endpoint also offers an information about the
molecular shape of the molecule depending on the sum of core

count of vertices that are connected to only another
nonhydrogen vertex in the molecules (Roy and Ghosh
2003). For example, compound 69 shows a longer half-life
due to presence of a vertex which is connected to only another
nonhydrogen vertex (Fig. 7). This indicates that branched and
compact molecules will have a lower half-life while straight
chain analogues will have a higher half-life.

Finally, we have performed applicability domain (AD) study
of the final model using DModX (distance to model in X space)
technique. It was found that none of organic chemicals was an
outlier (training set) or outside AD (test set). Figures S3 and S4
(Supplementary Information) give the graphical overview of the
applicability domain of the final model for the training and test
set substances, respectively for prediction of hydrolysis half-life
of organic chemicals at pH 4 and 25°.

For the model derived for data at pH 7, we have also per-
formed the VIP analysis with an objective to determine the
most essential features among the descriptor appearing in the
final QSPR model to predict hydrolysis half-life of organic
chemicals. The study suggests that nO(C=O)2 and

Fig. 5 Probable hydrolysis mechanism of tetra-ethyl orthosilicate (model for pH 4 and 25 °C)

Fig. 6 Probable hydrolysis mechanism of hexanoic anhydride (model for pH 4 and 25 °C)
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ETA_BetaP_s (which provide information about the electro-
negative atom count of the molecule relative to the molecular
size) descriptors (Roy and Das 2017) with VIP scores more
than one were the most relevant variables for explaining the

response endpoint, while other descriptors with VIP score low-
er than one include N% (percentage of N atoms in the mole-
cule) (Todeschini and Consonni 2008), Uc (unsaturation count)
(Todeschini and Consonni 2008), nR =Cs (presence or absence

Fig. 7 Significance of ETA_Shape_P and ETA_Shape_X variables with examples (model for pH 4 and 25 °C)

Fig. 8 Probable hydrolysis mechanism of 1, 2, 3, 6-tetrahydromethyl methanophthalic anhydride (model for pH 7 and 25 °C)
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of number of aliphatic secondary C (sp2) in the molecule)
(Todeschini and Consonni 2008), and B10[C–O] (presence/ab-
sence of C–O at the topological distance 10) (Todeschini and
Consonni 2008) are considered as less relevant variables in the
final model (Figure S5 in Supplementary Information). Next,
we have also performed loading plot analysis to identify the
most significant features towards the response. The loading plot
analysis also showed that nO(C=O)2 and ETA_BetaP_s vari-
ables with negative contributions to the response are situated far
from the origin, and they are the most significant descriptors in
the final model, while least significant descriptors are N%, Uc,
nR = Cs, and B10[C–O], which are positioned close to the
origin (Figure S6 in Supplementary Information).

Two descriptors in the QSPR equation (Eq. 2) show negative
contributions towards the response, while the remaining four
descriptors have positive regression coefficients. The variables

with a negative impact on the hydrolysis half-life include
nO(C=O)2 and ETA_BetaP_s which provide information, re-
spectively, about the presence or absence of an anhydride func-
tional group and a measure of electronegative atom count in the
molecules relative to the molecular size. For example, molecule
37 (1, 2, 3, 6-tetrahydromethyl-3, 6-methanophthalic anhydride)
shows a shorter half-life due to the presence of an anhydride
functional group, which easily hydrolyzes to an acid and 94
(hexamethylcyclotrisiloxane, which initially hydrolyses to
1,1,3,3,5,5-hexamethyltrisiloxane-1,5-diol) shows a shorter
half-life due to the presence of a repeated number of electroneg-
ative atoms (O and Si) in the molecule (Figs. 8 and 9).

Again, the variables with positive contributions towards the
response include Uc (unsaturation count), N% (percentage of
nitrogen atom in the compound), B10[C–O] (presence or ab-
sence of C-O at topological distance 10), and nR = Cs (number

Fig. 9 Probable hydrolysis mechanism of Hexamethylcyclotrisiloxane (model for pH 7 and 25 °C)

Fig. 10 Significance of B10[C–O], N% and nR = Cs variable in final equation with examples (model for pH 7 and 25 °C)
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of aliphatic secondary carbon), indicating that higher values of
these variables result in higher hydrolysis half-life of organic
chemicals and vice versa. For example, compound 73 shows a
longer hydrolysis half-life due to the presence of four nitrogen
atoms (higher nitrogen content) and unsaturation in themolecule.

Similarly, compounds 84 and 56 have higher hydrolysis
half-lives due to the presence of C–O at the topological dis-
tance ten and the presence of sp2 carbon atom in the molecule,
respectively (Fig. 10). According to the AD analysis, only one
molecule (comp 50) with a higher threshold value than the D
critical value was deemed as an outlier (training sample); none
of the molecules in the test group were found to be outside
AD. Figures S7 and S8 (Supplementary Information) provide
the schematic overview of the AD of the final model for the
training and test set compounds respectively for prediction of
hydrolysis half-life of organic chemicals at pH 7 and 25 °C.

At pH 9, we have again performed the VIP analysis, the
study proposed that nO(C=O)2 and B01[O–Si] (presence/ab-
sence of O–Si at the topological distance 1) descriptors were
considered as the most prominent descriptors with VIP scores

more than one. On the other hand, descriptors with a VIP
score lower than one are O% (percentage of oxygen atoms
in the molecule), ETA_dBeta (providing information about
relative unsaturation content of molecule) (Roy and Das
2017), nROH (presence or absence of hydroxyl function
group in the molecule), and B09[O–O] (presence or absence
of O–O atom pairs at the distance 9 edges) were less important
towards the prediction of the response endpoint (Figure S9 in
Supplementary Information). Further, we have also generated
a loading plot for the final model in order to identify the most
influential descriptors among the final descriptors. The load-
ing plot observation revealed that nO(C=O)2 and B01[O–Si]
descriptors with negative impact on the response endpoint are
located far away from the origin and considered as the most
influential descriptors in the final model, while the least influ-
ential descriptors O%, ETA_dBeta, nROH, and B09[O–O],
which are located at a smaller distance from the origin
(Figure S10 in Supplementary Information).

The QSPR equation (Eq. 3) comprises six unique 2D de-
scriptors, two of them show positive contributions (nROH and

Fig. 11 Significance of nROH and ETA_dBeta variables with examples (model for pH 9 and 25 °C)

Fig. 12 Significance of B01[Si–O] and B09[O–O] variables with examples (model for pH 9 and 25 °C)
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ETA_dBetaP), indicating that higher values of these descrip-
tors result in longer hydrolysis half-lives of organic chemicals.
For example, compound 15 (presence of two hydroxyl func-
tional groups) and 96 (high value of the ETA_dBetaP vari-
able) show longer half-lives (Fig. 11).

On the other hand, the variable with negative contributions
include O%, B09[O–O], B01[Si–O], and nO(C=O)2, suggest-
ing that higher values of these variables result in lower hydro-
lysis half-lives. For example, compound 85 (due to a high
percentage of the oxygen atom content in the molecule) and
37 (due to presence of anhydride functional group labile to
hydrolysis) show shorter hydrolysis half-lives. Similarly,
compound 94 and 5 show lower hydrolysis half-lives due to
Si–O bonds and presence of two oxygen atoms at the topo-
logical distance nine in the molecules, respectively (Fig. 12).
Lastly, we have performed the AD study of the final QSPR
model. The analysis suggests that compounds neither in the
training set nor in the test set are outliers or outside AD.
Figures S11 and S12 (Supplementary Information) provide
the schematic representation of the applicability domain of
the final model for the training and test set compounds respec-
tively for the prediction of hydrolysis half-lives of organic
chemicals at pH 9 and 25 °C.

QSPR modelling of hydrolysis half-life of organic pol-
lutants as a function of pH at 50 °C

At temperature 50 °C, we have generated QSPRmodels for the
prediction of hydrolysis half-lives of organic chemicals at pH 4,
7, and 9 using the datasets of 27, 34, and 36 organic com-
pounds, respectively. With the aid of data division software
tool, each dataset was divided into a “training set” and a “test
set” prior to the model development. The training set contains
21, 26, and 29 compounds and the test set consists of 6, 8, and 7
organic chemicals, for pH 4, 7, and 9, respectively. The models
were generated by employing only the training set compounds
using the PLS regression technique with different latent vari-
ables. The scatter plot (Fig. 13) shows that observed hydrolysis
half-life (log(d)) values of organic chemicals are well correlated
with the predicted hydrolysis half-life (log(d)) values at pH 4, 7,
9, and 50 °C. All final models have been rigorously validated
by using different internationally accepted internal and external
metrics, as shown below.

Model for pH 4

T50 pH4 log value dð Þ ¼ 0:518−0:196 nCICþ 0:846 nR06þ 0:782 nRCO−0:014 TPSA Totð Þ
ntrain ¼ 21; ntest ¼ 6;LV ¼ 3;R2 ¼ 0:742; Q2 ¼ 0:601; R2

pred ¼ 0:794; rm2
LOO

���� ¼ 0:498; Δrm2
LOO ¼ 0:123; rm2

test

����

¼ 0:428;Δrm2
LOO ¼ 0:296;MAEtrain100% ¼ 0:360;MAEtest100% ¼ 0:287;Qualitytest ¼ Moderate

ð4Þ

Model for pH 7

T50 pH7 log value dð Þ ¼ 0:329−0:096 NssCH2þ 0:391 Uc−0:919 H−048−0:213 nO

ntrain ¼ 26; ntest ¼ 8;LV ¼ 3;R2 ¼ 0:727; Q2 ¼ 0:642; R2
pred ¼ 0:789; rm2

LOO

���� ¼ 0:529; Δrm2
LOO ¼ 0:169; rm2

test

����

¼ 0:683;Δrm2
LOO ¼ 0:150;MAEtrain100% ¼ 0:338;MAEtest100% ¼ 0:373;Qualitytest ¼ Moderate

ð5Þ

Fig. 13 Scatter plots of observed v/s predicted hydrolysis half-life values of organic chemicals a at pH 4, b at pH 7, and c at pH 9 and 50 °C
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Model for pH 9

T50 pH9 log value dð Þ ¼ 0:593−0:593 O−060−0:849 B02 O−O½ �−0:349 T N::Sð Þ þ 0:169 X4sol–8:751 X5Av

ntrain ¼ 28; ntest ¼ 9;LV ¼ 3;R2 ¼ 0:798; Q2 ¼ 0:712; R2
pred ¼ 0:746; rm2

LOO

���� ¼ 0:608; Δrm2
LOO ¼ 0:155; rm2

test

����

¼ 0:644;Δrm2
LOO ¼ 0:126;MAEtrain100% ¼ 0:331;MAEtest100% ¼ 0:429

ð6Þ

To identify the most relevant descriptors from descriptor
appearing in the final QSPR model derived from data at pH 4
to predict the hydrolysis half-life of organic chemicals, we
have generated the VIP plot using SIMCA-P software tool;
the plot revealed that the nR06 (number of 6-membered rings)
descriptor was the most essential descriptor for model devel-
opment with a VIP score more than one. On the other hand,
other descriptors such as TPSA (tot) (topological polar surface
area using N, O, S, and P polar contributions), nCIC (number
of rings (cyclomatic number)), and nRCO (number of ketones
(aliphatic)) were the least relevant descriptors with VIP scores
less than one (Figure S13 in Supplementary Information).
Subsequently, we have also generated loading plot with an
objective to determine the most influential variable in the final
QSPRmodel. The loading plot analysis also recommends that
nR06 with a positive correlation towards the response is situ-
ated far from the origin and considered the most influential
variable, while the rest of the descriptors such as nRCO,
TPSA (tot), and nCIC were located at a lower distance from

the center of the plot and considered the least influential var-
iables (Figure S14 in Supplementary Information).

The QSPR model (Eq. 4) comprises four unique indepen-
dent variables with either positive or negative contribution
towards the response. The variables with a positive impact
on hydrolysis half-life include nR06and nRCO while descrip-
tors with negative impact include nCIC and TPSA (tot). To
understand the mechanistic importance of each variable, we
have analyzed the data carefully and observed that compound
4 shows higher hydrolysis half-life due to the presence of a
four six-member ring (nR06 variable) in its chemical struc-
ture. Similarly, compounds 11 and 77 show longer half-lives
due to the presence two aliphatic carbonyl functional groups
(nRCO variable) in their chemical structures. However, the
half-life difference of approximately three days of these two
compounds (11 and 77) is due to a difference in their total
polar surface area (Fig. 14). On the other hand, two negatively
correlating descriptors are nCIC and TPSA (tot), suggesting
that presence of high number of cyclomatic ring (providing

Fig. 14 Significance of all the variables appearing in the final equation for the prediction of hydrolysis half-life at pH 4 and 50 °C
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information about presence of all type of alicyclic as well as
aromatic rings in the molecules) as well as total polar surface
area of any compound result in lower half-life and vice versa.
For example, compounds 2 and 105 result into smaller half-
lives due to the presence of four cyclomatic rings (three epox-
ide rings and one phenyl ring) in the compounds and due to
the larger total polar surface area of the molecule, respectively
(Fig. 14). Finally, we performed the AD study of the final
QSPR model using the DModX approach. The results show
that compounds neither in the training set nor in the test set
were outliers and outside the AD, suggesting that the generat-
ed model was robust with significant predictive quality.
Figures S15 and S16 (Supplementary Information) provide
the schematic representation of the applicability domain of
the final model for the training and test set compounds respec-
tively for the prediction of hydrolysis half-life of organic
chemicals at pH 4 and 50 °C.

For the model derived from data at pH 7, again we have
performed the VIP analysis using SIMCA-P software tool.
The analysis suggests that NssCH2 (number of atoms of type
ssCH2) variable was the most crucial descriptor for model
development with a higher VIP score. On the other hand, other
variables such as H-048 (H attached to C2(sp3)/C1(sp2)/
C0(sp)), Uc, and nO (number of oxygen atoms) were the least
essential descriptor with a lower VIP score (Figure S17 in
Supplementary Information). Further, we have also performed
a loading plot analysis, which also revealed that the NssCH2
descriptor with a positive contribution towards the response is
located away from the center and considered as most

influential variable, while the rest of the variables such as
H-048, Uc, and nO were located at a lower distance from
the center of the plot and labeled as the least influential de-
scriptors for prediction of hydrolysis half-life of organic
chemicals (Figure S18 in Supplementary Information).

The final QSPR model (Eq. 5 for pH 7) was obtained
using the dataset of 34 organic compounds at three latent
variables (extracting vital information from four unique var-
iables). All the variables appearing in the final equation
show negative contributions towards the hydrolysis half-
life prediction at 50 °C except one variable (Uc). The de-
scriptor with a positive contribution (Uc) provides informa-
tion about the unsaturation content in the molecule. For
example, compound 114 shows a longer half-life value
due to high unsaturation (due to presence of three aromatic
rings in the chemical structure). On the other hand, the var-
iables with negative contribution include H-048, NssCH2,
and nO suggesting that higher values of the descriptors re-
sult in shorter half-lives and vice versa. For example, com-
pounds 107 and 62 show shorter half-lives at pH 7 due to the
presence of hydrogen atoms attached to sp2 carbon atom
and higher number of –CH2-fragments in the chemical
structures, respectively. Similarly, compound 105 shows a
lower half-life due to the presence of higher number of ox-
ygen atoms in the chemical structure (Fig. 15). Lastly, we
have subjected the final QSPR model to the AD study using
the DModX approach. The study suggests that a single com-
pound (compound 108) was an outlier, while all the test set
compounds were found to be within the applicability

Fig. 15 Significance of all the variables appearing in the final equation for the prediction of hydrolysis half-life at pH 7 and 50 °C

1639Environ Sci Pollut Res (2021) 28:1627–1642



domain. Figures S19 and S20 (Supplementary Information)
provide the schematic representation of the applicability
domain of the final model for the training and test set com-
pounds, respectively for prediction of hydrolysis half-life of
organic chemicals at pH 7 and 50 °C.

We have also performed the VIP analysis for the model
obtained from data at pH 9. The analysis suggests that out of
five variables appearing in the final model, three variables
with VIP scores more than one were most essential for
QSPR model development and these are B02[O–O], X4sol,
and O-060. On the other hand, other two variables (T(N… .S)
and X5Av, see Figure S21 in Supplementary Information)
with lower VIP scores were considered less important ones
for hydrolysis half-life prediction of organic chemicals.
Additionally, we have also performed the loading plot analy-
sis, which also shows that B02[O–O] and O-060 are situated
away from the origin and thus considered as most prominent
variables, while the rest of the variables such as X4sol, T(N…
.S) and X5Av were positioned at a lower distance from the
center and considered as less important descriptors for the
prediction of hydrolysis half-lives of organic chemicals
(Figure S22 in Supplementary Information).

The best QSPRmodel (Eq. 6) was derived using the dataset
of 37 organic pollutants at pH 9. The final QSPR equation
comprises five 2D descriptors calculated using Dragon and
PaDEL-descriptor software tools. The descriptors appearing
in the model and showing a negative impact towards the pre-
diction of the half-life of organic compounds at pH 9 and 50
°C are O-060 (presence of Al–O–Ar/Ar-O-Ar/R..O..R/R–O–
C =X functional group, here Al and Ar represent aliphatic and
aromatic substitutions), T(N..S) (sum of topological distances
between N..S), X5Av (average valence connectivity index of
order 5) and B02[O–O] (presence/absence of O–O at topolog-
ical distance 2), which suggest that the presence of these spe-
cific fragments/functional groups or combination of atoms at a
specific distance in the chemical structures leads to a decrease
in half-life of the compounds. For example, 62, 108, and 66
show low half-lives due to the presence of carbonate function-
al group, a large sum of the topological distance between
nitrogen and sulfur atoms and presence two oxygen atoms at
a distance of two bonds, respectively (Fig. 16). Again, the
descriptor with a positive coefficient in the final equation is
X4sol (solvation connectivity index of order 4), which indi-
cates that a higher value of solvation connectivity index of

Fig. 16 Significance of all the variables appearing in the final equation for prediction of hydrolysis half-life at pH9 and 50 °C
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order 4 variable leads to an increase in half-life of organic
chemicals. For example, compound 53 shows higher value
of X4sol variable resulting into a higher hydrolysis half-life
of the molecule (Fig. 16). At the end, we have carried out an
AD study. The analysis showed that not a single compound in
the training and the test set behaved as an outlier or outside
AD. Figures S23 and S24 (Supplementary Information) pro-
vide the schematic representation of the applicability domain
of the final model for the training and test set compounds
respectively for prediction of hydrolysis half-lives of organic
chemicals at pH 9 and 50 °C.

Conclusion

In the current work, we have proposed QSPR models for the
prediction of hydrolysis half-life of organic chemicals as a
function of different pH at different temperature conditions
employing only two-dimensional molecular descriptors. For
every model, the appropriate subsets of descriptors were
elected using a genetic algorithm method; next, the appropri-
ate subsets of descriptors were subjected to the best subset
selection with a key objective to determine the best combina-
tion of descriptors for the model generation. Finally, the
QSPR models were built using the best combination of vari-
ables employing the partial least squares (PLS) regression
technique. Next, every final model was subjected to strict
validation employing the internationally accepted internal
and external validation parameters. As per the QSPR models
developed at pH 4, 7, and 9 and 25 °C, in general, presence of
aliphatic ether and ethereal functional groups, high percentage
of oxygen content in the molecules, and presence of O–Si pair
of atoms at topological distance one result in shorter hydroly-
sis half-life of organic chemicals. On the other hand, higher
unsaturation content and presence of high percentage of nitro-
gen content in a molecule result in higher hydrolysis half-life.
It is also found that branched and compact molecules will
have a lower half-life while the straight chain analogues will
have a higher half-life. As per the QSPR models at pH 4, 7,
and 9 and 50 °C, we also found that the few key features for
prediction of hydrolysis half-lives of organic chemicals are
higher number of –CH2 groups, oxygen atoms, and presence
of carbonate functional groups and presence of O–O atom pair
at topological distance 2 resulting in shorter half-life. On the
other hand, high unsaturation content, presence of six-member
rings (imparting unsaturation), and presence of aliphatic ke-
tone result in higher hydrolysis half-life of organic chemicals.
The final models can be useful for quickly determining or
predicting the environmental persistence of organic chemical
compounds, based solely on knowledge of chemical struc-
tures, thus providing a better alternative to the costly and time
consuming experimental testing methods.
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