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Abstract
Dissolved organic matter (DOM) controls the fate of a variety of nutrients and trace metals in river estuary systems. The aim of
our study is to explore the sources, structure characteristics of sediment DOM, and potential ecological release risk (heavy metal,
N and P) under the environmental conditions of Dagu River estuary. The relative contribution of DOM source was calculated by
carbon stable isotope (combining δ13CDOM and C/N ratios). The structural characteristics of sediment DOM in Dagu River
estuary were determined by ultraviolet-visible spectroscopy (UV-vis) absorbance and fluorescence spectroscopy. The potential
ecological risks of heavy metals and N and P release were also assessed. Results show that the relative contributions of rural area
and aquaculture are high in Dagu River estuary. The humification degree of DOM in downstream river is higher than that in the
estuary, and the sediment DOM in Dagu River estuary is influenced by both terrestrial input and biological metabolism. The
potential risk of eutrophication in the estuary is high. Moreover, under the effect of aquaculture and rural area, there is higher
potential ecological release risk of heavy metal in the estuary. And samples in the middle transect have the highest potential
ecological risks of heavy metal. Therefore, a framework has been proposed to predict the ecological status of the estuary by
analyzing the sources, content, and structural characteristics of sediment DOM. These results provide a new insight on ecological
indication of DOM in Dagu River estuary.
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Introduction

Estuaries, the transitional interface between freshwater and
seawater, are significant regions where the continuous ex-
change of water and chemical components occur (Liu et al.
2018; Xie et al. 2018). Rapid population growth and industrial
development lead to the environmental pollution and ecolog-
ical deterioration in estuary systems. Some pollutants can

result in deleterious effect to the marine lives and possible
poisoning to the human health (Jiang et al. 2017; Jahan and
Strezov 2018). The fate of pollutants in estuary systems is
related to the content and structural characteristics of dis-
solved organic matter (DOM) (Jiang et al. 2017). This is be-
cause DOM can alter metal speciation and transportation by
absorbing and creating complexes with heavy metals (Louis
et al. 2014). Besides, DOM can affect the content of nitrogen
and phosphorus by a variety of biogeochemical processes due
to its content and structural characteristics (Li et al. 2014).

The content and structural characteristics of DOM can be
influenced by different sources (Guéguen et al. 2012; Shang
et al. 2018). Previous studies showed that allochthonous
DOM sources, such as industry, urban area, and agriculture
practices, changed the content and composition of DOM in
aquatic environment (Boyes and Elliott 2006; Cao et al. 2018;
Zhang et al. 2020). For instance, Meng et al. (2013) found that
the protein-like components of DOM are related to sewage
inputs and microbial activity in streams. Hongve (1999) pre-
sented that the forest is an important contributor to DOM
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contents. Besides, sediments are ecologically important com-
ponents of the estuary systems and important sources and
sinks of DOM in water (Li et al. 2016; Omar et al. 2018).
Sediment DOM has been widely studied, but previous studies
mainly focused on its source, distribution, structure, DOC
contents, and the reaction mechanism of DOM with pollut-
ants, separately (Jiang et al. 2008; Huguet et al. 2010; Wang
et al. 2015; Niu et al. 2017; Derrien et al. 2018; He et al. 2019;
Zhang et al. 2019). The relationship between the source, char-
acteristics of DOM, and the potential ecological risk (release
of heavy metal and N, P) has rarely been addressed. In fact,
there is a close connection between them. For instance, Li
et al. (2014) disclosed that the contents and structural
characteristics of sediment DOM, which are closely
correlated with the sources, can affect the contents of DON.
Li et al. (2016) indicated that high content of sediment DOM
is related to high contents of DOP, DON, TN, and TDN in
Dongting Lake.

Previous studies of DOM were mostly on rivers, catch-
ments, lakes, and high-mountain glacial areas (Cong et al.
2015; Ji et al. 2015; Chen et al. 2017; Gul et al. 2018; Niu
et al. 2018; Kang et al. 2019; Liu et al. 2019). To date, few
studies have been performed on sediment DOM in the estuary.
In fact, the characteristics of sediment DOM are likely to vary
along the freshwater to the estuary area due to different major
sources and environment conditions (Chen and Hur 2015).
For instance, when the ocean is more aliphatic, terrestrial-
derived DOM from freshwater tends to be more aromatic
(Coble 1996; McKnight et al. 2001). This may cause differ-
ences in reactivities of DOM in the sediment of downstream
river and estuaries. Therefore, it is important to study the re-
lationship between source, structural characteristics, and reac-
tivities of DOM for providing a better insight into ecological
risk in estuary systems.

The analysis techniques for analyzing DOM have ad-
vanced over the last few decades (Leenheer and Croué
2003). Ultraviolet-visible spectroscopy (UV-vis) has been fre-
quently applied to explore the characteristics of aromatic or
unsaturated compound (Sellami et al. 2008). The three-
dimensional excitation-emission matrix (3D-EEM) fluores-
cence spectrum is applied to detect the organic compounds
which have the fluorescent characteristics (Tian et al. 2012;
Zhu et al. 2020). The 3D-EEM also can provide lots of infor-
mation about biogeochemical cycle and DOM composition
(Wang et al. 2009). Besides, fluorescence regional integration
(FRI) can be used for quantitative detection of EEM spectra
by integrating volumes below various excitation-emission re-
gions in the EEM spectrum (Chen et al. 2003; He et al. 2011;
Li et al. 2014). The techniques above provide important
tools for studies of structural characteristics of DOM
(Xie et al. 2012; Li et al. 2015). In addition, Wu
et al. (2012a) examined the sources of DOM utilizing
the values of δ13C and C/N ratio measurements. Thus,

we determine the sources of sediment DOM on the ba-
sis of the δ13CDOM and C/N ratios.

Dagu River estuary is strongly impacted by anthropogenic
activities because of DOM inputs (Xi et al. 2017, 2018). And
the anthropogenic activities have been leading to heavy metal
pollution and eutrophication in coastal zone and offshore in
recent years (Dai et al. 2007). Thus, the aims for our study
were to (i) estimate source contribution of Dagu River estuary
by isotope labeling quantitatively, and assess the impact of
different land use types (human activities) on DOM structure
characteristics; (ii) investigate the sediment DOM structural
characteristics of Dagu River estuary by UV-vis spectroscopy
and 3D-EEM spectroscopy; and (iii) assess the potential eco-
logical risks of heavy metals and eutrophication based on
DOM characteristics.

Materials and methods

Description of the study area

Jiaozhou Bay (36° 01′–36° 15′ N, 120° 03′–120° 25′ E), a
typical semi-enclosed bay, is located on the south bank of
the Shandong Peninsula, China. The coast of Jiaozhou Bay
features a typical regular semi-diurnal tide. More than ten
rivers drain into Jiaozhou Bay with various water loads.
These are all seasonal rivers, with a dry season from
February to May and a flood season from June to
September. Dagu River, which has an annual average water
runoff of 0.5 km3, is the largest among these rivers empty into
Jiaozhou Bay, accounting for about 85.6% of total flow of
other rivers (Xi et al. 2018) (Fig. 1).

Sample collection and treatment

Surface sediments (0–2-cm depth) were obtained from Dagu
River estuary (S1–S9) in January, 2019. We divided the sam-
pling sites into estuary, middle zone, and downstream river
according to the distance from the sea. We called S1–S3
(which are near the sea) the estuary. S4–S6 are the middle
zone, and S7–S9 (which are far from the sea) are the down-
stream river. Source samples of surface sediments (aquacul-
ture pond), creeks (rural and industrial area), and surface soils
(farmland and forest) were collected along Dagu River. The
sampling area covered an area of 36° 10′ 12.92″ N to 36° 18′
26.53″ N and 120° 5′ 19.02″ E to 120° 9′ 59.62″ E. After
sampling, samples were put into polyethylene bags immedi-
ately, sealed, and transported to the laboratory. All samples
were naturally dried, grinded, and selected through a 100-
mesh sieve for further analysis (Dong et al. 2020).

Sediment DOM was extracted with Milli-Q water in soil-
water slurry at a ratio of 1:5, and kept in a shaking bath (180
r/min) at room temperature for 30 min (Yu et al. 2019). Then
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the samples were centrifuged at 4000 r/min for 20 min. The
clear supernatant was extracted and was filtered through
0.45-μm polyethersulfone membrane. The dissolved organic
carbon (DOC) content was measured by KMnO4

chromatometry method (Yu et al. 2019). The contents of
NH4

+–N, NO3
−–N, TN, and available phosphorus (AP) in

the sediment were also measured in this study.

Carbon stable isotope ratios (δ13CDOM)

Before carbon stable isotope analysis, inorganic carbon was
removed by 0.1 mol/L HCI treatment. Samples were analyzed
in the lab using an isotope ratio mass spectrometer (precision
of 0.15‰ for δ13C) and the isotopic results are given in the

standard δ notation. Stable isotope ratio δ is expressed as the
deviation from standard in parts per thousand (‰) with the
equation:

X ‰ð Þ ¼ Rsample=Rreferenceð Þ−1ð Þ � 1000 ð1Þ

where Rsample refers to the 13C/12C ratios for the sample,
Rreference refers to the 13C/12C ratios for the standard, and X =
δ13CDOM. Isotopic data are based on the international Vienna
Pee Dee Belemnite (PDB) standard.

UV-vis, EEM measurements, and FRI analysis

UV-vis spectrophotometer (TU-1810, Purkinje, Beijing,
China) was used to record absorption spectra using a 1-

Fig. 1 Study area and sampling
sites
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cm quartz cuvette ranging from 200 to 800 nm (wave-
length increment = 1 nm). Milli-Q water was used for
the blank. Absorbance at 280 (A280) and specific ultra-
violet absorbance at 254 nm (SUVA254), 260 nm
(SUVA260), and 280 nm (SUVA280) were applied for
the characterization of the optical properties. Specific
ultraviolet absorbance (SUVA) is the ultraviolet absor-
bance of a sample at a given wavelength normalized for
DOC concentration. And the specific ultraviolet absor-
bance at 254 nm (SUVA254), 260 nm (SUVA260), and
280 nm (SUVA280) was calculated by dividing the ul-
traviolet absorbance measured at λ = 254 nm, 260 nm,
and 280 nm by the sample’s DOC concentration (mg
L−1), respectively, expressed as liters per milligram per
meter (Weishaar et al. 2003).

The EEM fluorescence spectra of the DOM were de-
termined in a luminescence spectrometer (HITACHI
F-4600). The excitation and emission wavelengths of
fluorescence EEMs were 200 to 450 nm and 250 to
600 nm, respectively. Both excitation and emission were
maintained at 5-nm intervals and the scanning speed
was set at 1200 nm min−1. To eliminate the water
Raman scatter peaks, a Milli-Q water was used in the
reference cell (Yu et al. 2019). The EEM spectra data
was analyzed by FRI method to determine the fluores-
cence components. The calculation of the volume of
each region was based on the Eq. (2) to Eq. (4):

ϕi ¼ ∫ex∫emI λexλemð Þdλexdλem ð2Þ
Φi; n ¼ MFi� ϕi ð3Þ

ΦT ; n ¼ ∑
5

i¼1
Φi; n ð4Þ

where φi is the volume of region i (au·nm2); λex and λem are
the fluorescence intensity in specific excitation wavelength
and specific emission wavelength (au), respectively; MFi is a
multiplication factor.

Furthermore, the calculation of normalized excitation-
emission area volume Pi was based on the Eq. (5):

Pi; n ¼ Φi; n=ΦT ; n� 100% ð5Þ

Estimation of the relative contribution

In this paper, the relative contributions of DOM source
were estimated using the freeware package IsoSource.
The software uses the isotope mass balance equation
to calculate the proportions of the different end mem-
bers of the mixture (Phillips et al. 2005). In this paper,
the software was applied for the results from the isotope
ratio and C/N.

Results and discussion

Distribution of δ13CDOM and C/N ratios of DOM and
the relative contributions of sources at different
sampling sites

Ranges of δ13CDOM and C/N ratios for Dagu River estuary are
presented in Table 1 and Fig. 2. From the results, the δ13CDOM

values of source samples are between − 27.17 and − 21.03‰.
The values of the aquaculture pond (− 21.03‰) and farmland
(− 22.87‰) are the highest and the value of forest (− 27.17‰)
is the lowest. The δ13CDOM values of the surface sediment
range from − 20.93‰ (S8) to − 26.55‰ (S9). Besides, the
range of C/N value of the source samples is 7.12–14.17, with
the industrial C/N (14.17) being the largest and the aquacul-
ture pond C/N (7.12) being the lowest. The C/N values of
surface sediment samples in downstream river are higher than
those in the estuary, with the value of S3 as high as 10.30.

Figure 3 depicts the relative contributions of sources at nine
sites. From the result, there are differences among relative
contributions of sources. For S1, S2, S4, S5, and S8, the con-
tributions of rural area and aquaculture pond have relatively
high proportions. For S3, the relative contribution of industry
(40%) is the highest. And farmland, rural area, and aquacul-
ture contribute more than 10%, respectively. For S6, the rela-
tive contributions of forest, farmland, rural area, and aquacul-
ture are greater than 15%. Similarly, forest, farmland, rural
area, and aquaculture contribute more than 10% to S7, respec-
tively. And S9 is characterized by industry whose relative
contribution value is 93%. According to Regier et al. (2016),

Table 1 The values of δ13CDOM (‰) and C/N ratios for the samples of
sources and sediments

Samples DOC (mg kg−1) Stable isotope ratios

δ13C (‰) C/N

Source Farmland 682.04 ± 39.43 − 22.87 9.09 ± 0.7

Forest 111.06 ± 7.68 − 27.17 9.46 ± 0.47

Industry 697.73 ± 38.68 − 25.39 14.17 ± 0.06

Aquaculture 1039.68 ± 11.74 − 21.03 7.12 ± 0.79

Rural area 872.05 ± 41.02 − 24.31 7.33 ± 0.62

Sediment S1 500.08 ± 11.74 − 23.58 0.39 ± 0.07

S2 412.24 ± 50.39 − 22.92 3.56 ± 0.34

S3 810.67 ± 24.70 − 24.28 10.30 ± 0.48

S4 205.18 ± 20.33 − 24.83 3.34 ± 0.44

S5 296.16 ± 43.70 − 22.23 3.85 ± 0.64

S6 562.82 ± 20.33 − 24.58 8.80 ± 0.99

S7 321.25 ± 54.52 − 23.10 6.87 ± 0.35

S8 989.49 ± 91.68 − 20.93 6.11 ± 0.53

S9 1077.33 ± 68.88 − 26.55 21.10 ± 3.49
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the runoff and surrounding land use have effects on the trans-
portation of allochthonous DOM. Thus, the relative contribu-
tion of sources varies with the change of sites. Pollutants pro-
duced by rural area and aquaculture (which is mainly marine
aquaculture including shellfish, shrimp, and other seafood)

contribute significantly to DOM sources; this is because in
the past few decades, Dagu River estuary has been greatly
influenced by the rapid population growth (Zhang et al.
2013; Liang et al. 2015). At S3 and S9 (i.e., large amounts
of factories are distributed around S3 and S9), the industry has
high relative contribution.

DOC contents and UV-vis absorption property

The DOC contents of sediment samples and source samples in
Dagu River estuary are displayed in Table 1. The DOC con-
tents in the surface sediment and source samples range from
205.18 to 1077.33 mg kg−1 and 111.05 to 1024 mg kg−1, with
an average value of 575.02 and 680.51 mg kg−1, respectively.
The aquaculture pond has the highest DOC content among the
source samples with the value of 1039.69 mg kg−1 and the
forest has the lowest DOC content of 111.06 mg kg−1. The
DOC contents of surface sediment at S9 and S8 are higher
than those at S1 and S2, and the DOC contents of surface
sediment at S5 and S4 are the lowest; this indicates that sed-
iment DOC content in downstream river is higher than that in
the estuary. The trend of DOC content in Dagu River estuary
is similar to other river estuaries, with higher values of DOC

Fig. 3 The source contributions to sediments of nine sites. a S1, b S2, c S3, d S4, e S5, f S6, g S7, h S8, i S9

Fig. 2 The end-member plot of δ13CDOM versus C/N ratios for samples of
sediments and sources
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contents in the upstream freshwater than in coastal water
(Asmala et al. 2013; Jiang et al. 2017). There are several
explanations: (i) there are significant contributions from urban
and industrial developments to DOM along the downstream
river; (ii) high primary productivity in river increases the con-
centrations of DOC in river due to the activities of phytoplank-
ton and zooplankton; (iii) riverine DOC contents gradually
decrease because of biological and photochemical processes
from downstream river to estuary of Dagu River. The result
also shows that samples in the middle (S4–S7) have low DOC
content, which would be caused by the dilution effects of
tributaries and tidal backwater (Zhou et al. 2019).

In this study, we use SUVA254, SUVA260, A280, and
SUVA280 value to investigate the characteristics of sediment
DOM in Dagu River estuary. SUVA 254 value is widely used
to indicate the abundance of aromatic carbon in DOM
(Nishijima and Speitel 2004). The value of SUVA260 repre-
sents the content of hydrophobic fractions (Jaffrain et al.
2007). The absorption properties measured at 280 nm are
correlated with molecular weight of aquatic natural organic
matter (Leenheer and Croué 2003). Table 2 illustrates the
values of nine sites. The ranges of SUVA254, SUVA260,
and SUVA280 value of surface sediment samples are 0.18–
1.23, 0.17–1.23, and 0.14–0.91 L mg−1 m−1, respectively. The
A280 value of surface sediment samples varies from 0.07 to
0.63. From the result, the values of S9 are the largest among
nine sites, and the values of S3 are the lowest. Moreover, the
values of S9 are significantly higher than other sites, indicat-
ing the highest aromaticity, highest contents of hydrophobic
fractions, and highest molecular weight of DOM at S9. It can
be revealed that these UV absorption values have similar trend
from the downstream river to the estuary. For example, there
are higher values of the spectral parameters in downstream
river than those in the estuary, demonstrating higher aroma-
ticity, humification degree, contents of hydrophobic fractions,
and molecular weight of DOM in the downstream river rather
than in the estuary. According to Jiang et al. (2017), the lower
UV absorption values of DOM in Dagu River estuary can be
explained by two reasons: (i) highly humic and aromatic

components of DOM are removed due to the adsorption on
suspended particulates; (ii) the estuary is more affected by
marine DOM resulting in lower absorption, lower fluores-
cence, and lower DOC concentration than downstream river.

Fluorescence properties of DOM

Figure 4 illustrates the 3D-EEM fluorescence spectra of sur-
face sediment DOM in Dagu River estuary. Five peaks can be
detected from the fluorescence spectra. Peaks A and C are
related to fulvic acid–like and humic acid–like compounds,
respectively (Fu et al. 2005). Peak D is related to soluble
microbial products. Peaks B and T belong to protein-like
peaks. Each fluorescence spectra of DOM is classified into
five regions based on the FRI theory as shown in Table 3
(Chen et al. 2003). For protein-like materials, regions I and
II are mainly associated with tryptophan-like and tyrosine-like
compounds, respectively (Chen et al. 2003). And region IV
represents soluble microbial by-product substances (Wang
et al. 2019). In addition, regions III and V are related to
fulvic-like materials and humic-like materials (Chen et al.
2003). Besides, values of Pi,n for regions that represent the
percentage fluorescence response in EEMs of DOM are cal-
culated. The result suggests that the sources of DOM at 9 sites
are different. This is mainly caused by the various human
activities in surrounding area. In addition, according to Li
et al. (2016), regions I and II are collectively classified as
P(I+II, n); regions III and V are classified as P(III+V, n).
From Fig. 5, the P(I+II, n) of sediment DOM ranges from
42.79 to 69.35%; P(IV, n) of DOM ranges from 6.97 to
10.69%. Moreover, the P(III+V, n) of DOM generally shows
an increasing trend from S1 to S9, with values ranging from
23.59 to 47.50%.

The results exhibit that sediment DOM of S1–S5 mainly
contains protein-like substances and few humic-like sub-
stances. The proportions of humic-like component and
protein-like component are similar in the sediment DOM at
S6 and S7. And there are more humic-like substances than
protein-like substance in the sediment DOM at S8 and S9.

Table 2 UV-vis absorption
spectra parameters (A280,
SUVA280, SUVA254, and
SUVA260) of sediment DOM

Sites A280 SUVA280 (L mg−1 m−1) SUVA254 (L mg−1 m−1) SUVA260 (L mg−1 m−1)

S1 0.08 0.26 0.29 0.29

S2 0.1 0.38 0.45 0.44

S3 0.07 0.14 0.18 0.17

S4 0.07 0.56 0.65 0.64

S5 0.09 0.39 0.46 0.45

S6 0.1 0.27 0.31 0.3

S7 0.09 0.44 0.51 0.49

S8 0.23 0.37 0.47 0.46

S9 0.63 0.91 1.23 1.23
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The percentage of humic-like substances decreases from
downstream river to estuary, indicating that the degree of
DOM humification in downstream river is higher than that
in the estuary, which is in accordance with the result of UV-

vis spectra. The reason is that there are large amounts of vil-
lages and factories distributed in the downstream of Dagu
River and the external DOM exports into Dagu River through
runoff influencing DOM composition and altering its quality
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Fig. 4 Contour plots of five fluorescence components of DOM in sediment samples. (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, (f) S6, (g) S7, (h) S8, (i) S9

Table 3 Excitation and emitting (Ex/Em) wavelengths of fluorescence region (Yu et al. 2019)

Components Fluorescence integral region Fluorescence substance Fluorescence peak Fluorescence peak position

λEx (nm) λEm (nm) λEx (nm) λEm (nm)

I 220~250 280~330 Tyrosine-like protein B 220~230 300~310

II 220~250 330~380 Tryptophan-like protein T 225~250 315~365

III 220~250 380~480 Fulvic acid–like organics A 240~250 380~440

IV 250~360 280~380 Soluble microbial by-product D 270~300 320~380

V 250~420 380~520 Humic acid–like organics C 320~360 400~450
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(Lu et al. 2016; Han et al. 2017; Wang et al. 2019). Thus, the
humic-like substance content of sediment DOM in down-
stream river is higher than that in the estuary. Besides, accord-
ing to Li et al. (2016), humic-like component can prevent
excessive nutrients release. Thus, the result implies the release
risk of nutrients in downstream river area would be lower than
that in the estuary area.

Figure 6 illustrates the fluorescence parameters of sediment
DOM. According to Wang et al. (2009), the fluorescence in-
dex (FI) can detect humic sources in DOM. The low FI value
(1.4) indicates terrestrially derived humus components of
DOM, and the high FI value (1.9) indicates microbially and/
or algal-derived humus components of DOM (Wang et al.
2009). Figure 6 shows that the FI values of sediment DOM
are in the range of 1.61–1.99 (the average value is 1.74) at
different sites; this result implies that the DOM in Dagu River
estuary sediments is influenced by terrestrial input and biolog-
ical metabolism. It should be noted that FI values of some
samples from downstream river sediment are slightly higher
than 1.9. This is mainly because direct anthropogenic influ-
ences result in an increase of protein-like components (Jiang
et al. 2017). For instance, excess nutrients from farmland

which is added with lots of fertilizers and wastewater from
rural area may lead to higher production of autochthonous
DOM in Dagu River.

The humification index (HIX) can indicate the degree of
humification of organic matter (Hansen et al. 2016). High
value of HIX suggests great humification of the source
(Ohno 2002). Figure 6 shows that HIX values of sediment
DOM in downstream river are higher than those in the estuary,
indicating higher humification of sediment DOM in down-
stream river than that in the estuary. The trend of humification
degree is in accordance with the result from SUVA254 and
FRI. Moreover, the biological/autochthonous index (BIX) is
correlated to autochthonous DOM. High BIX value indicates
high proportion of autochthonous DOM (Hansen et al. 2016).
Figure 6 depicts that BIX values of DOM are in the range of
0.59–2.73 (the average value is 1.31) and BIX values of sed-
iment DOM in downstream river are higher than those in the
estuary on average. The result indicates that the sediment
DOM in Dagu River estuary is influenced by both terrestrial
input and biological metabolism.

The relationship between DOM characteristics and
different forms of N and P contents in the sediment

The contents of different forms of N and P in the sediment
were investigated (this can be seen in Table 4). From the result
in Table 4, the ranges of NH4

+–N, NO3
−–N, TN, and AP

contents are 3.21–18.83 mg kg−1, 0.21–5.29 mg kg−1,
19.65–51.31 mg kg−1, and 8.18–17.37 mg kg−1, respectively.
And the contents of different forms of N and P in the sediment
have a decrease trend from downstream river to the estuary.
Table 5 illustrates the analysis of the correlation among the
components of DOM and the contents of N and P in the
sediments of Dagu River estuary. From the results in
Table 5 and Fig. 7, the value of P(III,n) in the DOM sediment
is positively correlated with the contents of TN and NH4

+–N
in the sediment (P < 0.05). This result indicates that higher
contents of TN and NH4

+–N are correlated with higher per-
centage of fulvic acid substances in DOM. In addition, there
are significant positive correlations between the contents of
NH4

+–N and the values of SUVA254. The results suggest that

S1 S2 S3 S4 S5 S6 S7 S8 S9
0

50

100

)
%(e

gat
necre

P
Sediment

 
 
 
 

 

S1 S2 S3 S4 S5 S6 S7 S8 S9
0

50

100

 

Sediment

 +

 
+

Fig. 5 Percentage of fluorescence
components of DOM in sediment

Fig. 6 Fluorescence parameters (HIX, BIX, and FI) values of DOM
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higher humification of DOM would result in higher NH4
+–N

contents in the sediment. There are two reasons for these re-
sults: (i) humic-like substances can fix certain nutrients (poly-
saccharides and amino acids) and inhibit soil nitrification; (ii)
humic-like substances can hinder the conversation of P by
limiting the activity of alkaline phosphatase (Newman
1993). The results also imply that higher content of DOM
significantly results in higher contents of TN and NH4

+–N.
This is because DOM and nutrients (N and P) have a common
origin. The contents of TN and NH4

+–N are positively corre-
lated with the A280 of DOM. This would be related to the
content of DOC.

Potential release risk assessment of heavy metals
based on DOM characteristics

DOM can bind heavy metals, thereby decreasing the concen-
tration of free metal ions in aquatic ecosystems, resulting in a
reduction in the potential bioavailability of metal to aquatic
organisms (Sánchez-Marín and Beiras 2012). Based on the

previous studies, the binding ability of DOM components
and five heavy metals was sequenced and was assigned values
based on the strength of combining ability. The combining
ability between humic-like component and heavy metal fol-
lows the order of Cu > Pb > Zn > Cd > Hg (Tipping et al.
2011; Guo et al. 2012 ; Xu et al. 2013; Huang et al. 2018).
And the binding ability of protein-like substances and heavy
metal is in the order of Cu > Pb > Hg > Cd > Zn (Guo et al.
2012; Wu et al. 2012b; Xu et al. 2013; Huang et al. 2018). In
addition, humus-like component exhibits higher Cu(II) and
Pb(II) binding affinities than protein-like ones (Xu et al.
2019). As for Hg and Zn, the binding affinities with protein-
like substances are higher than humus-like substances
(Wufuer et al. 2014). Particularly, protein-like substances are
the main fraction involved in Cd(II) complexation (Wu et al.
2012b). Considering the factors above, the widely used ana-
lytic hierarchy process (AHP) method was applied to investi-
gate the weight of each type of combining ability (Sener and
Davraz 2013). The weights of various complexation abilities
were calculated. Weights of humus-like substance binding to
Cu, Pb, Zn, Cd, and Hg are 0.2214, 0.1526, 0.0669, 0.0402,
and 0.0188, respectively. And weights of protein-like sub-
stance binding to Cu, Pb, Zn, Cd, and Hg are 0.2066,
0.1013, 0.0235, 0.0430, and 0.1256, respectively. Thus, the
ecological risks of single heavy metal in the sediment were
calculated using equations in Appendix. The potential release
risk values of heavy metals are represented in Table 6. For
example, the potential release risk value of Cu varies from
2.38 to 12.42 of nine sites; the value range of Hg is 56.94–
245.7. And the comprehensive ecological risk value ranges
from 139.09 to 670.02. The result shows that the risk value
of the middle zone is higher than that of the estuary and the
downstream river.

In this study, the inverse distance weight (IDW) was
applied to predict the potential ecological risk of heavy
metal on the basis of consideration of data characteristics,
research purpose, and sampling site. IDW is an interpola-
tion method widely used to clarify the spatial variation
and distribution of metals (Gu et al. 2012). From the re-
sults in Fig. 8, for Cu, Pb, Zn, and Cd in the sediment, the
degree of ecological risks at S4 and S5 is higher than that
at S2 and S1. And the degree of ecological risks at S8 and
S9 is the lowest. The potential ecological risks of Hg at
S4 are higher than those at other sites. The result indicates
that for single heavy metal, the degree of ecological risk
fluctuates at different sites, due to the different content
and structural characteristics of sediment DOM at differ-
ent sites. In general, the freshwater area has the lowest
ecological risk. Samples in the middle transect have high
potential ecological risks. The ranking of comprehensive
ecological risk of heavy metals is similar to the ranking of
single one. The result illustrates that the potential ecolog-
ical risk of heavy metal in downstream river is lower than

Table 5 Correlation coefficients between DOM characteristics and the
content of N and P

AP TN NH4
+–

N
NO3

−–
N

DOC content 0.005 0.815** 0.863** − 0.211

P(I,n) − 0.434 − 0.384 − 0.279 − 0.394

P(II,n) − 0.393 − 0.655 − 0.578 − 0.166

P(III,n) 0.36 0.761* 0.718* 0.152

P(IV,n) 0.458 0.213 0.098 0.472

P(V,n) 0.511 0.287 0.115 0.391

SUVA254 − 0.017 0.566 0.736* − 0.14

A280 − 0.051 0.763* 0.937** − 0.143

*Correlation is significant at the 0.05 level (2-tailed); **correlation is
significant at the 0.01 level (2-tailed)

Table 4 Contents of different N and P forms in the surface sediments of
Dagu river estuary (mg kg−1)

Samples NH4
+–N NO3

−–N TN AP

S1 5.02 ± 0.08 0.52 ± 0.10 28.06 ± 0.46 8.69 ± 1.88

S2 6.2 ± 1.43 0.62 ± 0.13 34.85 ± 1.95 17.37 ± 3.57

S3 7.51 ± 0.54 0.21 ± 0.09 30.89 ± 1.55 8.18 ± 1.12

S4 5.18 ± 1.08 0.41 ± 0.03 30.58 ± 2.71 13.65 ± 0.54

S5 5.09 ± 0.53 4.26 ± 0.26 19.65 ± 3.56 8.84 ± 0.31

S6 4.76 ± 0.41 5.29 ± 0.35 29.07 ± 2.47 15.62 ± 1.93

S7 3.21 ± 0.17 4.19 ± 0.64 20.65 ± 2.58 10.15 ± 1.55

S8 12.47 ± 0.08 1.65 ± 0.21 49.80 ± 2.16 16.27 ± 1.61

S9 18.83 ± 2.27 1.34 ± 0.31 51.31 ± 7.11 10.22 ± 0.98

45507Environ Sci Pollut Res (2020) 27:45499–45512



that in the estuary. And samples in the middle transect
(S4–S7) have high potential risks of heavy metal.

From all the results above, the humification degree of
DOM is low and the potential risk of heavy metal release is
high in the estuary where the relative contribution of aquacul-
ture is high. The result is in accordance with that of Nimptsch
et al. (2015), which suggested that DOM from land-based
aquaculture is mainly consisted of protein-like substances.
The result implies that (i) DOM from aquaculture sources
might have high protein-like substance and (ii) DOM from
aquaculture sources is related to high potential ecological risk
of heavy metal release. It also shows that the protein-like
proportion and the potential risk of heavy metal release would
be higher when the relative contribution proportion of rural
area increases. We cannot find relationship between farmland,
forest, and DOM composition characteristics. This is due to
the variation of agrotype, soil type, farming intensive intensi-
ty, etc. (Fuß et al. 2017).

Conclusions

In this study, the sources, contents, and structural characteris-
tics of Dagu River surface sediment DOM are revealed by
carbon stable isotope ratios, C/N, UV-vis absorbance, and
EEM spectroscopy, respectively. Then, the effect of content
and structural characteristics of DOM on the content of differ-
ent forms of N and P in the sediments is analyzed. Moreover,
the potential release risks of heavy metals in the sediment at
different sites are also evaluated. And some proper sugges-
tions are proposed to direct human activities.

There are several discoveries: (i) rural area and aquaculture
have great contributions to Dagu River estuary; (ii) the humi-
fication degree of DOM in downstream river is higher than
that in the estuary; the composition of DOM in Dagu River
estuary is affected by both terrestrial input and biological me-
tabolism; (iii) the DOM in the sediment can reflect the poten-
tial risks of heavy metal release and eutrophication in the

Fig. 7 Relationships between
NH4

+–N, TN, and a P(III,n), b
DOC, c A280, and d SUVA254
of sediment DOM in Dagu river
estuary

Table 6 Potential ecological
release risk values of heavy metal Samples Cu Pb Zn Cd Hg Comprehensive ecological risk

S1 5.09 9.20 5.86 153.01 92.33 265.49

S2 6.31 11.25 6.99 190.39 119.29 334.23

S3 3.19 5.77 3.69 95.83 57.50 165.98

S4 12.42 21.88 13.28 376.75 245.70 670.02

S5 8.64 15.89 10.53 257.73 147.55 440.33

S6 4.63 7.89 4.52 142.13 104.26 263.42

S7 8.16 13.94 8.00 250.72 182.88 463.70

S8 2.61 4.36 2.42 80.86 64.50 154.75

S9 2.38 4.00 2.24 73.52 56.94 139.09
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estuary area. There is high potential risk of eutrophication in
the estuary due to low humic-like substances in DOM; in
addition, under the effect of aquaculture and rural area, there
is higher potential ecological risk of heavy metal in the estuary
than that in downstream river; samples in the middle transect

have the highest potential ecological risks of heavy metal.
Therefore, the exogenous pollution (especially the rural area,
industry, and aquaculture) should be controlled to decrease the
potential risks of heavy metal and eutrophication, which are
determined by the characteristics of DOM. In order to protect

Fig. 8 Potential ecological
release risk distributions of heavy
metal in Dagu river estuary. a Cd,
b Cu, c Hg, d Pb, e Zn, f
comprehensive risk
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the Dagu River estuary, the optimization and adjustment of
rural area, industry, and aquaculture distributions are neces-
sary to be improved.

There are still potential extensions: (i) we investigate the
characteristics of sediment DOM in winter to indicate the
ecological risk; it should be pointed out that the seasonal var-
iation is an possible factor which influences DOM character-
istics; the effects of different seasons on sediment DOM
should be discussed in our future studies; (ii) we have not fully
considered the impact of sea source in this paper; the influence
of tidal on DOM content and structure characteristics in the
estuary needs further study; (iii) our estimation of the ecolog-
ical risk is not precise enough; more studies on quantitative
assessment of the ecological risk in Dagu River estuary are
desired in the future.

Funding information This work was supported by the National Natural
Science Foundation of China (No. 41771098 and 51809145) and the
Shandong Key Laboratory of Water Pollution Control and Resource
Reuse (No. 2019KF10).

Appendix. The equation to calculate
ecological risks of heavy metal
in the sediment

The ecological risks of single heavy metal in the sediment
(Ri,s) were calculated with equation (6):

Ri; s ¼ Ti� 1=

 
AsCs

!
ð6Þ

The comprehensive ecological risk of heavy metals in the
sediment (CRs) at different sites were calculated with equation
(7):

CRs ¼ ∑n
i¼1Rs ð7Þ

where Cs is the content of DOM at site s, As is the com-
plexation ability at sites, and the biological toxicity factor (Ti)
of heavy metal is as follows: Cu = Pb = Ni = 5, Cr = 2, Zn = 1,
Pb = 5, Hg = 40, Cd = 30, As = 10, according to potential
ecological risk index (PERI), which was established by
Hakanson (1980).
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