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Abstract
Competition in today’s market is the most important concern of companies and producers in freemarkets. Buyers are also looking
for higher quality and lower prices. Manufacturers should, therefore, reduce production costs and increase budgets for research
and product development. On the other hand, the limitation of mineral resources in each country and in the world in general is a
very important factor for increasing the price of raw materials which increases the cost of production of a product. In this study, a
green aspect of decision-making, concurrent modeling for inventory-routing, and application of maximum entropy (ME) method
for overcoming uncertainties of demands are applied to optimize the usage of rawmaterials and returning of defective products to
the production cycle in a closed-looped supply chain under multi-period planning horizon. Also, dynamic modeling is used to
balance the inventory level in all stages of the network that leads to optimum usage of the raw materials. For this
purpose, the first objective function reduces production, transportation-routing, and inventory costs, and the second
objective reduces greenhouse gas emissions through all levels of the network. Finally, this model is solved by using
the exact solution method with the help of Gams software as well as the non-dominated sorting genetic algorithm II
(NSGAII) and multi-objective particle swarm optimization (MOPSO) algorithm. Sensitivity analysis has been per-
formed on failure rates, greenhouse gas emissions during recycling and production, and the optimistic-pessimistic
coefficient of the ME solution method. Solution methods have been compared using several criteria, and the NSGAII
method has finally obtained the best result. The results show that the manager should pay more costs in order to
prevent backorder demands. Also, collecting the more defective products leads to increasing production amount since the
collective products can return to the production line. Finally, it is required for the managers to control products’ failure rate to
optimize capacity usage in the model.

Keywords Green supply chain . Closed-loop supply chain . Greenhouse gas emissions . Maximum entropy method .
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Introduction

In today’s business environment, competitiveness is one of the
keys to the success of any manufacturing system. In this way,
the lower price competition, along with other components,
leads to customer attraction. Therefore, manufacturers need
to use cost-cutting strategies. By a quick look at the

manufacturers’ financial reports in the manufacturing sys-
tems, we can find that between 15 and 30% of the production
cost is associated with the raw material purchased and be-
tween 20 and 25% of the production costs is for the raw
material processing (Resat and Unsal 2019; Ilyas et al.
2020). Also, the limitedmineral resources are a very important
factor in increasing the price of raw materials which increases
the cost of production of a product. According to these de-
scriptions, it can be seen that the special consideration of the
provision of inexpensive raw materials can be a very influen-
tial factor in the competitiveness of a manufacturing company.
Recycling products in the closed-loop supply chain is one of
the new ways to reduce the cost of purchasing raw materials
and ultimately reduce production costs (Zhou et al. 2019;
Martinez et al. 2019).
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Literature review

In this section, we aim to categorize the main four groups of
related works to the current study and discuss each of them in
details.

Recycling in supply chains

The recycling of products in the closed-loop supply chain
network begins at the factory return stage. Therefore, in order
to reduce costs, a system should be set up to bring the mini-
mum wasted products to the beginning of the production line
and minimize the return costs by applying processes to max-
imize the savings. On the other hand, it is expected that prod-
uct recovery can have a significant impact on reducing the
environmental pollution. This will reduce the amount
of mineral waste and the extraction of new minerals,
as well as the reduction of greenhouse gas emissions
during the production process (Torkabadi et al. 2018;
Liu et al. 2020).

Distributing new products and collecting recyclables from
scattered geographical locations require an efficient transpor-
tation network. One of the efficient features of a transport
network is the minimum travel time and distance traveled,
which is possible if we choose the best route for moving
vehicles, and this is precisely the purpose of vehicle routing
issues (Kara and Onut 2010). Bettac et al. (1999) studied
several freight return projects. Projects included the printer
cartridge recycling project in the UK, the power tool recycling
project in Germany, the project of collecting and reusing dis-
posable cameras from around the world, and the project of
collecting and refurbishing IT equipment around the world.
In these cases, the transportation of old products and the de-
livery of new products were conducted at the same time.
Returns can be collected during subsequent delivery, but the
collection may be delayed until a certain amount of return
goods is available.

Closed-loop supply chains

The complete closed-loop supply chain includes forward lo-
gistics and reverse logistics as well as repair, processing, trou-
bleshooting, and disposal of recyclables. One of the important
factors for designing a reverse logistics network is the uncer-
tainty in demand as well as the type and quality of return
products (Torkabadi et al. 2018). Listes and Dekker (2005)
considered this issue in a rock recycling network and pro-
posed a stochastic mixed-integer programming model with
the goal of maximizing profits and developed this model with
different scenarios. Cruz-Rivera and Ertel (2009) focused on
all aspects of reverse logistics, including networking and in-
ventory analysis, collecting consumables, determining prices,
reselling, and revitalizing.

Govindan et al. (2015) tested the use of equipment and
industrial unit design models in reverse supply chain manage-
ment. In one of the considered categories, they divided the
subject literature from reverse logistics to closed-loop logis-
tics. Most authors use equipment design models to formulate
logistic networks. Rogers and Tibben-Lembke (1999) pre-
sented a different integer programming model. This model
can identify the locations of distribution and resuscitation
units, dispatching, production, and an optimal amount of
remanufactured products, and consumed parts. Azar et al.
(2011) presented a complex nonlinear programming model
with integer variables in which a multi-period, two-echelon,
and multi-product model of reverse supply chain network de-
sign were discussed. They considered forward and reverse
states simultaneously. De Figueiredo andMayerle (2008) pro-
vided a framework for network analyzing. This model deter-
mines the deployment decision for different classes of differ-
ent products along with the allocation of locations and capac-
ity decisions for the equipment. One of the processes of a
closed-loop supply chain that is very popular in today’s world
is recycling. The most important goal of this process is
to reduce the volume of dry waste produced (due to the
end-of-life or end-of-use or defective products).
Currently, according to environmental protection laws,
manufacturers need to produce products that are conve-
nient and convenient to disassemble, reuse, and rebuild.
On the other hand, the number of customers who sup-
port the environment by sending their consumed prod-
ucts to collection centers is increasing (Lee and Dong
2008; Zhou et al. 2019).

Vehicle routing in supply chains

Liu et al. (2011) proposed a clustering algorithm to solve the
vehicle routing problem in a closed-loop supply chain with the
aim of reducing path length and overlap between different
two-lane routes. This algorithm has a set of new strategies
for constructing solutions, including clustering strategies, im-
proved global pheromone update roles, and crossover factor.
The results show that the optimal path length and compactness
presented by the algorithm are calculated with a clustering-
based strategy which is better than the optimal paths calculat-
ed by the ant colony algorithm.Wy et al. (2013) are among the
latest investigations into the issue of vehicle waste collection
routing. This research introduces a roll-on and roll-off waste
collection vehicle routing problem involving large containers
that accumulate large amounts of waste at construction sites
and shopping areas. Complex limitations discussed in this
study include multiple disposal facilities, multiple container
storage yards, seven types of customer demand services, dif-
ferent time windows for customer demand and facilities, dif-
ferent container types and sizes, and lunch time for the tractor
driver. For this problem, an iterative heuristic approach based
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on neighborhood search that includes several algorithms is
presented.

Green supply chains

Kannan and Devika (2010) presented a mixed-integer linear
programming model that encompasses multi-class, multi-pe-
riod, multi-product closed-loop reverse chain networking for
product returns and optimization of raw materials and produc-
tion levels. Distribution and inventory, disposal levels, and
recycling levels in different facilities were defined in the mod-
el to minimize total supply chain costs. Here, the daily de-
mand of the customer is definitely considered. Recently, a
new concept of green supply chain management (GSCM)
has emerged for new product developments, incorporating
steps in the product life cycle from designing to recycling.
One of the issues in this area is the reduction of greenhouse
gas emissions. Therefore, some articles in the design of the
green supply chain network have focused on reducing carbon
emissions, such as Abdallah et al. (2012). In their paper, a
complex integer programming model considering green pur-
chasing based on the pollution reduction perspective was pre-
sented. The amount of carbon dioxide pollution was consid-
ered as the decision variable.

Hsu et al. (2013) have presented a research on the green
supply chain at the strategic level. In this paper, the authors
intended to improve suppliers’ performance, in the long time,
using the decision-making and evaluation of laboratory tech-
niques. Their case study was an electric company. They
sought to find the most important quantitative and
qualitative criteria for supplier selection and used the
network analysis process technique. The result of their
efforts was that, with regard to environmental factors, the
carbon element had the most influence on this selection.
Sahebi et al. (2014) proposed another nonlinear mixed-
integer model for the green supply chain at strategic and tac-
tical levels ranging from wells to crude oil terminals. The
decisions of this model included location, allocation, project
planning, and transportation.

Li et al. (2008) proposed a multi-objective mathematical
model (maximizing profit and minimizing greenhouse gas
emissions) for locating distribution centers. In this model,
greenhouse gas emissions from vehicles as well as greenhouse
gases in the process of crop production were investigated. In
another study, the amount of carbon released into the grid had
been investigated using the static (production and storage) and
non-static (vehicles) approach. The authors had also incorpo-
rated reverse logistics into their model by placing the goods’
recovery facilities (Sundarakani et al. 2010).

Overall, according to the studies surveyed in this section, it
seems that most researches in the field of production planning
and supply chain have taken place simultaneously over a pe-
riod of time, while the real-world considerations need to be

studied such as planning for multi-periods as well as multiple
products concurrently (Yan et al. 2019). In order to further
adapt the research to today’s world conditions, recycling and
reconditioning of products are considered simultaneously, so
that recycled materials as raw materials as well as recycled
products as the end products are returned to the supply chain.
Warehousing is also discussed in a three-tiered supply chain.
Alongside the issues mentioned, the problem of transporting
ended products and returned products are discussed by
selecting the number of vehicles and the route between the
nodes. Also, the demand for realization of uncertainty condi-
tions has been considered. In this model, not only the material
costs of production are taken into account but also the reuse of
raw materials and defective products for less environmental
damage are considered. Finally, the effects of change in failure
rate and greenhouse gas emission rate on the type of transport
network are studied.

The rest sections of the paper are organized as follows. The
“Literature review” section presents the notations and mathe-
matical modeling. The “Mathematical modelling” section in-
dicates the solution approaches and their framework.
Computational experiments are conducted in the “Solution
methods” section. Finally, conclusion, managerial insights,
and future directions are discussed in the “Computational re-
sults” section.

Mathematical modeling

In this section, we aim to develop a new model for optimizing
production costs and greenhouse gas emissions in a three-
level supply chain including suppliers, manufactures, and de-
mand zones. In this model, the amount of demand is assumed
uncertain and the routing decisions from manufactures to de-
mand zones are considered to collect defective products. In
addition, inventory planning and control and finished products
are optimized in the model. Defective products returned to the
production cycle in both recovery and recycling situations.
The type of model is defined as a multi-product and multi-
period. At first, the assumptions of the model are explained,
and then sets, parameters, and variables are introduced.
Finally, the mathematical model is constructed using two ob-
jective functions and a number of constraints.

Assumptions

& The problem will be formulated as a multi-period model.
& Demand in each node is uncertain.
& The amount of returned products in the reverse system is a

percentage of the demand for the previous period.
& Closed-loop supply chain will be considered as a three-

level problem including suppliers, manufacturers, and de-
mand centers.
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& Returned products are collected periodically.

Notations

Sets

Index Definition

i Index of different types of raw material using in final products

j Index of different types of final products

t Index of time periods

s Index of suppliers

n index of demand nodes

v Index of vehicles

Parameters

Parameters Definition

gDemjnt Amount of demand node n for product j in period t

αij A matrix denoting the ratio of using raw
material i in final product j

capm Capacity of production for factory

Capvv Capacity for vehicle v

Capi Capacity for storage in the factory

h1 The cost of storage raw material in the factory

h2 The cost of storage final product in the factory

θ The rate of failure for products

γ The percentage of returned products that are repairable

λ The percentage of returned products that are recyclable

Volii The volume of raw material i

Voljj The volume of final product j

CCostj The cost of producing final product i

C1
s The transportation cost of raw material

from supplier s to the factory

C2
nn0 The transportation cost of final product from

node n to node n’

Payoff The amount of discount per each reversed product

BCostj The recycling cost per each product j

TCostj The repairing cost per each product j

Co2RateB The amount of greenhouse gas emissions
when recycling a unit of product

Co2RateT The amount of greenhouse gas emissions
when repairing a unit of product

Co2RateP The amount of greenhouse gas emissions
when producing a unit of product

Co2Rate1s The amount of greenhouse gas emissions during
transporting a unit of raw material from
supplier s to the factory

Co2Rate2v The amount of greenhouse gas emissions during
transporting a unit of final product by vehicle v

dis2nn0 The distance between node n and node n’

dis1s The distance between supplier s and the factory

Decision variables

Binary variables

Variables Definition

Wnn0 vt = 1, if vehicle v goes from node n to node n’ in
period t, 0, otherwise

Gnvt = 1, if vehicle v visits node n in period t, 0, otherwise

Positive variables

Variables Definition

Xsit Amount of raw material i sent from supplier s
to the factory in period t

In1it Amount of inventory of raw material i in
period t in the factory

In2jt Amount of inventory of final product j in
period t in the factory

Yjt Amount of production for product j in period t

Q1
jnvt Amount of transported final product from

factory to node n using vehicle v in period t

Q2
jnvt Amount of reversed final product from node n

to the factory using vehicle v in period t

Mathematical model

minZ1 ¼ ∑
S

s
∑
I

i
∑
T

t
X 1

sit*C
1
s

� �þ ∑
N

n
∑
N

n0
∑
V

v
∑
T

t
Wnn0 vt*C

2
nn0

� �
þ ∑

I

i
∑
T

t
In1it*h1
� �þ ∑

J

j
∑
T

t
In2jt*h2
� �

þ ∑
J

j
∑
T

t
Y jt*CCost j
� �

þ ∑
J

j
∑
N

n
∑
V

v
∑
T

t
Q2

jnvt*γ*TCost j
� �

þ ∑
J

j
∑
N

n
∑
V

v
∑
T

t
Q2

jnvt* 1−γð Þ*λ*BCost j
� �

þ ∑
J

j
∑
N

n
∑
V

v
∑
T

t
Payoff *Q2

jnvt*γ
� �

ð1Þ
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minZ2 ¼ ∑
J

j
∑
T

t
Y jt*Co2RateP j
� �

þ ∑
J

j
∑
N

n
∑
V

v
∑
T

t
Q2

jnvt* 1−γð Þ*λ*Co2RateBj

� �
þ ∑

J

j
∑
N

n
∑
V

v
∑
T

t
Q2

jnvt*γ*Co2RateT j

� �
þ ∑

N

n
∑
N

n0
∑
V

v
∑
T

t
Wnn0 vt*Co2Rate

2
v*dis

2
nn0

� �
þ ∑

S

s
∑
I

i
∑
T

t
X sit*Co2Rate1s *dis

1
s

� � ð2Þ

S.T:

∑
V

v
∑
N

n
W0nvt ≥1 ∀t ð3Þ

∑
V

v
∑
N

n
Wnn0 vt ¼ 1 ∀t; n

0 ð4Þ

∑
N

n
Wnn0 vt−∑

N

n}
Wn0n}vt ¼ 0 ∀n

0
; t; v ð5Þ

W0nvt ¼ Gnvvt ∀n; t; v ð6Þ
Wnn0 vt ≤Gnvvt ∀n; n

0
; v; t ð7Þ

∑
N

n
Wnn0 vt ¼ Gn0 vt ∀n

0
; t; v ð8Þ

∑
J

j
Q1

jnvt þ ∑
J

j
Q2

jnvt ≤bigM*∑
N

n0
Wn0nvt ∀n; t; v ð9Þ

Wnnvt ¼ 0 ∀n; t; v ð10Þ

∑
V

v
Q1

jnvt ≥gDemjnt ∀ j; n; t ð11Þ

Q2
jnvt ¼ 0 ∀t ¼ 1; j; n; v ð12Þ

∑
V

v
Q2

jnvt ¼ θ*∑
V

v
Q1

jnv t−1ð Þ ∀t≥2; j; n ð13Þ

Y jt ¼ ∑
N

n
∑
V

v
Q1

jnvt þ In2jt ∀t ¼ 1; j ð14Þ

Y jt þ In2j t−1ð Þ þ ∑
N

n
∑
V

v
Q2

jnvt*γ ¼ ∑
N

n
∑
V

v
Q1

jnvt þ In2jt∀t≥2; j ð15Þ

∑
S

s
X sit ¼ ∑

J

j
Y jt*αij
� �þ In1it ∀t ¼ 1; i ð16Þ

∑
S

s
X sit þ ∑

J

j
∑
N

n
∑
V

v
Q2

jnvt* 1−γð Þ*λ*αij

� �
þ In1i t−1ð Þ ¼ ∑

J

j
Y jt*αij
� �þ In1it ∀t≥2; i ð17Þ

∑
J

j
Yjt ≤Capm ∀t ð18Þ

∑
J

j
∑
N

n
Q1

jnvt*Vol j≤Capv ∀v; t ð19Þ

∑
I

i
In1it*Volii þ ∑

J

j
In2jt*Volj j≤Capi ∀t ð20Þ

Wnn0 vt and Gnvt are binary. X sit; In1it; In
2
jt; Y jt;Q1

jnvt; and

Q2
jnvt are positive.

Equation (1) expresses the first objective function, which
minimizes the cost of transporting raw materials and distrib-
uting and retrieving products between demand points, main-
tenance costs, production costs, recycling, and repair of defec-
tive products. There are also discounts for sending defective
goods to the system. Equation (2) expresses the second objec-
tive function. The first part of this function calculates the
amount of greenhouse gas emissions during production, the
second part calculates the amount of greenhouse gas emis-
sions during recycling, and the third part calculates the amount
of greenhouse gas emissions when repairing defective prod-
ucts. In the fourth and fifth terms, the amount of greenhouse
gas emissions in the transportation of raw materials and fin-
ished products is investigated.

Constraint (3) guarantees that at each period, at least one
vehicle will exit the distribution center and move to the de-
mand points. Constraint (4) ensures that each node is only
visited by one vehicle. Constraint (5) is also the equilibrium
equation for each node. Constraints (6), (7), and (8) have been
used to eliminate the sub-tours in the routing problem.
Constraint (9) ensures that if a vehicle visits a node, it can
move the product to that node and pick-up from that node.
Equation (10) guarantees that a vehicle will not go from any
node to the same node. Constraint (11) guarantees that all
available demand is met. Constraints (12) and (13) are equi-
librium equations for the return of defective goods.
Constraints (14) to (17) are the equations for the equilibrium
of the initial inventory and the final products. Constraints (18)
to (20) are also equations related to production capacity, trans-
portation capacity of each vehicle, and warehouse capacity at
the factory.

Uncertainty modeling in the proposed model

In the context of the problem under study in this paper, one of
the effective parameters is uncertain due to its unpredictable
nature and the impossibility of definitive numerical assign-
ment to this parameter. The above parameter is related to the
demand of each node that is considered nonlinear. The max-
imum entropy (ME) method was used to include the uncer-
tainty in the parameter mentioned in the current study (He
et al. 2019; Xu and Dang 2019).

ME uncertainty method

The use of possibility theory is one of the most widely used and
well-known methods in this field. This method determines the

44382 Environ Sci Pollut Res  (2020) 27:44378–44395



uncertainty of an event by two numbers of possible size (Pos)
and necessity size (Nec). In constraint (21), Pos repre-
sents the probability level in the most optimistic case in
the event of an uncertain event, and Nec indicates the
least probability level in the worst case. These baseline
indicators often face limitations in dealing with the real
issues of uncertain decision-making because, in uncer-
tain decision-making processes, decision-makers usually
have different optimistic-pessimistic attitudes. But the
size of the ME allows the decision-maker to choose
between these two attitudes:

Me Af g ¼ Nec Af g þ λ Pos Af g−Nec Af gð Þ ð21Þ

where λ(0 ≤ λ ≤ 1) is a pessimistic-optimistic parame-
ters in order to determine the decision-maker’s com-
bined attitude.

With this size, we can develop a new way to convert
possibility models into deterministic models with the
help of the expected value model and the chance con-
straint. It is noteworthy that in the proposed method,
two approximate lower-limit (LAM) and upper-limit
(UAM) models are presented in order to gain the best
possible fit to the expected value model and the chance
constraints’ indefinite state. Consider the following
multi-objective fuzzy model (22):

max f 1 x; ςð Þ; f 2 x; ςð Þ;…; f m x; ςð Þ½ �
s:t:

gn x; ζð Þ≤0 n ¼ 1; 2;…;N
x∈X

� ð22Þ

Where ς is a vector including fuzzy variable. The expected
model for the objectives and chance constraints (ECM) for
above model is as follows:

ECM : max E f 1 x; ςð Þ½ �;E f 2 x; ςð Þ½ �;…;E f m x; ςð Þ½ �½ �
s:t:

ch gn x; ζð Þ≤0f g≥τn n ¼ 1; 2;…;N
x∈X

�
ð23Þ

In above formulation (23), E and Ch are operators for ex-
pected value and chance constraint.

This method is used to define the expected value operator
of the size of ME, which has a better moderation than the
definition of the probability value and the necessary
value. The expected value operator is defined using
the ME measure (24):

E ς½ � ¼ ∫þ∞
0 Me ς ≥nf gdn−∫0−∞Me ς ≤nf gdn ð24Þ

We also have the chance limit operator (Ch) using the size
of ME (25):

ch gn x; ςð Þ≤0f g≥τn⇔Me gn x; ςð Þ≤0f g≥τn ð25Þ

In above model, τn is a confidence level by the decision-
maker for satisfying constraint n. Therefore, the mentioned
expected value model can be stated as follows (26):

ECM :

max E f 1 x; ςð Þ½ �;E f 2 x; ςð Þ½ �;…;E f m x; ςð Þ½ �½ �
s:t:
Me gn x; ςð Þ≤0f g≥τn; n ¼ 1; 2;…;N
x∈X

8>><>>: ð26Þ

It can be shown that for each x0 ∈ X, the following formu-
lation is satisfied (27):

Pos gn x0; ςð Þ≤0f g≥Me gn x0; ςð Þ≤0f g≥Nec gn x0; ςð Þ≤0f g≥τn ð27Þ

Finally, using the above relation, two approximate lower-
level (LAM) and upper-level (UAM) models for the expected
value model and chance constraints are presented as follows
(28) and (29):

LAM :

max E f 1 x; ςð Þ½ �;E f 2 x; ςð Þ½ �;…;E f m x; ςð Þ½ �½ �
s:t:
Nec gn x; ςð Þ≤0f g≥τn n ¼ 1; 2; ::N
x∈X

8>><>>: ð28Þ

UAM :

max E f 1 x; ξð Þ½ �;E f 2 x; ξð Þ½ �;…;E f m x; ξð Þ½ �½ �
s:t:
Pos g j x; ξð Þ≤0
n o

≥δ j j ¼ 1; 2;…;m
x∈X

8>><>>: ð29Þ

Now, it is possible to approximate a solution space of a
possibilistic model using two deterministic models UAM and
LAM. Since the parameters used in our research are fuzzy, the
summary for computing expected value, necessary value, and
possible value for rectangular numbers is presented below. It
should be noted that the applied rectangular numbers in the
following formulations such as ecij are as (ci, j,αi, j

c, βi, j
c).

Table 1 The size of
example t = 6 s = 2

v = 3 n = 7

j = 2 i = 2

Table 2 The distribution of the input parameters for the example

C1
s = 4,3 capm = 100

C2
nn0 = uniform(3,9) Capvv = 100

Payoff = 0.2 Capi = 300

BCostj = uniform(1,5) h1 = 2

TCostj = uniform(2,4) h2 = 3

Co2RateB = 3 θ = 0.3

Co2RateT = 4 γ = 0.4

Co2RateP = 11 λ = 0.2

Co2Rate1s = 2,3 Volii = 1,2

Co2Rate2v = 4,3,5 Voljj = 3,4

dis2nn0 = uniform(6,13) CCostj = 7,10

dis1s = uniform(4,9)
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E ∑
j∈ J
ecTij x j

" #
¼ ∑

j∈ J

1−λð Þ
2

cij−αc
ij

� �
þ cij

2
þ λ

2
cij þ βc

ij

� �� �
x j ð30Þ

Nec eaTn x≤ebn� 	
≥τn⇔aTn xþ 1−τnð ÞβaT

n x≤bn−τnαb
n n ¼ 1; 2;…;N ð31Þ

Nec eaTn x≥ebn� 	
≥τn⇔aTn x−τnα

aT
n x≥bn þ 1−τnð Þβb

n n ¼ 1; 2;…;N

ð32Þ

Pos eaTn x≤ebn� 	
≥τn⇔aTn x− 1−τnð ÞαaT

n x≤bn þ 1−τnð Þβb
n n ¼ 1; 2;…;N

ð33Þ
Pos eaTn x≥ebn� 	

≥τn⇔aTn xþ 1−δnð ÞβaT
n x≥bn− 1−δnð Þαb

n n ¼ 1; 2;…;N

ð34Þ

Symbol 

Definition Raw 
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(nodes)

Vehicle Direction of 
material flow
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Fig. 1 The formed network and material flows for the example
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Defined model according to the ME method

Based on the explanation given in the preceding section,
the uncertain model of the green closed-loop supply
chain problem presented in this paper will be changed
as follows. Since the only parameter of uncertainty is in
constraint (11), the new version of the constraint is as
follows (35).

∑
V

v
Q1

jnvt ≥
1−λð Þ
2

cjnt−ajnt
� �þ cjnt

2
þ λ

2
cjnt þ bjnt
� �

∀ j; n; t ð35Þ

In this study, λ is considered as the optimistic-
pessimistic parameter in the ME method, according to
previous studies, 0.7. This number is mostly toward the
pessimistic approach.

Solution methods

In this section, we introduce and define the proposed solution
methods for the model. We first define the Epsilon constraint
method, which is used to solve multi-objective problems such
as the model of this study in small dimensions. Then, consid-
ering that the research model are NP-Hard, we consider two
proposed meta-algorithms non-dominated sorting genetic al-
gorithm II (NSGAII) and MOPSO that will be used to solve
the model in medium and large dimensions. We choose
NSGAII andMOPSO for solving the proposedmodel because
our mathematical model is a type of network modeling includ-
ing both binary and positive variables. The previous studies
proved that these algorithms are efficient to solve such
models, and therefore, we selected them (Jafarian et al.
2020; Govindan et al. 2014).

Epsilon constraint method

The Epsilon constraint method is one of the commonmethods
used to solve multi-objective problems. In this method, at each
stage, one of the objective functions is considered as the opti-
mal objective function and the other objective functions as the
constraint.

Max f 1 xð Þ
St

f 2 xð Þ≥e2
…

f 2 xð Þ≥ep
xϵs

ð36Þ

To produce optimal Pareto solutions, it is necessary to sys-
tematically change the Epsilon value between two
boundary points and to solve the model for each
change. For this purpose, the interval between the two
boundary points (best and worst for the objective func-
tion added to the constraints) is usually divided into
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Table 3 Comparison of the solution methods based on the optimality
gap

Problem APRG1 APRG2

NSGAII MOPSO NSGAII MOPSO

1 0.7 2.2 1.6 2.1

2 1 2.5 1.8 2.3

3 1.5 2.5 1.9 2.6

4 2.1 3.1 2.1 2.7

5 2.8 3.4 2.4 3

6 3.4 3.8 2.6 3.1

7 3.9 4.1 2.7 3.4

8 4.3 4.3 2.9 3.7

9 4.8 5 3.2 3.8

10 5.1 5.6 3.3 4.1

11 5.4 5.7 3.6 4.2

12 5.9 7.1 3.7 4.3
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equal intervals, and the endpoints of each of these equal
parts are used as the Epsilon value.

Non-dominated sorting genetic algorithm II

The NSGAII method is used to find Pareto solutions to large-
scale multi-objective problems (Yang et al. 2019). The follow-
ing steps must be followed to apply this method: In the first
step, a random population set is generated as usual, based on
the scale and constraints of the problem. Next, the population
generated is evaluated based on the objective functions of the
problem. To calculate the rank of the population, it is assumed
that the individuals with ni = 0 are the first front Pareto front or
F1. Now, for each member of Fi, the dominated set of si is
assumed, and nj corresponding to its jth member. The popu-
lation with nj = 0 will belong to the set H. After completing H,
for all F1 members, it can be said that H is the second Pareto
front. To continue, F1 is removed and H is considered the first
Pareto front. Then, the same process is repeated for other
members. The crowding distance is then calculated for each

member in each group and represents a measure of how close
the sample is to other members of the population in that group.
The large amount of this parameter will lead to divergence as
well as a better range in the population. To calculate the con-
gestion distance for solutions on the front of F, first, calculate
the number of solutions on the front of i and we call it 1
(1=|F|).

For each i in this set, the initial value of the conges-
tion distance is assumed to be zero (di). Then, for each
objective function m, the boundary solutions (starting
points and endpoints) are assigned a large congestion
distance, and finally, the following relation is used to
calculate this index for the rest of the solutions:

d1
m
j ¼ d1

m
j þ

f
1mjþ1
m − f

1mj−1
m

fmax
m − fmin

m

ð37Þ

In the above equation, 1mj represents the solution j in the

ordered list of solutions based on the objective function m.
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The fractional form on the right of the Eq. (37) represents the
difference of the value of the objective function m for the two
adjacent solutions j and j + 1. The denominator of the fraction
represents the difference between theminimum andmaximum
values of the objective function m in the population. Next,
some populations are selected as parents to generate new pop-
ulations. In this research, the selection process is performed
using binary tournament operator based on two parameters of
poor ranking and congestion distance.

Then, there is a certain amount of probability for the cross-
over operator to be applied and then a mutation operation on
the parent to create children. Eventually, new offspring (based
on the selection process) is replaced in the population and a
new population is created. This cycle will continue until ter-
mination occurs.

Multi-objective particle swarm optimization

The particle swarm optimization algorithm was first intro-
duced in 1995 (Ehyaei et al. 2019). It is inspired by the social
behavior of organisms. In particular, it is inspired by the group
of flying birds and the group of swimming fish and their social
life, formulated using a series of simple relationships.
Like all evolutionary algorithms, the particle optimiza-
tion algorithm starts by creating a random population of
people, here referred to as a group of particles. The properties
of each particle in the group are determined by a set of param-
eters whose optimal values must be determined. In this way,
each particle represents a point in the solution space of the
problem. Each of the particles has a memory, which means

that they remember the best position they can reach in the
search space.

In fact, the PSOmethod is an optimizationmethod that deals
with problems whose solution is a point or a surface in the next
n space. In such an environment, assumptions are made and
elementary velocities are assigned to the particles, as well as the
channels of communication between the particles. These parti-
cles then move through the response space, and the results are
calculated on a “merit criterion” after each time interval. As
time goes, the movement toward particles of higher qualifica-
tion and in the same communication group is accelerated.

Each particle strives to improve its position using current
position information, current velocity, distance between cur-
rent position and personal optimum, and ultimately the dis-
tance between current position and the optimum.

Each particle has its own position X = (X1, X2,…, Xdi) and
its own velocity in the space of response, v = (v1, v2,… vDI).
In the t + 1 generation, the velocity of each particle changes
using the relation (38) and consequently its new position as
the relation (4).

vtþ1
id ¼ wtþ1vtid þ c1r1 ptid−x

t
id

� �þ c2r2 ptgd−x
2
id

� �
ð38Þ

xtþ1
id ¼ xtid þ vtþ1

id ð39Þ

In the above equations, i = 1, ..., NP, and NP are the pop-
ulation sizes, d = 1, ..., di, and di are the dimensions of the
solution space, and c1 and c2 are two constant values greater
than zero. r1 and r2 are also random values in the range of
[0,1], ptid is the best particle characteristic of the tth generation,
and ptgd is also the best population characteristic in the tth
generation. The performance of each particle is also evaluated
on the basis of the predefined objective function considered
for the problem. It is worth noting that the inertia coefficient in
Eq. (38) is dynamically adjusted as well as using Eq. (40).

wtþ1 ¼ wt⋅ fw ð40Þ

In the MOPSO algorithm, a concept called Archive 2 or
Repository is added to the PSO algorithm, also known as Hall
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Table 4 Sensitivity analysis on the coefficient of optimistic-pessimistic
in ME method

λ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate of return 71% 70% 74% 71% 72% 69% 73%

OBJ 1 (103) 74 76 81 84 86 89 94

OBJ 2 (103) 28 30 31 32 32 34 35
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of Fame. The members of the reservoir represent the Pareto
front and contain undesirable particles. So instead of
Gbest, a member of the repository is selected. For this
reason, there is no repository in PSO because there is
only one target and only one particle has the best value.
But in MOPSO, there are several undesirable particles
in the solution set.

Solution representation

The model representation of this research consists of three
distinct parts, each of which represents an independent vari-
able. The first part is a j × 2 t matrix, all of which are filled with
numbers between zero and one. This section is related to Yjt.
The first column is used to decide on production and the
remaining columns show the amount of productions. The
method of extracting the corresponding variable is that if the
number in the t cell was less than 0.5, we would not have that
product in that time period, and if it was over 0.5, we will

produce that product. The production rate is also obtained
after normalizing the second half of the matrix by multiplying
the normalized number by the factory production capacity.

The second part of the solution is related to the variable

Q1
jnvt. A 4-dimensional matrix with dimensions of v, n, j + 1,

and t, respectively, and a number between zero and one in a
cell represent the second part of the solution. The following
steps must be performed to extract the corresponding variable.

Step 1. On the surface v and n on each column (n), we use
the maximization operator, and the row correspond-
ing to the maximum cell in each column represents
the vehicle used to send the product to the demand
node corresponding to that column.

Step 2. We convert cells that do not correspond to n and v to
zero.

Step 3. Sum up all the cells corresponding to each time pe-
riod of each vehicle.
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Step 4. Divide the number in each cell by the number ob-
tained for the corresponding vehicle and over the
corresponding time period.

Step 5. Multiply the number obtained for each cell in the
respective vehicle capacity. Then, replace the exact
demand number if the number obtained was greater
than the demand value of that point.

The third part of the answer also corresponds to the variable

Q2
jnvt, which is quite similar to the second part considered,

except that in step 5, the quantity of defective products will
be available for return instead of its demand value.

Solution generation

Point-to-point crossover operators have been used to produce
children. That is, the corresponding binary matrix with the
same dimensions of the binary matrix is randomly generated.
If the cell number is 1, the corresponding cell is used to rep-
resent the first child’s response to the first parent, and if the
cell is zero, the corresponding cell in the first child is used by
the second parent. For the mutation operator, the reverse mu-
tation is also considered for all chromosomes.

Computational results

In this section, we first solve a small numerical example using
GAMS software and Epsilon constraint method and illustrate

the response network. Then, in order to determine the accura-
cy and performance of each of the meta-heuristic algorithms
used in this study, twelve problems with Gams software as
well as the two meta-heuristic algorithms are solved and com-
pared with the most desirable criteria.

Solving a sample problem by GAMS software

To verify the validity of the proposed model, a small problem
with random data is created and solved using the GAMS 22.6
software. Given the small sample size problem, it takes about
an hour to solve, and this illustrates that meta-heuristic
methods should be used for large-scale problems. This prob-
lem is solved using Epsilon constraint method with alpha co-
efficient of 0.1 in GAMS software. The following schematic
shows a solution.

The example above is solved with two suppliers, seven
demand nodes, three vehicles, two raw materials, and two
types of end products, and the transportation network is in
Table 1. All the data required in the numerical example are
randomly generated according to Akbari-Jafarabadi et al.
(2017) and the distribution functions considered for each pa-
rameter in Table 2.

In this example, 61.5% of defective products are recovered
from the system and returned to the production chain through
recycling and repairing. In this example, two vehicles were
used and only one supplier (supplier # 1) was used to supply
the raw materials. One hundred percent of defective products
are returned at points 2, 5, and 6; no product is returned at
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Table 5 Sensitivity analysis of the ratio of greenhouse gas emissions to old crop recycling and new production

CoRateB
CoRateP 0.15 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 1 1.1 1.6

Rate of return 100% 97% 93% 81% 76% 64% 43% 40% 36% 31% 20% 17% 12% 11%

OBJ 1 (103) 103 89 90 83 84 79 70 71 72 71 70 66 65 65

OBJ 2 (103) 40 33 34 29 30 22 23 24 26 27 27 28 29 29
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point 1. In this example, there are nine Pareto optimal solu-
tions that one of them is shown in Fig. 1. No vehicle was used
to load defective products from demand points in all of the
responses reviewed.

Validating the solution methods

Pareto front analysis

In Fig. 2, we present a set of Pareto front solution for
an example which is solved by three methods. The ex-
ample is designed in small dimensions. In this example,
there are 20 demand centers, 4 suppliers, 7 vehicles, 3
types of raw materials, 4 types of finished products, and
finally 6 consecutive time periods. The graphical repre-
sentation of the values of the objective functions using
the methods described for this sample problem is
shown.

The trend of graphs in analyzing the Pareto front of differ-
ent methods well-illustrates a min-min model. As can be seen
in the graph, GAMS presents better Pareto solutions than the
two meta-heuristic algorithms. Among the two heuristic algo-
rithms, the NSGAII algorithm provided a better Pareto set.

Analysis based on optimality gap criterion

Because of the use of the iterative process to insert values in
Table 3, the average percentage relative gap (APRG) for both
meta-heuristic methods was used to solve 12 sample prob-
lems. This metric shows the percentage of gap between the
average of solutions per each objective function and the best
solution found for each solution method. For example, the
number 0.7 indicates that the average of value for the first
objective function by NSGAII method has 0.7% difference
from the best solution while MOPSO has 2.2% difference
from the best solution.
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As shown in Table 3, the APRG1 values for the first ob-
jective function and the APRG2 for the second objective func-
tion for the small size of the problem indicate the utility of the
NSGAII method over the other one.

Pareto optimal analysis of the number of optimal solutions

Figure 3 is a graphical representation of the number of Pareto
solutions obtained by different methods. The results show that
for both objective functions, the NSGAII algorithm performs
better than GAMSwhen the criterion is the number of optimal
Pareto solutions. Also, MOPSO is in third place.

Time-based analysis

Figure 4 shows the time of solving each of the sample prob-
lems by the methods used. The observations indicate that the
NSGAII algorithm, with the shortest solution time, outper-
forms the MOPSO algorithm as well as the Gams software.

Distance-based criterion analysis

The uniformity of the spread of the non-dominated set solu-
tions is calculated by this metric. To compute this metric, the
Euclidean distance between consecutive solutions in the

obtained non-dominated set of solutions and the average of
these distances is calculated. As the value of this metric re-
duces, the algorithm shows a better performance.

Figure 5 shows the distance criterion for each sample
problem solved by the algorithms. The observations in-
dicate that the MOPSO algorithm is less desirable than
the other two methods. The other two methods also
have very close results. Therefore, in order to increase
the accuracy of the analysis of the results, pairwise
comparison experiments were used, and the result shows
that the Gams software is in the first place and the
NSGAII algorithm is in the second place with very little
difference.

Analysis based on dispersion criterion

For this metric, the spread of a Pareto solution set for each
algorithm is calculated. A higher value in this metric repre-
sents a better performance of the algorithm by the following
equation.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max f 1i−min f 1i
f max
1;total− f

min
1;total

 !2

þ max f 2i−min f 2i
f max
2;total− f

min
2;total

 !2
vuut ð41Þ

where n is the number of non-dominated solutions,
fmax i;total is the maximum value of ith objective func-
tion among all non-dominated solutions obtained by the
algorithms, fmin i;total is the minimum value of ith
objective functions among all non-dominated solutions
obtained by the algorithms, and f best i is the ideal
solution of ith fitness function.

Figure 6 shows the dispersion criterion for each of the
sample problems solved by the algorithms. It is obvious that
the MOPSO algorithm is less desirable than the other two
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Table 6 A sensitivity analysis on the proportion of greenhouse gas
emissions in new crop production and old crop recycling

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of return 297 409 631 791 843 843 843 843 843

OBJ 1 (103) 90 89 87 85 84 84 84 84 84

OBJ 2 (103) 37 36 34 33 32 32 32 32 32
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methods. The other two methods also work very closely to-
gether. Therefore, in order to increase the accuracy of the
results analysis, paired comparison experiments have been
used and the result shows that the Gams software is in the first
place and the NSGAII algorithm is in the second place with
very little difference.

Sensitivity analysis

In the sensitivity analysis, the effectiveness of the so-
lution to the problem will be examined by modifying
one or more parameters to evaluate the effect of the
parameters. In this study, by changing the three
optimistic-pessimistic coefficients of the ME method,
the ratio of greenhouse gas emissions to new product
recycling with new product production as well as the
percentage of defective products will be separately
investigated.

Optimistic-pessimistic coefficient of ME method

In this section, we attempt to investigate the pattern of changes
in the solution by modifying the Landa parameter
(optimistic-pessimistic coefficient) in the ME method.
In fact, we want to know what will change in the op-
timistic and pessimistic state of affairs. The results are
shown in Table 4 and Figs. 7, 8, and 9.

As clearly shown in Table 4 and Fig. 7, there was no sig-
nificant trend following the change in the optimistic-
pessimistic coefficient of the ME method in product return
rates. As the corresponding coefficient changes, the amount
of demand sent to the nodes changes, too. Thus, once
the coefficient moves more to the optimistic way, the
lower amount of products sent to the nodes. As shown
in Figs. 8 and 9, the first and second objective func-
tions have decreased simultaneously. Given the pessi-
mistic coefficient, the demand considered in the model
is closer to the upper bound of the triangular fuzzy
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number, and as the demand increases, the first and sec-
ond objective functions have grown again. But the im-
portant point is that the rate of return products has not
changed significantly and this indicates that with the
change in demand nodes, there will not be a fundamen-
tal change in the distribution network, and the solutions
provided are reasonably robust.

The proportion of greenhouse gas emissions
for recycling to new production

As expected, the higher the denominator of this fraction
or the smaller its numerator (the ratio decreases), the
results tend to gather more defective products from de-
mand centers. Following the changes, the first objective
function (cost) does not follow a uniform incremental or
decreasing trend. Careful examination of the distribution
and routing network revealed that at the breakpoints of
the figure, additional vehicles were used to return de-
fective products, which not only resulted in lower
greenhouse gas emissions but also transportation costs.
Table 5 and Figs. 10, 11, and 12 show the results.

As shown in Fig. 10, all defective products have
been recovered once the rate of generation greenhouse
gases is 15%. Since the number of vehicles used in this
case is higher than the others, the cost of transportation
and consequently the amount of the second objective
function also increased dramatically, which is illustrated
in Fig. 11. Also, Fig. 12 which relates to the second
objective function shows that with increasing the per-
centages of defective products, greenhouse gas emis-
sions will increase, because new vehicles will need to
be used at break-even points (where the graph is
growing).

Percentage of defective products to total products (θ)

By changing the percentage of defective products, the results
cannot show a meaningful change once the rate is more than
50%. The reason is also clear from the results and because of
the fact that the defective products are returned up to the max-
imum capacity of the vehicle. Also, since using a new vehicle
is more than the difference between product cost and
recovery/reuse cost, so this action is not cost-saving. Table 6
and Figs. 13, 14, and 15 will display the results.

As shown in Fig. 15, as the percentage of defective prod-
ucts increases, the system is not willing to use a new vehicle or
change its routing. So, it only carries the maximum capacity
with defective products in the visiting nodes. Therefore, as the
percentage of failures increases, there is no change in product
loading further. Thus, the first and second objective functions
remain constant. However, as the product’s failure rate de-
creases and as the system is reluctant to change the routings,
the number of returned products decreases while the percent-
age of the total defective product increases against to the total
number of returned products. In other words, the system tends
to fill the maximum capacity of each vehicle with defective
products, and at the 10% chance of failure, nearly 100% of the
defective products will be returned. Now, as the rate of prod-
uct’s failure decreases, the number of returned products de-
creases, and the number of products recovered or reused re-
duces. Finally, the costs of producing new products and the
cost of producing greenhouse gases, as shown in Figs. 14 and
15, slightly increased.

Managerial insights

One of the important parameters in the model is the optimistic-
pessimistic coefficient. In this way, once this parameter is
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more pessimistic, the more products are needed for satisfying
the demands. So, the more costs and more greenhouse gases
are generated. Actually, the manager pays more costs in
order to prevent backorder demands. On the other hand,
if the manager is more optimistic, the lower amount of
products will be transported while the probability of
backorder demands is more.

The other important parameter is the ratio of greenhouse
gas emission for recycling to the new product. The higher the
value for this ratio, the results tend to gather more defective
products from demand centers. So, collecting the more defec-
tive products leads to increasing production amount
since the collective products can return to the produc-
tion line. By this way, the total cost is reduced as in-
direct result. On the other hand, the number of used
vehicles may increase and total transportation cost will
increase, too. Therefore, it is necessary for the manager
to balance between these two types of cost.

The last important parameter is the product’s failure rate.
Once this parameter decreases and since the system is reluc-
tant to change the routing patterns in the model, the number of
returned products decreases while the percentage of the total
defective product increases against to the total number of
returned products. Therefore, it is required for the managers
to control this parameter in order to optimize capacity usage in
the model.

Conclusion

In this study, a mathematical model of the green closed-loop
supply chain was developed in which the impact of product
recovery on reducing production costs as well as reducing
environmental pollution was studied. The uncertainties for
the product demand parameter per each node were taken into
account in the constraints and solved by the maximum entropy
(ME) method. Then, the developed model was solved using
the Epsilon constraint method and also NSGAII and MOPSO
meta-heuristic methods. As a result of the comparisons, it was
found that the NSGAII method is capable of solving large-
scale models. Then, sensitivity analysis of the main parame-
ters of the model results and behavior was investigated.

The results show that the manager should pay more costs in
order to prevent backorder demands. Also, collecting the more
defective products leads to increasing production amount
since the collective products can return to the production line.
Finally, it is required for the managers to control products’
failure rate to optimize capacity usage in the model.

The following are some guidelines for developing current
research.

& Incorporating pick-up delivery routing decision in the re-
verse section of supply chain.

& Considering fuzzy and random failure rate in the reverse
section and undesirable products.

& Considering other reverse facilities such as disposal cen-
ters, minor corrections centers, and remanufacturing cen-
ters for designing the closed-loop supply chain.

& Considering other environmental issues for design closed-
looped supply chain such as recovery gas emissions and
disposal factors.
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