
RESEARCH ARTICLE

Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized
PVA/alginate/chitosan nanofibers for enhanced
phenol decontamination

Marwa Elkady1,2 & Eslam Salama3,4 & Wael A. Amer3 & El-Zeiny M. Ebeid3
& Mohamad M. Ayad3,5

& Hassan Shokry6,7

Received: 26 April 2020 /Accepted: 21 July 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In the current study, poly(vinyl alcohol)/alginate/chitosan (PVA/Alg/CS) composite nanofiber was immobilized with six differ-
ent ratios of nanomagnetic zinc oxide (M-ZnO) (0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, and 1 wt%) via the electrospinning
technique. The various fabricated composite (M-6) nanofibers were characterized using Fourier transform infrared (FTIR), X-ray
diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), atomic force microscope
(AFM), thermogravimetric analysis (TGA), mechanical testing machine, and optical contact angle measurement. The fabricated
composite nanofibers were applied for the adsorption of phenol from aqueous solutions. The 1.0 wt% M-ZnO/PVA/Alg/CS
composite nanofibers were selected as the best phenol adsorbent with removal percentage of 84.22%. The influence of different
processing parameter such as contact time, composite nanofiber dosage, pH, initial pollutant concentration, and temperature were
examined. Increasing nanofiber dosage and the solution temperature was found to enhance the phenol adsorption onto the
prepared nanocomposites. The maximum percentage of phenol removal was achieved at 84.22% after 90 min. Meanwhile, the
maximum monolayer adsorption capacity (at pH = 5.0) was estimated to be 10.03 mg g−1 at 25 °C. Kinetic, isotherm, and
thermodynamic studies were designated to proof the endothermic, spontaneous, and thermodynamically nature of the phenol
adsorption process. These outcomes indicate the effectiveness of the fabricated M-ZnO/PVA/Alg/CS nanofibers as adsorbent
materials for phenol from aqueous solutions.
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Introduction

Water is the foundation of all life on Earth. Water pollution
becomes more and more serious trouble due to the fast-
growing global population (Mekonnen and Hoekstra 2016;
Pedro-Monzonís et al. 2015; Yin and Deng 2015). Phenolic
pollutants are classified as one of the most serious hazardous
pollutants in wastewater since they are harmful to organisms
even at low concentrations. Discharging of phenol into the
surface water, without treatment, leads to serious health risks
to animals, humans, and the aquatic life systems. Hence, there
is a persistent need to develop cost-effective technologies to
extend water resources and to solve the problem of water
pollution with phenol.

Recently, various treatment processes were introduced for
the removal of phenol from wastewater such as distillation
(El-Ashtoukhy et al. 2013), adsorption (Mukherjee and De
2014; Park et al. 2015), extraction (Rahmanian et al. 2014;
Shokry et al. 2020), chemical oxidation (Du et al. 2012), ion
exchange (Elkady et al. 2016a), electrochemical oxidation
(Tasic et al. 2014), and biological treatment processes
(Jalayeri et al. 2013). Among these techniques, the adsorption
technique is considered the most extensively used route for
wastewater treatment (Amer et al. 2018; Ayad et al. 2018).
Many adsorbent materials were utilized for the phenol remov-
al from wastewater. For instance, Shokry Hassan et al.
(2017a) monitored the phenol removal from aqueous solu-
tions in the presence of magnetic ZnO cellulose acetate com-
posite nanofibers. However, Salari et al. (2019) investigated
the phenol adsorption onto magnetic chitosan using genetic
algorithm and surface methodology. In our previous study,
magnetic ZnO nanotubes were fabricated via microwave tech-
nique toward phenol adsorption from aqueous solutions by
batch experiments (Elkady et al. 2017). The fabricated
nanomagnetic ZnO performed a relatively high adsorption
efficiency which reached 87% within 90 min in the presence
of 2 g/L of adsorbent material. Moreover, Babuponnusami
andMuthukumar (2012) utilized nanozero valent iron for phe-
nol removal by heterogeneous photo-electro-Fenton-like pro-
cess. Similarly, Hayat et al. (2011) investigated the efficiency
of different nano-ZnO samples which fabricated via the mod-
ified sol-gel method for phenol removal from water by hetero-
geneous photocatalytic process. Accordingly, polymeric
nanofibrous membranes are currently one of the widest mem-
brane type used for water treatment due to its higher flexibility
and relatively low costs compared with the other membrane
matrices (Yin and Deng 2015). Consequently, electrospinning
technology is considered one of the most promising, efficient,
and useful methods for fabrication of ultrathin fibers (Frenot
and Chronakis 2003; Kimmer et al. 2009; Ramakrishna 2005).
Electrospinning is a simple, great, cost-efficient, and multilat-
eral technique to produce continuous ultrafine fibers from a
wide range of materials involving composites, polymers, and

ceramics (Dersch et al. 2005; Jayaraman et al. 2004; Li and
Xia 2004; Persano et al. 2013; Subbiah et al. 2005). This
technique can be easily established in the laboratories as
shown in Fig. 1 and also can be scaled upward to industrial
processes (Ji et al. 2011). The nonwoven electrospun fibers
have many advantages such as high surface area, small pore
size, and high porosity as compared with regular fibers. These
unique features make the nanofiber polymeric matrices to be
good candidates for several applications including filtration,
sensors, drug delivery, wound dressings, cosmetics, tissue en-
gineering, energy conversion, and storage (Huang et al. 2003;
Shokry Hassan et al. 2017b).

Many natural and synthetic polymer nanocomposites were
employed for phenol decontamination fromwastewater due to
their suitable functional groups (Elkady and Shokry Hassan
2015; Yamasaki et al. 2006). Among the natural polymers,
chitosan (CS) and alginate (Alg) are frequently used polysac-
charides for bio-applications, where both these polymers can
be produced from crustacean shell waste and brown seaweed
(Anitha et al. 2014). CS is a linear cationic polysaccharide
composed of β-(1,4)-linked-2-deoxy-2-amino-D-glucopyra-
nose units and contains active amino and hydroxyl functional
groups (Ayad et al. 2017a; b). Moreover, CS has many inter-
esting properties such as biodegradability, biocompatibility,
nontoxicity, hemostatic properties, antifungal, and antibacte-
rial properties (Lee et al. 2009) and thus CS has been widely
used in many applications such as biomedical and wastewater
treatment. On the other hand, Alg is a natural hydrophilic
anionic polymer, which has excellent biocompatibility, low
toxicity, and capability to be used for pollutants removal from
aqueous solutions (Sill and von Recum 2008). Furthermore,
Alg polymer can improve the mechanical properties of the
fabricated nanofibers, where it forms optically clear homoge-
neous blended nanofibers with PVA that enhances the tensile
stress and Young modulus of the blended nanofibers com-
pared with pure PVA (Islam and Karim 2010). Hence, there
is a big challenge to form a uniform fiber without any beads in
the presence of only CS and Alg. Thus, a high molecular
weight polymeric material such as poly(vinyl alcohol)
(PVA) is often added to increase the chain entanglement of
polymers (Chang et al. 2012). The use of naturally based
biopolymers such as CS as a cationic polysaccharide and
Alg as an anionic polysaccharide attracted much attention
due to their chemical stability, low price, high reactivity, and
affinity for removal of various selected pollutants from waste-
water (Barbusiński et al. 2016; Gokila et al. 2017; Nechita
2017; Ngo et al. 2015). For instance, Abdolmaleki et al.
(2018) fabricated chitosan/PVA nanofibers by the
electrospinning method and tested as an adsorbent for phenol
decontamination. Moreover, Bahareh et al. (Alizadeh et al.
2018) used magnetic EDTA/CS/TiO2 cross-linked nanocom-
posite for phenol and cadmium ( ) removal from wastewater.
To the best of our knowledge, the electrospinning of
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nanomagnetic ZnO immobilized with the three polymeric ma-
trices (PVA, Alg, and CS) is lacking in the literature works.
Moreover, the use of the formed composite nanofibers for
phenol removal is missing. Therefore, the present work aims
to perform a comparative study between the free PVA/Alg/CS
composite nanofibers and nanomagnetic ZnO immobilized
with PVA/Alg/CS composite nanofibers to get the maximum
removal capacity toward phenolic compounds from aqueous
solutions. Moreover, the influence of water treatment opera-
tion conditions on the adsorption process of phenol was inves-
tigated. Finally, the adsorption behavior and the reaction
mechanism of phenol adsorption onto the optimum fabricated
polymeric composite nanofibers were established.

Materials and methods

Materials

Poly(vinyl alcohol) 95.5–96.5%, with average molecular
weight 85,000–124,000 g/mol, was purchased from Sigma-
Aldrich (USA) and used without any further purification.
Sodium alginate powder and aqueous glycerol were obtained
from Universal Laboratories Pvt. Ltd. (Mumbai). CS of high
molecular weight (∼ 310,000 to > 375,000 Da) was supplied
from Sigma-Aldrich (USA). Glacial acetic acid 99%
(ADWIC, Egypt), glutaraldehyde (25% aqueous solution,
ACROS Organics, USA), zinc acetate (Zn(CH3COO)2·
2H2O, Rankem, Gurgaon, India), iron (III) chloride (Fisher
Scientific, UK), iron (II) sulfate (Fisher Scientific, UK), phe-
nol (LOBA Chemie, India), calcium chloride (Across

Organics, USA), sodium hydroxide (Sigma-Aldrich,
Darmstadt, Germany), and absolute ethanol (Fisher
Scientific, UK) were used as received.

Synthesis of zinc oxide nanotubes

Nanomagnetic zinc oxide was synthesized as described in our
previous work (Elkady et al. 2017; Hafez et al. 2014). As a
stabilizing agent, 25 mg of PVA was mixed with 14 mM of
aqueous zinc acetate solution (150 mL), and sodium hydrox-
ide was added dropwise for zinc salt reduction. The resulting
solution was maintained in a microwave (THOMSON-
COMBI1, Thomson Premier Lighting & Appliance, Logan,
UT, USA) at 800 W for 1 h. The produced white powder was
washed several times with absolute ethanol and distilled water
to remove residual salts and then centrifuged at 4000 rpm.
Finally, the resulting nano-ZnO was dried at 60 °C overnight.

Synthesis of nanomagnetic zinc oxide

For magnetite immobilization, 0.5 g of the synthesized zinc
oxide nanotubes were suspended in 200 mLmixed solution of
iron (III) chloride and iron (II) sulfate (with a molar ratio of
2:1) until a homogeneous suspension was obtained using a
direct sonication probe ultrasonic homogenizer (Vibra-Cell
VCX 500, SONICS, Newtown, CT, USA). Afterward, 5 M
sodium hydroxide solution was added dropwise to the previ-
ous suspension at 70 °C and maintained for 30 min under
constant stirring until black precipitate of magnetic zinc oxide
appeared. Typically, the prepared black powder was washed
several times with distilled water and absolute ethanol and

Fig. 1 The electrospinning
technique to produce polymeric
composite nanofibers
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then separated via centrifugation at 4000 rpm. Finally, the
prepared material was dried at 70 °C overnight.

Fabrication of nanomagnetic zinc oxide/PVA/Alg/CS
polymeric composites

Poly(vinyl alcohol) (10 wt%) was dissolved in distilled water
at 85 °C and kept under continuous stirring overnight. 1 wt%
of Alg was prepared in 50%wt aqueous glycerol under stirring
at 25 °C. Afterward, 1.5 wt% aqueous CS solution was pre-
pared by dissolving CS powder in 5 wt% of aqueous acetic
acid at 25 °C under stirring. Subsequently, the sodium Alg
solution was added to PVA solution under magnetic stirring,
and then the CS solution was added to the mixture solution in
a PVA/Alg/CS volume ratio of 8:1:1. Finally, six concentra-
tions of nanomagnetic zinc oxide (0.0 wt%, 0.2 wt%, 0.4 wt%,
0.6 wt%, 0.8 wt%, and 1.0 wt%) were added to the previous
prepared polymeric solution under continuous stirring at
25 °C.

Electrospinning processes

The electrospinning process was done at room temperature
(25 °C). The polymeric solutions were fed into the
electrospinning system (NanoNc, Model: ESR100D,
Republic of Korea). In this study, the optimum applied volt-
age was 23 kV. The distance between the needle tip and the
collector was 14 cmwith applied flow rate was 1 ml/h. The six
resulted composite nanofibers (M-1, M-2, M-3, M-4, M-5,
and M-6) with the different concentrations of nanomagnetic
zinc oxide (0.0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%,
and 1.0 wt%, respectively) were collected and dried at room
temperature for further use.

Cross-linking of the fabricated composite nanofibers

The cross-linking step is required for hydrophilic polymers
(PVA, Alg, and CS) to be useful in wastewater treatment
applications without dissolving in water. In order to cross-
link the Alg polymer, the fabricated fibers were immersed in
1% CaCl2 ethanolic solution for 1 h and the resulting mem-
branes were then treated with 10% glutaraldehyde vapor in a
closed bottle for 24 h at 25 °C. After cross-linking, the mem-
branes were washed out several times with pure methanol to
eliminate any possible residual of glutaraldehyde and acids.
Finally, the cross-linked composite nanofibers were soaked in
distilled water for 24 h to confirm their water insolubility.

Characterization of the fabricated composite
nanofibers

The fabricated M-6 composite nanofibers were characterized
by Fourier transform infrared (FTIR) (Bruker, Bremen,

Germany), X-ray diffractometer (XRD) (Schimadzu-7000,
Shimadzu Corporation, Kyoto, Japan), vibrating sample mag-
netometer (VSM) (Dexing, Model: 250, Lake Zurich, IL,
USA), scanning electron microscopy (SEM) (JEOL JSM
6360LA, JEOL, Japan), (JEOL, JEM-2100, Japan with an
accelerating voltage of 80 kV), atomic force microscopy
(AFM) (Schimadzu SPM-9700, Japan), and thermogravimet-
ric analysis (TGA) (Shimadzu TGA-50 instrument).
Moreover, the Brunauer-Emmett-Teller (BET) surface area
was examined via surface area analyzer (Beckman Coulter
SA3100, Brea, CA, USA) by measurement of the N2

adsorption-desorption isotherms at 77 K. All samples were
degassed before measurements for 12 h under vacuum at
25 °C.

The tensile strength and elongation of the fabricated com-
posite nanofibers were examined using a mechanical testing
system (INSTRON-5500R, USA). To evaluate the surface
hydrophilicity of the composite nanofibers, surface contact
angles were measured using optical contact angle (OCA20,
Data-physics Instruments GmbH, Germany).

Batch adsorption for phenol decontamination

The phenol adsorption efficiency of the prepared composite
nanofibers (M-1, M-2, M-3, M-4, M-5, andM-6) with various
immobilized magnetic ZnO ratios was investigated. Typically
in the batch method, 20 mg of different composite nanofibers
were mixed with 10 mL of constant phenol solution concen-
tration of 10 mg/L of pH = 5 at room temperature using an
orbital shaker (Yellow line, Germany) for 90 min. The resid-
uals of the phenol were measured using UV-Vis spectropho-
tometer instrument (JASCO V-630) at wavelength λ =
510 nm. The influence of different processing parameters such
as contact time (0–180 min), solution pH (1–11), composite
nanofiber dose (0.5–10 g/L), initial phenol concentration (0–
100 ppm), and solution temperature (25–85 °C) on the adsorp-
tion process was examined. The removal percentage of phenol
via the fabricated composite nanofibers was calculated from
the following equation (Elkady et al. 2016a):

Removal% ¼ Co−Ceð Þ=Coð Þ � 100 ð1Þ
where Co is the initial phenol concentration (mg/L) and Ce is
the phenol concentration at equilibrium in aqueous solution
after phase separation (mg/L). The phenol adsorption capacity
(mg/g) was determined from the following equation (Elkady
et al. 2017):

qe ¼ V Co−Ceð Þ=m ð2Þ

where qe is the capacity of phenol adsorption (mg/g), V is the
volume of phenol (L), and m is the mass of M-6 composite
nanofibers (g). Moreover, the thermodynamic parameters
were calculated, and the adsorption was evaluated using
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Langmuir, Freundlich, and Temkin equilibrium isotherm
models. Finally, the kinetics of the phenol adsorption process
were examined using pseudo-first-order, pseudo-second-or-
der, Elovich, and intraparticle diffusion models.

Results and discussions

Characterization of the synthesized composite
nanofibers

Fourier transform infrared

FTIR spectrum of the fabricated M-6 composite nanofibers
was compared with the spectrum of the prepared M-1 com-
posite nanofibers in Fig. 2. The FTIR spectrum of M-1 com-
posite nanofibers shows a broad band around 3400–
3500 cm−1 due to the combination of stretching vibration of
hydroxyl groups of polymeric matrices, and N-H2 groups at
CS (Ayad et al. 2014; Kumar et al. 2010; Siva Kumar et al.
2009). The band at 2925 cm−1 could be ascribed as the asym-
metric stretching of CH2 group of CS. Moreover, CS
displayed characteristic band of CH3 group and CH3-O at
1028 cm−1 (Ayad et al. 2014; Liu et al. 2003). On the other
hand, the antisymmetric carbonyl stretch band of Alg appears
at 1629 cm−1, while the symmetric carbonyl stretching vibra-
tion band is found at 1440 cm−1.

For the M-6 composite nanofibers, few bands were shifted
to shorter wavenumbers that indicates the successful combi-
nation of the M-ZnO with polymeric matrices. For example,
the bands at 3456, 2925, and 1629 cm−1 were shifted to 3447,
2923, and 1626 cm−1, respectively. The bands at 1626 and
1384 cm−1 were corresponded to carbonyl and C-N stretching
vibration at the polymeric matrix (Anžlovar et al. 2012;
Kumar and Rani 2013; Shokry Hassan et al. 2017a).
Moreover, the absorption band at 873 cm−1 is due to C-H
rocking vibration at the polymeric matrix. The vibrational
bands at 538 and 397 cm−1 are characteristic to the vibration
of both magnetite and ZnO (Cornell and Schwertmann 2003;
Zheng et al. 2011). These results indicated the successful in-
corporation of nano-M-ZnO into CS/Alg/PVA composite
nanofibers (Ahmed et al. 2018). The slight change in charac-
teristic peaks of CS, Alg, and PVA spectrum could be attrib-
uted to the uniform incorporation of M-ZnO nanotubes with
the polymeric matrices (Gutha et al. 2017).

X-ray diffraction

The crystallinity degree of both M-1 and M-6 composite
nanofibers are investigated as shown in Fig. 3a, b. The XRD
patterns of the optimized M-1 composite nanofibers show
abroad peak around 2θ of 20° which is corresponding to
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Fig. 2 FTIR spectra of (a) M-1 and (b) M-6 composite nanofibers
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Fig. 3 XRD patterns of (a) M-1 and (b) M-6 composite nanofibers
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PVA (Alakanandana et al. 2016; Jiao et al. 2017; Voronova
et al. 2015), Alg (Jana et al. 2015), and CS (Ayad et al. 2014;
Jiao et al. 2017). Meanwhile, these XRD patterns confirm the
lower crystallinity of the prepared composite nanofibers due
to the presence of PVA and Alg (Karim 2013) that possess
amorphous character (Shokry Hassan et al. 2017b; Voronova
et al. 2015). Moreover, the crystalline peak of CS exhibited at
20.14° is assigned to the intra-molecular and inter-molecular
hydrogen bonding between amino and hydroxyl groups,
which lead to the linear accumulation of the structure chains
(Ayad et al. 2014). On the other hand, the XRD patterns of M-
ZnO (Fig. 3b) demonstrated that the all characteristic peaks at
2θ of 31.73, 34.38, 36.21, 47.48, 56.53, 62.77, 66.30, 67.86,
69.00, 72.45, and 76.86 of the synthesized nanomagnetic ZnO
can be indexed to the wurtzite hexagonal structure with a high
degree of crystallinity without any impurities (Pascariu et al.
2018). These results are in good agreement compared with the
obtained values of ZnO reference card (JCPDS, card number
01-089-1397) (Kumaraswamy et al. 2017; Roy et al. 2013;
Shokry Hassan et al. 2017b; Yang et al. 2004).

Vibrating sample magnetometer

The magnetic properties of the fabricated M-6 composite
nanofibers were investigated at room temperature using a vi-
brating sample magnetometer. The hysteresis loop of the pre-
pared M-6 composite nanofibers is shown in Fig. 4. It is ob-
served that the fabricated nanofibers are a typical
superparamagnetic material. The saturation moment per unit
mass (Ms) of the synthesized M-6 composite was recorded
287.48 memu/g which is relatively lower than that of the mag-
netic nano-zinc oxide prepared at our pervious study (Elkady
et al. 2017). The assigned data shows the low immobilization
of magnetite nanoparticles into the polymeric membrane.
Moreover, these results agree with previous studies showed

that magnetite nanoparticles display superparamagnetic prop-
erties due to their particle size effect (Park et al. 2010; Shokry
et al. 2020).

Scanning electron microscope

Scanning electronmicroscope analysis was used to investigate
the surface morphological structure of PVA/Alg/CS-based
nanofibers before and after nanomagnetic ZnO immobiliza-
tion. From Fig. 5, it is demonstrated that the fabricated nano-
fibers have a uniform, homogenous, and ordered shape with
acceptable average diameters of 235 ± 52 nm and 295 ± 65 nm
for M-1 and M-6 composite nanofibers, respectively. This
result confirms the successful fabrication of uniform polymer-
ic composite nanofibers (Shokry Hassan et al. 2017a).

Atomic force microscope

AFM technique was used to demonstrate the three main prop-
erties of the surfaces of the fabricated fibers: surface morphol-
ogy including pore size distribution, membrane adhesion
(fouling), and surface electrical properties. The AFM images
introduce the possibility of observing the surface topography.
Figure S1 shows (a) 2D, (b) 3D, (c) phase AFM images of M-
1 composite nanofibers, while Fig. S1 images (d), (e), and (f)
characterize 2D, 3D, and phase of M-6 composite nanofibers.
Comparing the AFM images indicated that the roughness in-
creased from 0.24 μm for M-1 composite nanofibers to
1.35 μm for M-6 composite nanofibers. This increment of
surface roughness may be returned to the increase in mem-
brane hydrophobicity (Elkady et al. 2015).

BET surface area

The specific surface area of M-1 and M-6 composite
nanofibers was 26.28 and 66.27 m2/g, respectively, as
shown in Fig. S2 (a, b). These results of the surface area
are relatively high for material adsorption (Shokry et al.
2020; Sun and Uyama 2013; Wang et al. 2015). In addi-
tion, the total pore volume of M-1 and M-6 composite
nanofiber membranes were 0.24 and 0.25 cm3/g respec-
tively. Furthermore, the mean pore diameters of the ob-
tained composite nanofibers were 36.97 and 15.29 nm for
the free and M-ZnO composite nanofibers, respectively.
According to these results, the addition of M-ZnO has a
positive impact on the surface area measurements. These
data indicate that the fabricated composite nanofibers
achieve significantly high surface area and porosity,
which are very important for various potential applica-
tions (Elkady and Shokry Hassan 2015).
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Thermogravimetric analysis

The thermograms of theM-1 andM-6 composite nanofibers
are shown in Fig. 6. The TGA curves of the fabricated com-
posite nanofibers indicate the presence of a weight loss stage
of about 8% at 160 °C that can arises from the loss of water
molecules (Shokry et al. 2020). The secondweight loss stage
positioned between 240 and 350 °C was about 40 wt% and
this step can be assigned to the cleavage of side chain of the
polymeric fiber (Liu et al. 2003). The third stage of weight
loss ranged from 350 to 450 °C that attributed to the cleavage
of nanofibers backbone (Elkady and Shokry Hassan 2015).
Finally, the total weight loss step recorded about 99 wt% for
M-1 membrane and about 89 wt% at 800 °C for M-6 com-
posite nanofibers (Sargazi et al. 2019). From these results,
both of the fabricated composite nanofibers were found to
possess good thermal stability (Khan et al. 2018).

(a)

(b)

Fig. 5 SEM photographs of aM-
1 and b M-6 composite
nanofibers
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Fig. 6 TGA curves of (a) M-1 and (b) M-6 composite nanofibers
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Tensile strength measurement

The mechanical tensile strength and elongation at break of the
M-1 and M-6 composite nanofibers were carried out using the
universal material testing machine. The extension rate and the
clip distance were found to be 5 mm/min and 50 mm, respec-
tively. As shown in Figs. S3 and S4, the tensile strength and
elongation at break of the M-6 composite nanofibers were
improved as compared with M-1 composite nanofibers as a
result of nanomagnetic ZnO addition (Peña-Reyes et al.
2017). The highest tensile strength values were recorded at
11.08 and 9.43 N/mm2 for M-6 and M-1 composite nanofi-
bers, respectively.

Contact angle measurements

The contact angle was employed to characterize the relative
hydrophilicity or hydrophobicity of the fabricated membrane
surface as given in Tables S1 and S2. From Figs. S5 and S6, it
is obvious that the immobilization of nanomagnetic ZnO into
PVA/Alg/CS nanofibers positively influenced the contact an-
gle values. Accordingly, the mean value of theta for M-1
composite nanofibers was recorded as 67.02 compared with
85.48 recorded for M-6 composite nanofibers. These results
confirm the hydrophobicity character of the fabricated com-
posite nanofibers particularly M-6 composite nanofibers (Ma
et al. 2010; Zhao et al. 2011).

Application of the fabricated composite nanofibers
for phenol removal

The feasibility of the prepared composite nanofibers with dif-
ferent immobilization M-ZnO ratios was examined for the
adsorption of phenol from aqueous solutions at room temper-
ature using the batch technique (Elkady et al. 2017). Figure 7
shows that the M-1 nanocomposite sample possessed the low-
est phenol removal percentage of 37.65%. However, the M-6
nanocomposite sample was the best phenol adsorbent with a
removal percentage of 84.22%; so, this sample was selected
for the rest of study.

Influence of contact time on the phenol adsorption

The influence of contact time on the percentage of phenol
adsorption onto sample M-6 nanocomposite was traced at
different time intervals. As shown in Fig. 8, the phenol ad-
sorption onto the fabricated composite nanofibers increased
with increasing the contact time initially till reaching the equi-
librium after 120 min. The high adsorption rate of phenol may
be referred to the highly available surface area of the prepared
composite nanofibers (El-Aassar et al. 2016; Shokry et al.
2020). The quantity of phenol adsorbed onto the composite
nanofibers is at dynamic equilibrium with phenol ions

desorbed from the polymeric composite nanofibers
(Malayeri et al. 2014). The optimum contact time of the phe-
nol adsorption process was recorded after 90 min, with a max-
imum phenol percentage removal of 84.22%. At the second
stage of the adsorption process, the active sites of the M-6
composite nanofibers were saturated with the phenolic pollut-
ants after the equilibrium (Mohy-Eldin et al. 2010) time.

Influence of M-6 composite nanofiber dosage on the phenol
adsorption

The adsorbent dosage has a significant impact on the adsorp-
tion process because of its strong influence on the capacity of
the adsorbent material at a given initial concentration of the
pollutant (Elkady et al. 2018; Shokry et al. 2020). The
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Fig. 7 Phenol removal by the fabricated composite nanofibers (contact
time = 90 min, pH = 5, initial phenol concentration = 10 ppm, agitation
speed = 440 rpm, composite nanofiber dosage = 2 g/L, and temperature =
25 °C)
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Fig. 8 Influence of contact time on phenol adsorption process onto M-6
composite nanofibers (pH = 5, initial phenol concentration = 10 ppm, ag-
itation speed = 440 rpm, composite nanofiber dosage = 2 g/L, and tem-
perature = 25 °C)
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adsorbent dosage effect of M-6 composite nanofibers was
investigated after 90 min. Figure 9 shows that the percentage
of phenol removal was enhanced from 53.52 to 95.44% as M-
6 composite nanofiber dosage increased from 0.5 to 20 g/L.
However, a decrease in the adsorption capacity appeared with
increasing of the composite nanofiber dosage. The decline of
adsorption capacity at high material concentration may be
attributed to the residual of the unsaturated adsorption sites
onto the M-6 composite nanofibers (Vijayalakshmi et al.
2010). Moreover, the increase in theM-6 composite nanofiber
dosage leads to the availability of more active sites for the
phenol adsorption. These results may be due to the large de-
termined active surface area of the fabricated M-6 composite
nanofibers (Elkady et al. 2016a). Accordingly, the optimum
dosage of M-6 composite nanofibers was achieved at 2 g/L,
which represented to the economical dosage of the adsorption
process.

Influence of initial pH on the phenol adsorption

The initial solution’s pH represents an essential factor in the
control of the phenol adsorption process onto the fabricated
composite nanofibers. This parameter affects both the degree
of ionization of phenol and the charge of the adsorbent mate-
rial surface (Elkady et al. 2018). The effect was studied from
pH 1 up to 11. It can be noticed from Fig. 10 that high ad-
sorption capacity and removal percentage was achieved at low
pH values, which demonstrates that M-6 composite nanofi-
bers have high adsorption efficiency in the acidic medium.
The adsorption percentage of phenol was found to be high till
pH = 5 with 84.22% phenol removal and then the adsorption
gradually declines with increasing of solution’s pH with the
lowest adsorption of 56% phenol removal at pH 11.

Therefore, pH = 5 was selected as optimum pH for the rest
of the adsorption study onto the prepared M-6 composite
nanofibers. The zero charge point (pzc) of the synthesized
nanomagnetic ZnO was recorded at around 6 (Farrokhi et al.
2014). Accordingly, at pH ˂ 6, the surface of the
nanomagnetic ZnO is positively charged, so there is an elec-
trostatic attraction between the positively charged surface of
nanomagnetic ZnO and the unionized species of phenol
(Parida and Pradhan 2010). Furthermore, as the solution’s
pH increases, the adsorbent surface became negatively
charged, which results in reducing phenol adsorption due to
the repulsive forces between the negatively charged magnetic
ZnO surface and the phenolate ions. These results attributed to
the pKa value of phenol around 9.8 (Han and Tao 2006).

Influence of initial phenol concentration on the adsorption
process

The impact of phenol’s initial concentration on the phenol
decontamination process at equilibrium was achieved in the
concentration range of 5 to 100 mg/L using 2 g/L of M-6
composite nanofibers at pH 5 for 90 min. Figure 11 demon-
strates the enhancement in the adsorption capacity as the phe-
nol initial concentration increased from 5 to 100 mg/L, which
agrees with other reported studies (Elkady et al. 2017; Elkady
et al. 2016a; Shokry Hassan et al. 2017a). This behavior may
be due to the saturation of the active sites of the prepared M-6
composite nanofibers as the phenol concentration increased.
From the previous results, it is clear that the fabricated M-6
composite nanofibers are effectively capable of removing phe-
nol from aqueous solutions at various phenol concentrations;
this behavior is due to the characteristic surface area of com-
posite nanofiber that was estimated previously as 66.27 m2/g.
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Fig. 9 Influence of M-6 composite nanofiber dosage on both phenol
percentage removal and phenol uptake capacity onto (contact time =
90 min, pH = 5, initial phenol concentration = 10 ppm, agitation speed =
440 rpm, and temperature = 25 °C)
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Influence of solution temperature on the phenol adsorption

Figure 12 investigated the influence of the temperature on the
phenol removal onto the fabricated M-6 composite nanofi-
bers. The rising of solution temperature was found to increase
the phenol adsorption process. This behavior arises from en-
hancing the rate of phenol diffusion into the pores of the fab-
ricated M-6 composite nanofibers at higher temperatures due
to the creation of new adsorption sites onto theM-6 composite
nanofibers at high temperatures (Abd El-Latif and Elkady
2011; Shokry Hassan et al. 2015). According to these results,
the phenol decontamination onto the M-6 composite nanofi-
bers is an endothermic process (Elkady et al. 2017).

Thermodynamics and equilibrium modeling

The various thermodynamic parameters that should be con-
sidered to investigate any adsorption process are the changes
in enthalpy (ΔH°), standard free energy (ΔG°), and entropy
(ΔS°). The value of the standard enthalpy and entropy can be
calculated from the Van’t Hoff equation as follows:

ln Kc ¼ ΔS°
R

−
ΔH°
RT

ð3Þ

where the universal gas constant (R) = 8.314 J/mol K, T is the
solution temperature in Kelvin while Kc = Fe/(1 − Fe), and
Fe = (Co − Ce)/Co is the fraction adsorbed at equilibrium.
Figure 13 indicated that the Van’t Hoff plot of lnKc against
1000/T gives a straight line with an acceptable value of corre-
lation coefficient (R2) at different investigated phenol concen-
trations. The values of ΔS° and ΔH° can be respectively
calculated from the intercept and the slope of the Van’t Hoff
plot. Furthermore, the activation energy (Ea) can be deter-
mined from the following equation (Lu et al. 2016):

Ea ¼ ΔH°þ RT ð4Þ

The values ofΔH°,ΔG°,ΔS°, and Ea at different temper-
atures are listed in Table 1. The negative values of free energy
changesΔG° indicate the spontaneous and thermodynamical-
ly nature of the phenol adsorption process onto the fabricated
M-6 composite nanofibers. Moreover, the calculated positive
value of enthalpy indicates the endothermic in nature of the
adsorption process. On the other hand, the positive value of
entropy illustrates an increase in disorder at the solid/liquid
interface during the phenol decontamination process
(Thinakaran et al. 2008).
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of phenol removal and phenol uptake capacity onto M-6 composite nano-
fibers (pH = 5, composite nanofiber dosage = 2 g/L, agitation speed =
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Equilibrium isotherm analysis for the phenol adsorption

The Langmuir, Freundlich, and Temkin isothermmodels were
applied to investigate the adsorption behavior and the reaction
mechanism of phenol adsorption onto the fabricated M-6
polymeric composite nanofibers. The linearized plot of Ce/qe
versus Ce represented a straight line with a relative high cor-
relation coefficient (R2 = 0.993) (Elkady et al. 2016b):

Ce

qe
¼ 1

qmK
þ Ce

qm
ð5Þ

where qe is the amount phenol adsorbed at equilibrium (mg/g),
Ce is the equilibrium concentration of the adsorbate ions (mg/
L), and qm and KL are Langmuir constants referred to the
maximum monolayer adsorption capacity (mg/g) and adsorp-
tion energy (L/mg), respectively. According to the calculated
parameters in Table 2 and Fig. S7, the Freundlich model is the
best suitable model to describe the adsorption process of phe-
nol onto the fabricated composite nanofibers. Moreover, the
value of the separation factor (RL) is 0.049, which falls in the
range 0 to 1 that proves the favorable adsorption process de-
scription via the Langmuir model (Elkady et al. 2017; Üner
et al. 2016). On the contrary, the best fit of the equilibrium
data with the Freundlich isotherm assumes multilayer adsorp-
tion on heterogeneous surfaces (Üner et al. 2016). However,
the adsorption intensity (nF) calculated from the Freundlich
model recorded 3.639 which is greater than unity, illustrating
that the phenol adsorption process onto M-6 composite nano-
fibers is favorable (Üner et al. 2016). Therefore, the
Freundlich isotherm is the best favorable model for
representing the phenol adsorption process onto the prepared
M-6 composite nanofibers, which supposes that the multilayer
adsorption demonstrates the predictions about the physical
adsorption of phenolic pollutants onto the fabricated

composite nanofibers (Elkady et al. 2018; Shokry Hassan
2019).

Comparison of adsorption capacity for prepared composite
nanofibers with other adsorbent nanomaterials

To compare the adsorption performance of the prepared M-6
composite nanofibers with the other similar based
nanomaterials, the monolayer adsorption capacities (qm) were
compared. Table 3 presents the comparable adsorption capac-
ity of fabricated 1.0 wt% M-ZnO/PVA/Alg/CS composite
nanofibers with that of the other adsorbent nanomaterials.
Consequently, the fabricated M-6 composite nanofibers
showed promising and appropriate results for phenol adsorp-
tion from aqueous solutions.

Kinetic models of phenol adsorption

To verify the adsorption mechanism of phenolic compounds
from aqueous solution onto the fabricated M-6 composite
nanofibers, the kinetics of the adsorption process were studied
by applying the theoretical modeling of pseudo-first-order,
pseudo-second-order, Elovich, and intraparticle diffusion
models. The Lagergren first order is represented by the fol-
lowing equation (Alkaram et al. 2009):

ln qe−qtð Þ ¼ ln qe−k1t ð6Þ
where qe and qt are the amounts of phenol adsorbed ions (mg/
g) at equilibrium and at time t (min), respectively. k1 (min) is
the rate constant of the first-order reaction. Furthermore, the
phenol adsorption kinetic data were investigated using the
pseudo-second-order kinetic model that can be expressed by:

t=qt ¼ 1=k2q2
� �þ t=q ð7Þ

Table 1 Thermodynamic
parameters for phenol adsorption
onto M-6 composite nanofibers

Temp.
(K)

1000/
T

CBe CAe Kc lnKc ΔG° (kJ/
mol)

Ea (kJ/
mol)

ΔH° (kJ/
mol)

ΔS°
(J/mol K)

298 3.36 8.25 1.75 4.71 1.55 − 3.84 33.83 31.35 116.40
313 3.19 8.73 1.27 6.87 1.93 − 5.02 33.95

328 3.05 9.12 0.88 10.36 2.34 − 6.38 34.08

343 2.92 9.48 0.53 18.05 2.89 − 8.25 34.20

358 2.79 9.77 0.23 42.10 3.74 − 11.13 34.33

Table 2 Isotherm parameters of
Langmuir, Freundlich, and
Temkin models for phenol
removal onto M-6 composite
nanofibers

Langmuir parameters Freundlich parameters Temkin parameters

qm (mg/g) KL (L/mg) R2 KF (mg/g) nF R2 A (L/g) B (J/mo) R2

10.030 0.196 0.993 0.475 3.639 0.997 6.478 1.513 0.923
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where k2 is the equilibrium constant of the second-order reac-
tion rate (g/mg min). The Elovich equation was demonstrated
for the multilayer adsorption as follows:

qt ¼ αþ β ln t ð8Þ
where α signifies the initial adsorption rate (mg/g min) and β
is correlated to the surface coverage degree and physical ad-
sorption activation energy (g/mg). The constants α and β can
be calculated from the slope and intercept of the linear plot of
qt versus ln t. Finally, the possibility of the intraparticle diffu-
sion affecting the adsorption process was applied by Weber
and Morris (Elkady et al. 2017; Shokry et al. 2020) using the
intraparticle diffusion model from the following equation:

qt ¼ k it1=2 þ C ð9Þ
where ki is the constant of the intraparticle diffusion rate.

The linearity of t/qt versus time with high correlation coef-
ficient value (R2 = 0.999) illustrates that the adsorption pro-
cess of phenol follows the second-order rate kinetic model as
shown in Table 4 and Fig. S8 (Elkady and Shokry Hassan
2015). Moreover, the experimentally measured value (4.211)
of qe of pseudo-second order is very close to the estimated
value (4.593). However, the intraparticle diffusion model was
given two separate regions. These two regions suggest that the
adsorption process contains both surface adsorption and
intraparticle diffusion. The intraparticle diffusion constant
(ki) and the value of C were separately calculated from the
slope and intercept of the two linear regions as listed in
Table 4. Additionally, the values of C give prediction about
the thickness of the boundary layer. It is clear from Table 4
that the thickness of the boundary layer of the second region,
which referred to the intraparticle diffusion (C2), is larger than

the thickness of the boundary layer of the first region, which
corresponds to the film diffusion (C1). Consequently, the val-
ue of the intraparticle diffusion constant (ki2) is lower than the
film diffusion constant (ki1). These results give prediction that
the sorption process was controlled mainly by intraparticle
diffusion (Namasivayam and Sureshkumar 2008). According
to these results, the pseudo-second-order and intraparticle dif-
fusion kinetic models are considered the most fitted for de-
scribing the phenol adsorption process onto the fabricated M-

Table 3 Comparison of calculated monolayer adsorption capacity for different adsorbent nanomaterials

Adsorbent material General conditions Adsorption
capacity (mg/g)

Reference

M-6 composite nanofibers 1wt % M-ZnO/10% wt/v PVA/1% wt/v Alg/1.5% wt/v CS 10.03 Present study

Magnetic ZnO nanotubes Fabricated via microwave technology followed by sonic precipitation of
magnetite nanoparticles

20.40 Elkady et al.
(2017)

Chitosan/PVA/zerovalent iron
nanofibers

Biopolymeric synthesized chitosan/PVA/zerovalent iron nanofibers 1.68 Chauhan et al.
(2014)

Magenetite reduced graphene
oxide composite

Water-dispersible magnetite/graphene hybrids fabricated using chemical
reaction

5.83 Chandra et al.
(2010)

Porous CS/Fe3O4/Fe(OH)3
microsphere

Prepared iron-doped chitosan and iron-coated chitosan flakes 8.47 Gupta et al.
(2009)

Chitosan beads Reaction time = 24 h, PH = 5, and reaction temp. = 25 °C 1.83 Chen and Chung
(2006)

Chitosan/MWCNT/Fe3O4 Chitosan/MWCNT/Fe3O4 composite nanofiber was fabricated via
electrospinning process

6.45 Beheshti et al.
(2016)

Chitosan/graphene oxide
composite nanofiber

Electrospun chitosan/graphene oxide (GO) nanofiber were synthesized
using electrospinning process.

5.50 Najafabadi et al.
(2015)

Table 4 Pseudo-first-order, pseudo-second-order, Elovich, and
intraparticle diffusion kinetic parameters for phenol removal onto M-6
composite nanofibers

Kinetic model Parameter Value

Pseudo-first order qexp. (mg/g) 4.211

qtheor (mg/g) 3.265

K1 (min
−1) 0.032

R2 0.979

Pseudo-second order qexp (mg/g) 4.211

qtheor (mg/g) 4.593

K2 (g/mg min) 0.024

R2 0.999

Elovich kinetic model α (mg/g min) − 0.264
β (g/mg) 0.955

R2 0.981

Intraparticle diffusion kinetic model C1 (mg/g min) 0.992

C2 (mg/g min) 1.883

ki1 (g/mg) 0.3332

ki2 (g/mg) 0.2574

R2 0.992
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6 composite nanofibers that confirms the physical adsorption
process (Abd El-Latif and Elkady 2011).

Regeneration of M-ZnO/PVA/Alg/CS composite
nanofibers

The regeneration test of the adsorbent material is considered
the most significant factor because it touches on the overall
cost in the real applications (Elzain et al. 2019). From all of the
elution reagents, sodium hydroxide is considered the most
favorable for phenol desorpt ion (Ozkaya 2007) .
Consequently, to investigate the regeneration process, the fi-
nal centrifuged form of M-6 composite nanofibers was
washed several times with distilled water and then soaked into
0.2 N sodium hydroxide for 4 h under continuous stirring at
room temperature. The polymeric composite nanofibers were
washed again with distilled water and then dried at 50 °C
overnight. The regenerated composite nanofibers were reused
in the batch experiment to evaluate its efficiency after the
regeneration process. The adsorption-desorption cycle was
repeated five times. The data demonstrate the ability of M-6
composite nanofibers to reuse after three times where the re-
moval efficiency decreased to 54.12% as shown in Fig. 14.
This regeneration ability of M-6 composite nanofibers was
due to its durability as a result of its high tensile strength.

Conclusions

Nanomagnetic ZnO was successfully immobilized into PVA/
Alg/CS polymeric composite nanofibers using the
electrospinning technique. The fabricated composite nanofi-
bers were characterized using FTIR, XRD, VSM, SEM,

AFM, TGA, tensile, and contact angle. Both the composite
nanofiber dosage and phenol solution temperature have posi-
tive impacts on the phenol adsorption process. The thermody-
namic parameters confirmed the endothermic and spontane-
ous nature of the phenol decontamination process onto the
polymeric composite nanofibers. Moreover, the positive value
ofΔS° indicates the increment in the randomness of the solid/
solution interface in the sorption process. Furthermore, the
mathematical equilibrium description of the phenol adsorption
onto M-6 composite nanofibers was fitted using the
Freundlich model. These mathematical equilibrium models
supposed that the multilayer adsorption of phenol onto the
M-6 composite nanofibers contains a physical adsorption pro-
cess. Finally, the adsorption of phenol onto the prepared M-6
composite nanofibers was well described by the pseudo-
second-order and intraparticle diffusion kinetic models, which
demonstrate the physical adsorption process. The fabricated
M-6 composite nanofiber illustrates its validity for reuse after
three cycles of regenerations.
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