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Abstract
At present, many researchers are increasingly aware of the importance of using models to identify heavy metal (HM) pollution
sources. However, on the performance and application of different source identification models to HMs under different land use
types had been studied little. In this study, comparison of absolute principal component scores-multiple linear regression (APCS-
MLR) and positive matrix factorization (PMF) models and their application characteristics in identifying pollution sources were
carried out by using 11 HMs in Zhongwei City farmland and Shizuishan industrial park, Ningxia. The results indicated that HM
pollution in farmland mainly came from pesticides, fertilizers, and deposition of the Yellow River, while the pollution in
industrial park mainly originated from atmospheric deposition and various industrial productions. The APCS-MLR model had
the problem of less identification sources and the difficulty to explain the complex pollution, while the PMF model not only
identified more pollution sources, but also distinguished heavy metal–related sources for two different land use types and
different industrial production conditions. It is of great significance the formulation of agricultural-related pesticides’ and
chemical fertilizers’ rational use and various industrial production–related raw materials put in and emission control strategies.
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Introduction

With the urbanization and industrialization brought about by
the rapid development of social economy (Li et al. 2018; Shi
et al. 2017), the pollution of heavy metals (HMs) in soil had
gradually attracted the attention of the global public. Its main
sources were human activities such as agricultural fertilizers,

industrial manufacturing, and vehicle exhaust (Chen et al.
2016; Huang et al. 2015). In the process of human transfor-
mation and utilization of land for production and construction,
various land use types with different utilization directions and
characteristics were formed, and the HM pollution was also
affected under different land use types and divided into differ-
ent types of pollution sources (Guan et al. 2019; El-Naggar
et al. 2018; Zhou andWang 2019; Khademi et al. 2018). Thus,
the study under different land use types was very important to
identify more comprehensively the types of HM pollution
sources and their contribution rates for the prevention, regula-
tion, and control of soil pollution in China. And we should
provide basis for rational utilization of land resources, adjust-
ment of land use structure, and determination of land use
direction.

Absolute principal component scores-multiple linear re-
gression (APCS-MLR) (Haji et al. 2017) and positive matrix
factorization (PMF) (USEPA 2014) were two kinds of recep-
tor models widely used in HM source analysis. Because of
comprised different mathematical and physical constraints,
two models had different advantages and shortcomings.
APCS-MLR interpreted the variance of data by identifying
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fewer independent factors; its statistics only considered the
data value itself and ignored the uncertainty of data source
process. PMF considers the “uncertainty” of data and decom-
poses the data matrix into factor contribution and factor dis-
tribution under non-negative constraints; it had the advantages
of no need to measure the fingerprint spectrum of the source,
non-negative factor, etc. However, it had a high requirement
for the credibility of data. The elimination of some environ-
mental outliers may cause the lack of analytical results of
individual points. In the process of practical application, the
calculation results of the two models for the same data may be
quite different.

APCS-MLR and PMFwere widely used in the source anal-
ysis of atmospheric particles and seldomly used in soil
pollutants. One of the key steps for source analysis was to
explain the source profiles and its distribution to the actual
emission sources. Different from atmospheric particles, soil
pollution was usually interfered by physical, chemical, and
biological effects, and the clear source signatures may not
exist. This further increased the difference between the
recognition results of different source analytical models. Lv
(2018) used robust geostatistics to compare the pros and cons
of APCS-MLR and PMF models by source identification re-
sults and model fitting degree. The result showed that PMF,
with its optimal non-negativity results, was adopted for source
apportionment. Moriasi et al. (2007) believe that it is neces-
sary to calibrate and verify the related model to simulated
environmental protection.

At present, the use of analytical models for HM pollution
sources in soil at home and abroad is still lack of comparative
analysis of similarity and difference of model (Dong et al. 2019;
Huang et al. 2010; Lv 2018). For the identification and assess-
ment of HM pollution in soil, it is of great theoretical signifi-
cance and application value to study APCS-MLR and PMF
models by comparing the statistical parameters of different re-
ceptor models, identification results, and quantity of source
profiles and source distribution results (Huang et al. 2015).

This study applied APCS-MLR and PMF models to two
different types of soil areas, compared and evaluated the re-
sults, and focused on differences in identifying the source and
distribution of HMs, in order to help people to enhance the
understanding and use of two receptor models, explore the
advantages and shortcomings under two different land use
types, and master the method on source identification more
comprehensively.

Materials and methods

Study area

Ningxia is located in the western part of China; the Yellow
River flowed over 390 km through the Ningxia Plain with an

irrigated area of 330,000 km2. It is well known that since Qin
Dynasty, the irrigation farmland water conservancy project
formed by the Yellow River’s self-flow has made the
Ningxia Plain become one of the four major irrigation areas
and one of the twelve commodity grain bases in the country.
Meanwhile, the Ningxia Plain had formed an industrial system
with regional characteristics on both sides of the Yellow
River. The proportion of secondary industry was higher than
the national average, and its industrial output value accounted
for more than 96% of Ningxia’s GDP. Therefore, the Ningxia
Plain had formed a major agricultural model with irrigation by
the Yellow River and an economic development model with a
huge industrial park as mainstay.

Zhongwei City is located in the alluvial plain of the upper
reaches of the Yellow River (Yuan et al. 2018). Under its
unique irrigation mode, the soil types mainly belonged to
the category of irrigation and silting soil (Farmland irrigated
by the Yellow River 2011), which were formed by the irriga-
tion of the Yellow River with a large amount of sediment and
the interaction of the long-term irrigation and deposition and
human farming and fertilization (Wang 2018; Zhang et al.
2012; Xiong 2001); the physical viscosity of the silting soil
was mostly 20–60%; it belonged to loamy soil with more
consistent soil structure and more pores. The clay minerals
were mostly hydromica, and the silt was more; the chemical
composition was similar, and the cation-exchange capacity
was higher; it contained certain organic matter and nutrients,
and the content was significantly higher than that of the parent
material layer (Zhang et al. 2012; Xiong 2001). The suitability
of silting soil was extensive; the crops of corn, wheat, rice,
millet, beet, and so on and fruits, vegetables, and trees can be
cultivated. In the sampling farmland of Zhongwei City, corn
and wheat were planted in rotation. In recent years, because of
the increasing shortage of water resources in the Yellow River
and industrial and domestic wastewater, the water quality of
the Yellow River irrigation area has been deteriorating (Zhang
et al. 2018; Li et al. 2016; Ningxia Water Resources Bulletin
2016). In addition, HMs brought to soil by agricultural activ-
ities had increased in the past decades. And agricultural reces-
sion re-entered the Yellow River and led to the aggravation of
HM pollution in the lower reaches of the Yellow River.

On the other hand, Shizuishan was a high As area in China,
which were once a “coal city” and an old-brand heavy indus-
try base. Although Shizuishan City was located along the
Yellow River, it was the highland both sides of the Yellow
River impact plain; the main soil type was sierozem; its char-
acteristics were that the soil parent material was mainly qua-
ternary proluvial impact material with coarse texture; there
were more sand and less silt in physical composition (Wang
2018; Zhang et al. 2012; Xiong 2001). The main clay mineral
was hydromica, followed by kaolinite and chlorite. The soil
fertility was relatively low; in the study area, grass and small
semi-shrubs were mainly grown (Zhang et al. 2012; Xiong
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2001). The economy in this study area was relatively devel-
oped with the highest number of industrial enterprises and the
lowest cultivated area in the province. Shizuishan industrial
park was adjacent to the Yellow River in the east and Helan
Mountains in the west, with rich mineral resources and con-
venient transportation (Wang 2018). There were 327 industri-
al enterprises in the development zone, of which 76 were
above the scale. Under the huge industrial production mode,
the pollution it faced should not be underestimated.

In this study, the farmland in the Yellow River irrigation
area of Zhongwei City and Shizuishan industrial park were
selected as the research objects.

Sampling and analysis

In Fig. 1, Site 1 was a typical Yellow River irrigation farmland
(Farmland irrigated by the Yellow River 2011). The agricul-
tural mode in this area was characterized by irrigation and
drainage, and the drainage channel was also responsible for
agricultural drainage, sewage discharge, and flood discharge
(Ningxia Autonomous Region Environmental Protection
Bureau 2012–2016). Thus, based on the trend of the main
channel and drainage channel in the sampling area, the soil
samples of the farmland beside the channels were collected.
In order to provide more raw data for source analysis, sampling
points were also set around the factory near the sampling area.
Site 2 was located in a typical large industrial park in

Ningxia (Zhou 2008), covering an area of 60 km2, with a
planning area of 28 km2. We collected soil samples in and
around the industrial park. In particular, it is necessary to set
up multiple sampling points near the densely distributed facto-
ries and the entrances and exits of transport vehicles. At the
same time, suspicious pollution sources also needed to be re-
corded. About 1 kg of fresh soil samples was collected with
stainless steel in self-sealed bags, and 48 samples were collect-
ed. Soil samples with 100-mesh sieves were digested by a
microwave with HNO3-HF-H2O2-HCl (6:2:2:2) mixed acid.
The contents of 11 HMs were determined by inductively
coupled plasma mass spectrometry (Agilent 7700 ICP-MS).
Soil reference materials (GBW07410, GBW10020) provided
by the Institute of Geophysics and Geochemistry, Chinese
Academy of Geological Sciences, were used for quality con-
trol. The detection limits of 11 HMs detected by ICP-MS were
0.002–0.194 μg/L, respectively. The recoveries of all elements
in soil were 84–109% (RSD of parallel detection by instrument
were less than 5%, n = 6) (Supplementary data 1).

Data processing and statistical analysis

APCS-MLR model

The APCS-MLR model was proposed by Thurston and
Spengler in 1985. Its basic principle is to take the absolute
principal component factor score as the independent variable

Fig. 1 Schematic map of sampling sites including the farmland in the Yellow River irrigation area of Zhongwei City (Site 1) and the Shizuishan
industrial park (Site 2)
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and the receptor content as the dependent variable for multiple
linear regressions. The regression coefficient is used to calcu-
late the contribution of the pollution source corresponding to
each factor to the substance in the receptor.

In the calculation, the content data are standardized, and the 0
content artificial samples are introduced to calculate their factor
scores. The absolute principal component factor score is obtain-
ed by subtracting the factor score of the artificial sample from
the factor score of the original data. The linear regression oper-
ation is run and the contribution rate is calculated according to
the following formula (Thurston and Spengler 1985):

Y ¼ ∑p
1miX i þ b ð1Þ

where Y refers to the HM content, p represents the number of
extracted principal components, Xi is the score variable of factor
i extracted as the principal component, mi refers to the linear
regression coefficient of factor i, and b is the constant of the
regression model.

According to mi, the average contribution rate (CSi) of
source i can be calculated as follows:

CSi %ð Þ ¼ mean∑P � mi=∑mið Þ þ mi∂PX i ð2Þ

PMF model

PMF (USEPA 2014; Paatero and Hopke 2009; Paatero 1997)
is a mathematical receptor model based on factor analysis,
which has the advantages of no need to measure the finger-
print spectrum of the source, non-negative elements in the
decomposition matrix, and can be optimized by using the
standard deviation of data. The basic principles and equations
of the PMF 5.0 model are described in the USEPA PMF 5.0
guidance manual (USEPA 2014). The PMF model decom-
poses the original matrix into two-factor matrices and a resid-
ual matrix, expressed as:

X ij ¼ ∑
p

k¼1
GikF jk þ Eij ð3Þ

where Xij is the sample concentration matrix, Gik refers to the
contribution of each factor to any given sample, Fjk represents
the chemical composition matrix of p source, and Eij is the
residual matrix for each sample.

Factor contribution and profile are obtained from the PMF
model, which minimizes objective function Q and is defined
as follows:

Q ¼ ∑
n

i¼1
∑
m

j¼1
eij=uijð Þ2 ð4Þ

where Q is the sum of squares of the differences and eij is the
PMF residual error for the ith sample and the jth specie,
weighted by measurement uncertainty (uij). The PMF model

is run using concentration data and uncertainty data files that
contain sampling and analysis errors.

Receptor model performance

In this study, two receptor models were compared and evalu-
ated from the following four aspects in order to determine
whether the model was applicable by calculating the concen-
tration of HMs predicted by a model and comparing with the
experimental results: (1) fitting degree (R2) of detection con-
centration and prediction concentration in models, Nash-
Sutcliffe efficiency (NSE) (Yang et al. 2013), and error
(Moriasi et al. 2007); (2) fitting degree of HM concentration
predicted values; (3) identification of the number and charac-
teristics of sources; (4) contribution rate of different sources to
different HMs.

Statistical analysis

The sources of HMs were identified by the APCS-MLR mod-
el (SPSS 22.0) and PMF model (USEPA PMF 5.0). All sta-
tistical charts were drawn in Origin Pro 2017 (Origin Lab,
Northampton, MA).

Results and discussion

Overview of data

Table 1 was the basic data of HMs in soils including the
farmland of the Yellow River irrigation in Zhongwei City
(Site 1) and Shizuishan industrial park (Site 2).

According to the data of Site 1 in Table 1, the average
contents of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn, V, and Zn
were 1.13–815.03 mg/kg, of which Mn was the highest and
Cd was the lowest. Compared with the over-standard rate of
HM pollution sites in Ningxia, the contents of As, Cd, Cr, Ni,
and Pb exceeded the standard. Based on the background value
of soil environment in China (Pb was based on the back-
ground value of soil in Ningxia), the average value of
single-factor index (Pi) ranked as follows: Cd > As > Pb >
Zn >Mn >Ni > Cr > Sn > Cu > Co > V. Among them, Cd and
As were heavily polluted; Pb was moderately polluted; Cr,
Cu, Mn, Ni, Sn, and Zn were lightly polluted; and Co and V
were not polluted, respectively. The average contents of As,
Cd, and Pb were about 3.2, 13.3, and 2.6 times of the back-
ground values of Ningxia, respectively, which indicated that
the 3 heavy metals were significantly enriched in the farmland
of the Yellow River irrigation, and which were mainly derived
from man-made pollution. The coefficient of variation of Cd
was the largest (CV = 1.63), followed by Pb, indicating that
the spatial distributions of Cd and Pb were uneven, and the
human disturbance was relatively large. Except for Cr and V,
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the peak and skewness values of other HMs were larger,
showing that these HMs were affected by human disturbance
and external influence.

According to the data of Site 2 in Table 1, the average
contents of 11 HMs in Shizuishan industrial park were 1.77–
6257.27 mg/kg, and the ranks of Mn and Cd were the same as
those in site 1 with the highest content of Mn and the lowest
content of Cd. The over-standard rates of As, Cd, Cr, and Pb
were 100%. Except for Cd and Sn, the contents of the other 9
HMs in industrial areas were significantly higher than those in
farmland areas. The average Pi of HMs ranked as follows: Cd
> Ni > Pb > Mn > Zn > Cr > As > Co > Cu > Sn > V. Except
for V pollution-free, As, Cd, Cr, Mn, Ni, Pb, and Zn were all
heavily polluted, Co was moderately polluted, and Cu and Sn
were slightly polluted. The average contents of As, Cd, Cr,
Mn, Ni, Pb, and Zn were about 3.6, 19.2, 3.7, 10.7, 13.3, 11.2,
and 5.3 times of the background values of Ningxia, respec-
tively. There were more exogenous inputs and more serious
human pollution in this area. Except for Cu, Sn, and V, the
variation coefficients of the other 8 heavy metals (CV > 0.6)
were larger, and the spatial distributions of these metals were
seriously uneven, which were greatly influenced by the facto-
ries near the sampling points.

Table 2 shows 5 sets of quality standards for HMs in soil at
home and abroad, including agricultural land standard,

industrial land standard, and general standard, such as The
Chinese National Standard (Ministry of Ecology and
Environment of the People’s Republic of China 2018a, b),
American National Standard (USEPA 2018a, b), UK Soil
Guideline Values (SGVs) (EA, DEFRA 2009), German
National Standard (BBodSchG) (German Federal Ministry
of the Environment 1999), and Canadian Environmental
Quality Guidelines (SAIC 2002). As can be seen from
Table 2, there were few standards available for Mn and Sn,
and Germany’s farmland standard and Canada’s industrial
standard limits were lower.

At Site 1, As content was 100% higher than the standards
of four countries (China, the USA, the UK, and Germany).
Comparing the content of Cd with the Chinese standard, Cd
was partially over-standard. Co did not exceed the standards
of China and Canada. Compared with the Canadian standard,
the exceeding rate of Cr was close to 100%. The over-standard
rate of Cu was 100% only compared with the German stan-
dard. When Ni was compared with the standards of Germany,
Canada, and other three countries, the over-standard rate of Ni
was 100%, partial over-standard, and no over-standard, re-
spectively. Pb was partially over-standard in Chinese and
Canadian standards. V did not exceed the 5 sets of quality
standards. Zn partially exceeded the Chinese and Canadian
standards.

Table 1 Descriptive statistics of soil HM contents in Site 1 and Site 2

Sites HMs Range/mg kg−1 Mean/mg kg−1 Skewness Kurtosis SD CV Background
value/mg kg−1

National
standard/mg kg−1

Site 1 As 20.27–107.10 37.05 2.27 6.81 19.07 0.52 11.6 11.2

Cd 0.24–1.36 1.13 4.70 22.99 1.84 1.63 0.092 0.097

Co 9.75–24.64 12.66 3.12 11.42 2.97 0.23 10.9 12.7

Cr 63.54–131.03 83.21 0.99 − 0.14 19.48 0.23 61.3 61

Cu 20.42–58.68 28.71 2.49 6.65 8.42 0.29 20.9 22.6

Mn 517.32–1615.35 815.03 3.61 14.45 525.71 0.64 - 583

Ni 28.35–130.72 36.97 4.78 23.51 19.80 0.54 29.2 26.9

Pb 23.21–84.81 43.04 4.29 19.71 41.87 0.97 16.7 350

Sn 1.94–3.72 3.36 1.09 6.73 0.57 0.17 - 2.6

V 64.27–91.34 78.87 − 0.36 − 0.59 7.36 0.09 72.8 82.4

Zn 73.60–318.75 148.30 3.03 10.80 104.19 0.70 63.6 74.2

Site 2 As 20.67–110.81 41.65 1.67 2.31 24.81 0.60 11.6 11.2

Cd 0.33–6.06 1.77 1.62 2.82 1.40 0.79 0.092 0.097

Co 8.59–128.46 26.84 2.68 8.21 27.43 1.02 10.9 12.7

Cr 63.73–1250.33 227.31 2.43 5.93 296.84 1.31 61.3 61

Cu 16.23–78.88 33.27 1.96 5.25 13.40 0.40 20.9 22.6

Mn 498.86–45,380.13 6257.27 3.46 13.92 9488.21 1.52 - 583

Ni 23.87–2926.62 388.19 2.65 7.48 700.63 1.80 29.2 26.9

Pb 17.65–1906.39 186.52 4.40 20.34 385.03 2.06 16.7 350

Sn 0.7–5.69 3.19 −0.36 −0.61 1.36 0.43 - 2.6

V 59.97–120.99 74.04 2.15 6.88 13.11 0.18 72.8 82.4

Zn 60.18–1016.06 338.19 1.18 0.69 277.17 0.82 63.6 74.2
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In Site 2, compared with the American and Canadian stan-
dards, As exceeded 100%, but compared with the Chinese
standard, As was partial over-standard. Cd did not exceed
the 5 sets of quality standards. Cr was partial over-standard
compared with the standards of Germany and Canada. For Cu,
there was no over-standard. In addition to the British standard,
Ni partially exceeded the standards compared with other four
countries. Compared with the Chinese, British, and Canadian
standards, the Pb partly exceeded the standards. V and Zn did
not exceed 5 sets of quality standards for HMs in soil at home
and abroad.

In conclusion, compared with foreign standards, As pollu-
tion in the farmland area was more serious. This result was
consistent with that of the background value of soil environ-
ment in Ningxia. But Cd pollution in the farmland area was
relatively light; the result was quite different from that of the
background value of soil environment in Ningxia; this was
because China’s standard limit of farmland Cd was far lower
than other countries. Similarly, the pollution of As was rela-
tively serious; Cd, Cu, V, and Zn were not polluted in the
industrial park, which were quite different from the back-
ground value of soil environment in Ningxia. These were
due to the fact that the established HM standards in industrial
areas of foreign countries were more relaxed than those in
China, which led to the lower pollution level of HMs in in-
dustrial areas.

Comparison of APCS-MLR and PMF

Model reliability

The performances of APCS-MLR and PMFmodels applied in
two different land use types are summarized in Table 3. Two
models obtained more reasonable results in identifying pollu-
tion sources in the study areas, but the PMF model had higher
fitting coefficients (0.74 < R2 < 1) than APCS-MLR (0.20 <
R2 < 0.94), showing more reliable simulation results. The
statistical results of error showed that the APCS-MLR model
underestimated the model concentrations for most pollutants,
especially Cd (errors in two sampling areas were − 50% and −
80%, respectively), Mn (− 16%, − 182%), and Pb (− 16%, −
239%). The concentrations of pollutants fitted by the PMF
model were mostly lower than the measured concentrations,
and the errors were small (− 33 to − 1%); among them, the
error of Pb was the largest. Combining with the basic data of
pollutants in Table 1, we can see that the coefficients of var-
iation of Cd,Mn, and Pb were higher than those of other HMs,
and their single-factor indexes were higher, and the external
pollution caused by human disturbance was more complex.
Thus, it can be seen that the fitting results of a receptor model
were greatly influenced by the uniformity of the pollutant
distribution. In addition, the NSE values of the PMF model
(0.72–0.99, except for Ni) were closer to 1.0, and the fitting

results were more reliable, while the NSE values of the APCS-
MLR model (− 2.26 to 0.97) were less reliable. However, the
robust model of PMF can solve the influence of the measured
value (outlier) of the fitting difference on the final optimal
solution. The PMF model allowed the data points to be re-
weighted between iterations in order to reduce the weight of
the model fitting difference, resulting in lower fitting results
than the actual concentration, and the model adopted non-
negative constraints to avoid the occurrence of negative
values. Thus, the fitting results were more reliable.

The results (Table 3) of the two models applied to two
different land use types were as follows: the APCS-MLR
model showed better fitting results for farmland with less pol-
lution and more uniform distribution of pollutants, its error
was close to 0, and NSE was close to 1.0. It underestimated
the concentration of Ni in farmland, but overestimated the
concentration of Ni in more polluted industrial areas and
showed a higher fitting degree (R2 = 0.88). Combining with
the basic data of Ni in Table 1, we can see that the peak and
skewness of Ni were higher and the coefficient of variation
was lower in the farmland area, which indicated that the pol-
lution degree of Ni in the farmland area was lighter, and the
interference from external sources was less; thus, the APCS-
MLR model was more suitable for Ni in the farmland area.
But in the industrial park, because the non-normal distribution
was more obvious, the APCS-MLR model was not suitable
for use. On the other hand, the fitting results of the PMFmodel
for HMs in the industrial park were more reliable. With larger
coefficient of variation and more obvious non-normal distri-
bution, the fitting results of both Cd in farmland and Ni in
industrial soils were all better. In addition, with smaller coef-
ficient of variation and more obvious normal distribution, the
fitting result of Cr in the industrial area was also better. In
conclusion, the fitting of the PMF model should be related
to the degree of pollution, less affected by other pollution
distributions, and the fitting results were not only more reli-
able than APCS-MLR but also more suitable for two different
land use types.

Fitting of model prediction value

In farmland (Site 1), the results of source analysis of HMs
were carried out using two receptor models and the predicted
values of each sampling point were obtained (Fig. 2a, c). It
was proved that PMF was more reliable in predicting the HM
contents than the APCS-MLR model (R2 = 0.9965). In indus-
trial park (Site 2), the fitting results for HMs also showed that
the PMF model was better (R2 = 0.9993). Therefore, the PMF
model can be applied to two different land use types. On the
other hand, first, in comparing the fitting results of the same
model in different sampling areas in Fig. 2a and d, we found
that the fitting results of the APCS-MLRmodel in Site 1 (R2 =
0.408) were better than those in Site 2 (R2 = 0.3377), which
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was consistent with the conclusion that “the APCS-MLR
model had a better fitting effect on the soil with less human
disturbance.” However, in Fig. 2 c and f, the fitting results of
the PMF model in two regions were close to 1, which showed
again that the PMF model was less affected by the degree of
soil pollution and human disturbance. Second, the fitting re-
sults of the PMF model in Site 1 (R2 = 0.9965) were slightly
lower than those in Site 2 (R2 = 0.9993); it can be seen from
Fig. 2 c that the fitting result of sampling point A14 was quite
different from those of other points. It was predicted that this
was the reasonwhy the fitting results of the PMFmodel in Site
1 were poor.

In addition, according to the results of source identification
and contribution rate distribution of two models in Figs. 3 and
4, the APCS-MLR model resolved four and three pollution
sources, respectively, in farmland and industrial area, while
PMF resolved five and six pollution sources. The PMF model
identified additional sources at each site, which were not iden-
tified and quantified by APCS-MLR. The differences between
these results were due to the different theoretical steps of
source recognition between two receptor models. When the
model was used to analyze the source data, the choice of

variables depended on the mathematical and physical condi-
tions followed by the model itself. In a word, because the
APCS-MLR model cannot separate covariant source and
make appropriate error scaling for each data before eigenvalue
analysis, thus, the APCS-MLR model cannot provide more
robust source analysis, while the PMF model was a better
choice for soil source analysis.

Source identification

Farmland of the Yellow River irrigation area in Zhongwei City
(Site 1)

Contribution of the variables according to different factors
(source) obtained by APCS-MLR (left) and PMF (right) re-
ceptor models in Site 1 can be seen from Fig. 3; the APCS-
MLR model extracted four source factors, which accounted
for 86% of the total variance. The PMF model divided the
sources of HM pollution into five types and eliminated the
abnormal value at the A10 sampling point. The source analy-
sis methods of the two models were combined and the results
were as follows:

Table 3 Model evaluation statistics of APCS-MLR and PMF in Site 1 and Site 2

Sites HMs Experimental
value (mg kg−1)

APCS-MLR PMF

Modeled
value (mg kg−1)

Error (%) NSE R2 Modeled
value (mg kg−1)

Error (%) NSE R2

Site 1 As 37.05 32.14 − 13 0.87 0.94 37.22 0 1 1

Cd 1.13 0.48 − 58 0.73 0.86 1.51 2 0.99 1

Co 12.66 11.94 − 6 0.65 0.72 12.50 − 1 0.72 0.74

Cr 83.21 77.82 − 6 0.42 0.50 80.68 − 3 0.79 0.80

Cu 28.71 27.15 − 5 0.55 0.59 28.84 0 1 1

Mn 815.03 684.90 − 16 0.19 0.25 817.48 0 1 1

Ni 36.97 31.13 − 16 0.11 0.20 34.57 − 7 0.51 0.87

Pb 43.04 27.36 − 36 0.75 0.90 39.79 − 8 0.93 0.97

Sn 3.36 3.11 − 7 0.97 0.88 3.37 0 1 1

V 78.87 77.61 − 2 0.77 0.81 79.32 1 1 1

Zn 148.30 106.12 − 28 0.72 0.89 137.72 − 7 0.89 0.91

Site 2 As 41.65 29.76 − 29 0.66 0.90 74.21 0 1 1

Cd 1.77 0.36 − 80 − 0.41 0.66 98.30 − 10 0.73 0.8

Co 26.84 39.52 47 0.61 0.83 5500.34 − 1 0.99 0.99

Cr 227.31 455.77 101 0.31 0.88 16.00 − 1 0.99 0.99

Cu 33.27 17.07 − 49 − 0.88 0.65 57.57 0 1 1

Mn 6257.27 − 5139.80 − 182 − 1.04 0.47 31.44 − 2 1 1

Ni 388.19 892.98 130 0.34 0.88 282.47 2 1 1

Pb 186.52 − 259.55 − 239 − 1.02 0.38 40.78 − 33 0.61 0.91

Sn 3.19 2.05 − 36 − 0.22 0.52 1.42 0 1 1

V 74.04 51.69 − 30 − 2.26 0.88 3.15 0 1 1

Zn 338.19 91.22 − 73 − 0.09 0.74 111.28 − 4 0.77 0.84
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Factor 1 had the highest relative concentration of As,
followed by Cu, Sn, and V, and a small amount of Co, Cr,
and Pb. Metal ions had the function of killing and inhibiting
pathogen activity (Wang et al. 2009). The inorganic salts or
complexes containing metal ions were the most widely used
inorganic antimicrobial agents in the preparation of pesticides.
Among them, As, Cu, and Pb were widely used (Xu et al.
2020). In addition, in the process of pesticide preparation,
metal ions extracted from ores carried a large amount of Sn
and V. The contribution of this factor at B1–B10 was signif-
icantly greater than that at A1–A15. This was due to the fact
that a large number of main canals and drainage canals of the
Yellow River were distributed at the B1–B10 farmland.
Agricultural pollution carried by irrigation and agricultural
drainage remained in the soil, resulting in the accumulation
of HMs in the soil. Thus, factor 1 came from the unreasonable
application of pesticides.

Factor 2 was associated with Co, Cr, Ni, Sn, and V. The
coefficients of variation of Co, Sn, and V in the study area
were small and the pollutions were light, mainly from the
natural source of the parent material. Because Co, Cr, and
Ni mainly came from weathered bedrock soil (Lv et al.
2015; Alloway 2013) and the artificial inputs of chemical
fertilizers and manures to the two metals (Cr and Ni) were
lower than the background contents in soil (Lu et al. 2017;
Liu et al. 2016), it was generally believed that the three HMs

originated from the parent material of soil formation.
Therefore, factor 2 can be identified as a natural source.

Factor 3 produced the dominant contributions of Cd,
followed by Cr, Cu, Pb, and Zn. Agricultural pollution was
the main cause of soil Cd pollution (Rodríguez Martín et al.
2013). Cd is an inherent component of phosphate rock, so
phosphate fertilizer contained a lot of Cd (Nziguheba and
Smolders 2008; Mortvedt 1996). According to Statistical
Yearbook of Zhongwei City in 2017, the annual application
amounts of nitrogen fertilizer, phosphorus fertilizer, potassi-
um fertilizer, and compound fertilizer were 10.1, 2.3, 0.7, and
66,000 tons, respectively, and they contained Cr, Cu, Mn, Pb,
and Zn (Wang and Ma 2004; Lu et al. 1992), while the aver-
age Cd contents in Chinese phosphate fertilizers and com-
pound fertilizers were 0.6 and 0.18 mg/kg, respectively.
Therefore, factor 3 caused agricultural pollution; Cd accumu-
lated extensively; Cr, Cu, Mn, Pb, and Zn accumulated in
small quantities; and factor 3 came from the unreasonable
application of chemical fertilizers.

Factor 4 had higher relative concentrations for Cd, Cr, Cu,
Pb, and Zn, followed by Co, Mn, Ni, Sn, and V, and the sum
of factor 2 and factor 4 representing natural sources accounted
for 0.7–1.2 times of soil background values in Ningxia (except
for As 0.4 and Cd 3). The farmland soils in Zhongwei City
were irrigated from the Yellow River and formed silted soil
(Yuan et al. 2018; Dong et al. 2015); its main component was

Fig. 2 Two receptor models were used to fit the predicted concentrations
of 11 heavy metals in soils of two different land use types. Site 1: (a)
APCS-MLR vs. experimental value, (b) APCS-MLR vs. PMF, (c) PMF

vs. experimental value; Site 2: (d) APCS-MLR vs. experimental value, (e)
APCS-MLR vs. PMF, (f) PMF vs. experimental value
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the deposition of the Yellow River, which belongs to clay
minerals. Because clay mineral (Gu et al. 2018; Yariv and
Cross 1979) was a kind of silicate with layered or chain struc-
ture and had a large specific surface area, it can adsorb metal
ions in the environment through physical adsorption, chemical
adsorption, and ion exchange, which resulted in a large
amount of HMs in the deposited soil. At the same time, liter-
ature (Ma et al. 2016; Kong et al. 2014) found that there was a
large amount of Cd pollution in the silt of Ningxia section in
the upper reaches of the Yellow River, which was the main
reason that the sum of contribution of factor 2 and factor 4 was
much more than the background value of Ningxia soil. Factor
4 has the lowest contribution at A11 and B2 sampling points.
With field investigation, we found that the two sampling
points not only were located near a national highway but also
were the source of drainage facilities of the main canal, which
had constructed by man-made buildings. It was presumed that
the original soil layer had been changed due to overburden
and other reasons. Thus, factor 4 was the HMpollution carried

by the deposition of the Yellow River. The results were in
agreement with those of other studies on the source apportion-
ment of HMs in soil along the Yellow River (Zhang et al.
2018).

Factor 5 had higher relative concentration of Mn, followed
by As and fewer Cd, Co, Ni, Pb, and Zn because there was a
large manganese factory near the study area. The main waste
residue of electrolytic manganese production was acid
leaching residue, and other waste residues include anode
mud, sulfide residue, chromium-containing residue, and do-
mestic waste. The main pollutants of various waste residues
were As, Cd, Pb, and Zn (Lv et al. 2019; Zhan et al. 2019).
The main components of sulfide residue also contained nickel
sulfide and cobalt sulfide (Wang et al. 2019b). In addition,
contrary to the distribution of the contribution of sampling
points in factor 1, the contribution of factor 5 in the B1–B10
sampling points was significantly less than that in A1–A15,
which was consistent with the actual location of the medium
manganese plant, which was closer to the A1–A15 sampling
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points. Thus, factor 5 came from industrial pollution caused
by electrolytic manganese production.

Shizuishan industrial park (Site 2)

Contribution of the variables according to different factors
(source) obtained by APCS-MLR (left) and PMF (right) re-
ceptor models in Site 2 are shown in Fig. 4. In Site 2, the
APCS-MLR model extracted three source factors, which
accounted for the majority of the total variance (83%), but
the PMF model divided the sources of HM pollution into six
categories, and all the data of sampling points entered the
model and got high fitting parameters. Combining the source
analysis results of the two models, the results were as follows:

Factor 1 was associated with Sn and V. Because the coef-
ficient of variation of Sn and V and human disturbance were
small, it was speculated that Sn and V came from the parent
material of soil.

Factor 2 had the highest relative concentration of As.
According to the relevant norms of Control plan of key en-
demic diseases in Ningxia (2004–2010) and National plan for
prevention and control of endemic diseases during the 13th
Five-Year Plan, drinking water-borne endemic arsenism had
become one of the main endemic diseases in Ningxia (Jin et al.
2003; Xia and Liu 2004). This area was the groundwater spill-
over zone in front of Helan Mountains (Tian and Zhang 2010;
Zhao et al. 2007) and a convergence zone of mountain floods,
valleys, and streams. Meanwhile, the soil in this area was the
clay of lacustrine muddy stratum and fine sand interbedded. It
had strong adsorption capacity. It contacted with groundwater
and absorbs arsenic, which increases the arsenic concentration
in the stratum (Zhao and Luo 2017; Chen et al. 2014). The
contribution of this factor fluctuated slightly and distributed
evenly at all sampling points of Site 2. However, the contri-
bution of C12 and C13 was the lowest. Near the two sampling
points, a circular economy industrial park was built. The fac-
tory was the first national “resource-saving, environment-
friendly” founding enterprise and had a “garden workshop,”
which made the contribution of factor 2 to the soil reached the
lowest value. Thus, factor 2 came from high arsenic wastewa-
ter from coal mining.

Factor 3 produced the dominant contributions of Cu and V,
and significant influences on Co and Cd. Because V was the
catalyst for the process of SO2 to SO3 in sulfuric acid produc-
tion by sulfur oxidation in industry (Wang et al. 2019a), chal-
copyrite was the raw material for sulfuric acid production and
contained HMs such as Co and Cd (Bortnikova et al. 2018;
Rajabpour et al. 2017). In addition, chemical plants that can
produce sulfuric acid were built near C18 and C19 sampling
points. Thus, it was speculated that this factor came from the
industrial production of sulfuric acid produced by
chalcopyrite.

Factor 4 was the main source of Cd, Mn, Pb, and Zn,
followed by Cu. Because Pb was the symbol element of traffic
pollution and air dust pollution source, and 78% of Pb came
from this factor, it was a possible reason that the pollution
source of this factor was related to the polluted air particles
(Xie et al. 2018; Miller 2011). Themixed pollutants of Cd, Pb,
and Zn generally came from the dry and wet depositions of
pollutants and the emission of automobile exhaust. Moreover,
Cuwas the main product of brake, tire, and bodymetal (Zhang
et al. 2016; Chen et al. 2012). Pb, Cd, Cu, Mn, and Zn can be
released from gasoline, engine, lubricating oil, and gold plat-
ing parts due to combustion or wear (Pfeifer et al. 2004;
Falahi-Ardakani 1984). The study area was mostly northwest
wind all the year round, so factor 4 reached the lowest value at
the place far away from the well-developed industrial areas
except for the C14 and C15 sampling points with upwind
direction. Thus, factor 4 came from air pollution.

Factor 5 was the main source of Co, Cr, and Ni, which was
different from factor 2 (Site 1) from the parent material; the
factor 5 of industrial zone only included a large number of Co,
Cr, and Ni, which was almost not related to other HMs.
Therefore, this factor was not the source of parent material.
Literature (Balaguru et al. 2019; Nagase et al. 2019; Shi et al.
2019) showed that Co, Cr, and Ni were the main pollutants in
the manufacture of cast iron, wrought iron, and steel. Cr and
Ni were mainly used in the manufacture of stainless steel and
corrosion-resistant alloy (such as nickel base alloy Ni-Cr-Mo).
Controlling Co content was an important step in the
manufacturing process of steel and corrosion-resistant alloy.
The contribution of this factor to the C5, C8, C18, and C19
sampling points reached the highest value. Combined with the
industrial distribution near the sampling area, it can be seen
that there were metallurgical, steel manufacturing or building
materials manufacturing plants in above four sampling points
of the industrial park. Therefore, this factor was the source of
iron and steel industry.

Factor 6 had a high relative concentration of As and Sn,
followed by Cu and Zn, and small amount of Cr and Co. The
principle was consistent with the analysis result of factor 1
in Site 1, which came from the pollution phenomenon caused
by the continuous accumulation of pesticides in the soil (Sun
et al. 2019). Because of historical soil pollution and other
reasons, agricultural pollution also existed in the soil of indus-
trial park. So, this factor originated from agricultural pollution.

Source apportionment

For the source analysis of HMs in Ningxia farmland, from the
comparison of contribution rate distribution of the two models
in Fig. 3, it can be found that the estimated contribution rate of
each potential pollution source was significantly different.
The estimated results of the APCS-MLR model showed that
the contribution rates of parent material, agricultural pollution
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or traffic pollution, and industrial emission were about 30%,
64%, and 5%, respectively. The PMFmodel estimated that the
related sources of parent material, pesticides, fertilizers, the
Yellow River silt, and industrial emissions accounted for
28%, 17%, 14%, 26%, and 15%, respectively. It can be seen
that (1) the results of the two models obtained the pollution
sources of soil parent material, agriculture, and industry,
which had certain guiding significance for the development
of prevention and control measures. (2) Compared with
APCS-MLR, the PMF model can more carefully distinguish
the difference of HM sources under different land types. For
example, in the mixed soil layer of the typical irrigation area of
the YellowRiver, factor 2 and factor 4 represented the original
soil source and the sediment source of the Yellow River, re-
spectively. (3) The PMF model was easier than the APCS-
MLR model in identifying pollution sources represented by
different source factors. As shown in Fig. 3, five factors of
PMF fitting were identified, while the APCS-MLR model
cannot determine whether factor 3 came from agriculture or
traffic pollution. This was reason that all HMs of this factor
were consistent with the assumption of two pollution sources,
so the APCS-MLR model was impossible to get more accu-
rate identification. (4) Because of the different operation prin-
ciples of the two models, the source allocation results of the
APCS-MLR model did not meet the physical meaning of the
real conditions; specifically, its contributions contained a lot
of negative values, such as the contributions of factor 1 to Cd,
Co, Cr, Cu, Mn, Pb, and Zn in all sampling points that
contained negative values, while the PMF model avoided this
problem by limiting the matrix value of the factor to be non-
negative.

For the source analysis of HMs in the industrial park, the
estimated results of the APCS-MLR model were that the con-
tribution rates of industrial pollution or traffic pollution, in-
dustrial pollution or agricultural-related sources were 61% and
39%, respectively. But, the PMF model estimated that the
related sources of parent material, coal mining, sulfuric acid
production, air pollution, steel manufacturing, and agricultural
pollution accounted for 10%, 9%, 11%, 31%, 23%, and 16%,
respectively. It can be seen that (1) the APCS-MLR model
showed lower reliability in the distribution results of contribu-
tion: the third source factor accounted for less than 1%, and
only included some As source, and the contribution rates to
other HMswere negative; thus, the pollution source represent-
ed by factor 3 cannot be accurately identified. (2) Compared
with the APCS-MLRmodel, the PMFmodel can more clearly
identify pollution sources of different industrial production
types. Because the area was an industrial park with many
types of industries and complex pollution sources, and the
degree of pollution was more inclined to point source pollu-
tion, such as steel plants near the C7 sampling point and
chemical plants near C18 and C19. It was clear that PMF
model can distinguish the components and different

proportions of major HM pollutants, but the APCS-MLR
model will not be achieved. APCS-MLR is only for statistical
analysis of experimental data, ignoring the process of data
source and then expanding the uncertainty of its source appor-
tionment results, which is the fundamental reason why PMF
analysis results are better than APCS-MLR.

Combined with the above analysis, we found that the anal-
ysis results of the two models had certain guiding significance
for the agricultural areas with light pollution degree and sim-
ple pollution source. But for industrial areas with complex
pollution sources, the APCS-MLR model cannot distinguish
different industrial sources. Therefore, the APCS-MLRmodel
is recommended in the absence of reliable experimental error
data, or in the light pollution area for source analysis.
However, under the condition of sufficient data, PMF can
provide more sufficient source analysis results for two differ-
ent land use types.

Conclusions

In this study, the results of comparison of APCS-MLR and
PMF models under two different land use types showed that
for light pollution and simple pollution sources, both models
could obtain good results. Under sufficient basic data (exper-
imental error, etc.), PMF model was better. And the PMF
model could more easily identify pollution sources and distin-
guish the HM-related sources than the APCS-MLR model.
The results of source apportionment indicated that the PMF
model was more consistent with the actual situation and pro-
vided research on the analysis of HM sources under two dif-
ferent land use types.

In conclusion, the results of quantitative source identifica-
tion and apportionment showed that HM pollution existed in
two land use types. Among them, HM pollution in Zhongwei
City farmland mainly came from agricultural pollution (57%),
including pesticides (17%), fertilizers (14%), and the Yellow
River irrigation (26%). The unique mode by the Yellow River
irrigation made the soil greatly affected by the water quality
and sediment of the Yellow River. Thus, the improvement of
the water quality and irrigation mode of the Yellow River not
only affected the health of aquatic organisms, but also played
an important role in the food safety of the people along the
Yellow River. Meanwhile, optimized utilization rates of fer-
tilizers and pesticides should be selected according to the
needs of soil quality and crop demand in different areas. On
the other hand, HM pollution in Shizuishan industrial park
mainly came from various local industrial production (43%)
and air pollution (31%). The identification of pollution
sources will conducive to the targeted formulation of emission
standards and the implementation of corresponding remedia-
tion. Through the division of pollution contributions, the con-
struction of green ecological park will be gradually realized
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from the industries with more serious pollution and greater
harm.
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