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Abstract

Irrespective of how plastics litter the coastline or enter the sea, they pose a major threat to birds and marine life alike. In this study,
an artificial intelligence tool was used to create an image classifier based on a convolutional neural network architecture that
utilises the bottleneck method. The trained bottleneck method classifier was able to categorise plastics encountered either at the
shoreline or floating at the sea surface into eight distinct classes, namely, plastic bags, bottles, buckets, food wrappings, straws,
derelict nets, fish, and other objects. Discerning objects with a success rate of 90%, the proposed deep learning approach
constitutes a leap towards the smart identification of plastics at the coastline and the sea. Training and testing loss and accuracy
results for a range of epochs and batch sizes have lent credibility to the proposed method. Results originating from a resolution
sensitivity analysis demonstrated that the prediction technique retains its ability to correctly identify plastics even when image
resolution was downsized by 75%. Intelligent tools, such as the one suggested here, can replace manual sorting of macroplastics
from human operators revealing, for the first time, the true scale of the amount of plastic polluting our beaches and the seas.

Keywords Artificial intelligence - Environmental monitoring - Image classification - Machine learning - Marine pollution - Object
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Introduction the world are currently not satisfactory, the virtually insatiable
demand for plastics generates huge volumes of waste. Not

Plastic debris in the natural environment is a well-known fact  surprisingly, more often than not waste finds its way from

(Eriksen et al. 2014; Newman and Crawley 2014; Suaria and
Aliani 2014), which is becoming more acute as the yearly
production of plastic materials has ballooned from 322 million
tons, in 2015, to 348 million tons, in 2017 (PlasticsEurope
2017, 2018a, b). Because waste management efforts across
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users to the physical environment, the coast and the oceans.
Wind, effluent water, shipping activities, natural disasters,
hurricanes, and many other means can carry waste from the
mainland and shorelines to the seas, while the final destination
of effluent solids is a matter of debate (Andrady 2011; Cozar
et al. 2015; Jambeck et al. 2015; Woodall et al. 2014). An
example of a natural disaster is the tsunami that struck Japan
in March 2011. The Japanese government estimated that the
tsunami washed 5 million tons of litter out to the sea as the
water receded (National Oceanic and Atmospheric
Administration (NOAA) 2015). Once objects reach the sea,
water currents and surface waves can distribute them to vari-
ous geographical areas be they costal zones, the oceans, sub-
marine locations, or even at the deepest seabed (Corcoran
et al. 2009; Pierdomenico et al. 2019). At the sea surface,
the five subtropical gyres, namely, the North and South
Pacific Ocean, the North and South Atlantic Ocean, and the
Indian Ocean, feature the highest concentration of floating
marine debris (Cozar et al. 2014; Lebreton et al. 2018).
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According to Lebreton et al. (2018), 79 thousand tons of
plastic debris over an expanse of 1.6 million square kilometres
floats at the sea surface. Interestingly, the Mediterranean Sea
harbours a similarly high concentration of floating plastics,
which is estimated to be between 1000 and 3000 tons
(Cozar et al. 2015). Other efforts to trace open ocean geo-
graphical hotspots where an abundance of marine debris is
more likely to congregate were conducted with the aid of
multistage modelling and remote sensing techniques (Mace
2012). To this end, the study utilised a combination of models,
satellite, radar, and multispectral data and airborne remote
sensing tools. In parallel with their increasing abundance, as
time passes by, plastic materials in the marine environment
decompose into smaller fragments, known as microplastics
and eventually into nanoplastics. Microplastics measuring
5 mm or smaller in size, whose ubiquity in the oceans is well
documented, in many cases can prove fatal to marine life
(Andrady 2011). When ingested, plastics can fill the stomach
of marine creatures (Barboza et al. 2018; Lusher et al. 2015),
and owing to their indigestible nature, they can cause death by
starvation (Cole et al. 2011; Nelms et al. 2015). Recently, the
toxicity of plastics was recognised and reported in some
micro-organisms but pending further scientific verification
(Gallo et al. 2018). The epidemic of plastics entering the sea
warrants urgent action if humanity is to stave off a collapse in
fish stocks. The matter is of paramount importance consider-
ing that 3.2 billion people depend on fish for 20% of their
mean per capita intake of animal protein (FAO 2018).

Given the impact of plastics in the marine environment, it
will be prudent to include the concentration of microplastics
as one of the Blue Flag beach criteria. Presumably, this idea
will prompt sunbathers to take steps towards limiting the re-
lease of plastics at beaches. Meanwhile, larger size plastics,
also known as macroplastics, should attract the same attention
as microplastics do because their accumulation across the
world’s seas progressively increases with time. Accurate esti-
mates of the amount of plastic litter in the marine environment
are hard to come by. Therefore, the development of new
methods for the detection, classification, and collection of
floating marine debris is critically important. Such methods
could capitalise on artificial intelligence (AI) that is
characterised by some unique capabilities already demonstrat-
ed in other applications.

Deep learning (DL) tools, which fall under the Al family,
have been applied in a plethora of areas including medicine,
decision-making, government, and others (LeCun et al. 2015).
Al techniques have successfully attempted many unsolved
problems lending superb performance to applications from
image recognition (Farabet et al. 2013; Krizhevsky et al.
2012; Szegedy et al. 2015; Tompson et al. 2014) to the recon-
struction of brain circuits (Helmstaedter et al. 2013) to speech
recognition (Hinton et al. 2012; Sainath et al. 2013) and the
analysis of particle accelerator data (Ciodaro et al. 2012;
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Mikolov et al. 2011). The high accuracy that Al tools can
provide inspired the authors to develop an image classifier
tailor-made to detect the main types of marine debris—
especially plastic debris—across the world’s oceans and
beaches. Initial attention focused on identifying floating
macroplastics on or near the surface of seawater (Kylili et al.
2019). In this line of investigation, a more sophisticated meth-
od is proposed, which is capable of discerning plastic debris
scattered at coastal areas and the shorelines. One of the prima-
ry objectives was to develop a robust and flexible image clas-
sifier able to categorise a diverse spectrum of plastic litter. To
attain the task, the Al tool used here is a convolutional neural
network (CNN), which employs the bottleneck method (BM).
More details about the BM are explained in “Method,” which
describes the approach.

Related work

Detecting marine debris floating at the surface of the sea was
until recently a manual task. Prevailing methods for identify-
ing and classifying marine debris are predominantly conduct-
ed by humans. Firstly, debris is collected using surface net
tows (Galgani et al. 2013) that are hauled by boats (Barnes
et al. 2009; Goldstein et al. 2013; Ruiz-Orejon et al. 2016).
Once retrieved from the sea, these items are sorted out manu-
ally and ranked into distinct object categories. Hence, the
sampling process is rather limited in scope, time demanding
and entails substantial human input to deal with the various
steps. Moreover, the sampled areas tested by these methods
are, however, small relatively to the sheer size of the zones,
which harbour marine litter, while the deployment of marine
vessels for expeditions is accompanied by appreciable finan-
cial expenses.

Encouraged by the need to automate the process while
gaining more insights as to the distribution of floating objects
has led to the invention of a new breed of methods for
collecting and categorising marine debris. Autonomous vehi-
cles remotely controlled by humans, drones, and cameras
mounted onboard ships are some of the means deployed to-
date to tackle the problem of plastics at sea. Aerial surveys
using drones fitted with high-definition cameras filmed coast-
al areas that are not easily accessible by humans (Moy et al.
2018). Recorded airborne footage obtained during these mis-
sions was later collated, using image processing tools, to cre-
ate a mosaic of images. Subsequently, researchers manually
identified possible marine debris captured in the combined
mosaic images. Even though drones are popular, their limited
flight time severely restricts their reach.

One initiative intended to automate the classification and
recognition of waste in the environment is the Floating Litter
Monitoring Application (FLM App), which guides observers
to upload pictures of debris floating in rivers, or at beaches,
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and tag the images from a drop-down list, which displays
various object categories (Gonzalez-Fernandez and Hanke
2017). The intention of the FLM App was to create a large
database of labelled images of debris and to use them to train
an image classifier, utilising machine learning techniques, so
as to automate the labelling process. But no evidence has been
published to-date to prove that this method was further im-
proved. The research team of Ge et al. (2016) proposed a
partially unattended method for recognising marine debris
on beaches. Team members used the remote sensing tech-
nique of light detection and ranging (LIDAR) and the support
vector machine (SVM) classifier to categorise marine debris
into four general categories: (1) plastics, (2) paper, (3) clothes,
and (4) metallic material. This work is a semi-automatic tech-
nique and requires a lot of post-processing to categorise ma-
rine debris into their respective classes. Other devices, such as
ultrasonic sensors, can equip robots to perform indoor
autonomous trash detection (Kulkarni and Junghare
2013). Their robot estimated the position of the nearest
stationary trash (aluminium can) using two ultrasonic
sensors. Subsequently, the robot was automatically
instructed to approach the nearest trash.

Besides the detection of waste on coastal areas and the
shorelines, research teams are working on detecting and iden-
tifying trash underwater with the help of autonomous under-
water vehicles (AUVs). Carefully examining the recorded
videos, an observer manually extracts image frames and con-
structs an image-set consisting of “plastic” litter. Next, these
snapshots were used to train a CNN-based trash detector.
Finally, the authors applied the garbage detector on new
videos featuring underwater marine debris and assessed the
performance of their technique in terms of categorising three
possible categories. These comprised “plastic,” which refers
to marine debris made of plastic, underwater “remotely oper-
ated vehicles” (ROVs) that are man-made devices, and “bio”
that include all visible marine life (Fulton et al. 2019). By
being able to detect only three categories of objects, the trash
detector exhibits limited capabilities. Differentiating among
the plastic items will offer new insights as to the level of
pollution affecting the sea floor. Deployed with AUVs, for-
ward looking sonars (FLS) have also shown promise in de-
tecting submerged marine debris (Valdenegro-Toro 2016).

This paper presents an image classifier created using a DL
method, which can identify images of plastic debris in the
marine environment, that is, at the shoreline and the seawater.
More specifically, the CNN-based classifier can distinguish
between six types of plastic debris and one type of marine life.
Moreover, it is also able to recognise objects that are neither
plastics nor marine life and rank them in the “other” category.
Summarising, the contributions of this paper comprise (a) an
image classifier that can distinguish between eight types of
objects: six types of plastic debris, one type of marine life
and other items, and (b) a method capable of recognising litter

encountered in the marine environment either on the shoreline
or the sea.

Method
Overall framework

To take advantage of prevailing sizeable datasets tested on
existing classification tasks as well as to apply a particular
CNN architecture whose efficiency has been proven, we have
adopted the bottleneck method (BM). As a way of saving time
and conserving computational resources the approach adopted
in this research was to exploit the features’ extraction layers of
an existing CNN. Making use of the image features assimilat-
ed from a sufficiently large image database obviates the need
to assemble a large database dedicated to the specific classifi-
cation task investigated here. These learned features are valu-
able for a variety of computer vision problems because they
yield a higher level of accuracy that would have been other-
wise attained only by relying on available data.

Applying the selected CNN, in this case the VGG16, the
approach described above has produced a very high perfor-
mance. In short, the motivation was to activate the
convolutional part of the model, which does not include the
fully connected layers. Subsequently, this part of the model
was applied once on the training image dataset while logging
the output of the bottleneck features. Finally, the proposed
fully connected model, formulated on the classification task
of identifying marine debris, was trained on the already stored
features. Summarising the complete framework, Fig. 1 depicts
the creation of the classifier.

The VGG16 model

The CNN technique adopted in this research is the VGG16
model. Structurally, the algorithm consists of 16 layers and
was pre-trained on millions of images from the ImageNet
database—a database of over 14 million images divided into
1000 classes (Simonyan and Zisserman 2014). Because im-
portant image features have already been learnt during the pre-
training phase, the model can be applied to other classification
tasks, such as discerning marine debris, while realising an
enviable level of accuracy.

A schematic representation of the VGG16 model is
summarised in Fig. 2. The block diagram depicts how an image
inserted into the VGG16 model is processed so as to extract
indispensable image features. Subsequently, an image is fed into
the Convolutional Block 1, which consists of convolutional
layers and max-pooling layers. A convolutional layer is respon-
sible for organising the units of an image into feature maps, while
a max-pooling layer merges the semantic features of these units
into a unified feature map (LeCun et al. 2015). Next, an image
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Fig. 1 Overall framework of the
proposed marine debris image
detection methodology
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5—just before the fully connected layer. Here, the fully connect-
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The BM optimisation procedure

The optimisation procedure of the BM image classifier is
formalised by means of an iterative descent of gradients in
the loss function quantifying, thus the error in predictions
(weights). As an approximation to the true gradients, image
processing utilised the mini-batch stochastic gradient descent
with the Adadelta learning rate. The Adadelta learning rate
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method for gradient descent was selected after a thorough
investigation indented to identify a suitable optimiser capable
of executing the image classification tasks described in this
paper. More details regarding the adoption of the Adadelta
method are elaborated in Kylili et al. (2019). The loss function
for a batch of N samples was derived from the categorical
cross-entropy loss function:

1
N

M=
Ma

Loss = — q(xic)logp (xic) (1)

1

Il
-
N
Il

where N is the total number of samples and C is the total count
of classes. Term ¢ is an indicator factor, which assumes a
value of 1 only if sample x; . belongs to its category c, else it
is assigned a 0. Parameter p is the estimated probability pro-
duced by the model for sample x; belonging to category c.
Probability p is obtained from the “Softmax” function:

Cexp (xC) (2)
> exp(x))

Jj=1

p(x), =

where probability p is a normalised exponential that accepts as
input a C-dimensional vector x and generates as output a C-
dimensional vector p of real values ranging between 0 and 1.
Term x,. refers to the elements of vector x.

Dataset

The dataset used in this study consists of eight (8) categories
of objects: six types of plastic debris, one type of marine life,
and one category labelled as “other,” which comprises articles
such as boats, shipping containers, rocks, and swimmers.
Plastic bottles, plastic buckets, plastic bags, fishing nets, plas-
tic straws, and food wrappings make-up the six categories of
plastic litter, while the flying fish refers to marine life. The
images were mainly retrieved from ImageNet, a vast online
database of images categorised into various classes
(Krizhevsky et al. 2012). Non-profit Algalita has also kindly
provided us with marine debris images and videos acquired
during their boat expeditions dating in 2014. Figure 3 displays
a sample from these images. Images available in the ImageNet
dataset may not be suitable for autonomous systems.
However, the use of transfer learning has demonstrated that
such datasets are extremely useful for autonomous systems or
realistic marine debris detectors. Here, the VGG16 was pre-
trained on the ImageNet database, which consists of 14 mil-
lion images subdivided into 1000 classes, to assimilate generic
image features. Followed then, another image dataset
consisting of marine debris images at the sea and the shores
as well as images belonging to the “other” category was used
to train the BM image classifier (Kylili et al. 2019). This is

related to the fact that this dataset, used for training the clas-
sifier through transfer learning, consists of images that were
retrieved from different sources (ImageNet, Algalita) that are
comparable to a collection acquired by an autonomous image
acquisition system. The validation and test steps were per-
formed on separate datasets that differ from the training set
and were retrieved from various sources similar to what one
could expect from an autonomous image acquisition system
(Algalita 2014, National Oceanic and Atmospheric
Administration NOAA) 2018).

This research constitutes a major improvement of previous
efforts, which dealt with the classification of plastic debris
floating at the sea surface (Kylili et al. 2018; Kylili et al.
2019). Progress relates to the BM structure where the authors
examined in detail some internal parameters that increase the
classification accuracy of the proposed method. For example,
the number of epochs was increased to 50, the batch size was
reduced to 5, the regulariser £; ¢, value was set to 0.001,
while the percentage of images utilised in the training and
testing sets was kept constant at an analogy of 80:20.
Presumably, the modification that influenced the most the
performance of the proposed image classifier was the number
of images dedicated to the mini-batch. Compared with earlier
research contributions of Kylili et al. (2018) and Kylili et al.
(2019), the changes to the preceding parameters yielded a 4%
improvement in the ability of the BM to identify marine debris
and other categories.

Both the structure and the inner workings of the BM tech-
nique remained essentially unaltered during these modifica-
tions so as to permit the comparison between the different
experiments. An additional contribution of this work was the
enrichment of the image dataset. All new images added to the
expanded dataset were carefully selected so as to ensure a high
correlation of the object portrayed in the image with the func-
tion of the proposed BM image classifier. Moreover, the new
images, which expanded the image-set, were of high resolu-
tion. In parallel, images, which exhibited lower resolution or
did not clearly depict marine plastics, were discarded.
Consequently, being more selective with the images resulted
in a reduction to the number of images, in each object class,
from 250 to 200 images.

While conducting various experiments, it became apparent
that the image resolution of the training and testing sets played
an instrumental role to the ability of the BM classifier to dis-
cern specific marine objects. Taken together the enhanced
quality and better images partly explain the improved perfor-
mance of the image classifier. Suffice to mention that all of the
marine litter was either floating on the sea surface or rested
about in the marine environment. Furthermore, this dataset
contains images of plastic debris encountered at the shoreline.
This enrichment renders the proposed BM image classifier
suitable for identifying debris in different settings. Another
contribution of this research pertains to the diversification of
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Fig. 3 Examples of images retrieved from the initial image-set. Object a
is a plastic bag and item, b is a plastic bottle floating at the sea surface,
respectively. Body c is a partly submerged plastic bucket, while image d
depicts a food wrapping in seawater. Label e pictures a ghost fishing net

the number of marine debris categories from three to eight
supplemented also by a new class on marine life. Notably,
the addition of the “other” category enhances the usefulness
of the proposed method by rendering it able to distinguish
marine debris from some unrelated objects that can be encoun-
tered at the coast.

Concurrently with broadening the number of categories, one
would expect a deterioration in the aptitude of the classification
technique to recognise marine bodies at the expense of greater
computational effort. This is reasonable as the performance of an
image classifier is strongly correlated with the pool and the qual-
ity of the images contained in the new categories. But if the new
dataset is comprised of high-resolution images that display good
representations of marine plastics, the performance of the CNN
technique can improve. In contrast, if the recalibrated dataset is
made-up of low-quality images it is expected to adversely affect
the performance of the BM.

Collectively, the initial image-set features eight categories
of objects each containing 200 images. The limited number of
images seems not to affect the performance of the proposed
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about to be recovered on board a boat. Image f displays plastic straws,
while g shows a flying fish. Last, h is a motor boat, an example of an
object drawn from the “other” class. Courtesy: ImageNet (Krizhevsky
etal. 2012)

image classifier, as we have expanded the original dataset
through the use of data augmentation (DA) manipulations.
These manipulations apply different types of changes to the
original image dataset, either through geometric modifications
or changes in intensity or both. Experiments conducted by the
authors in the past have revealed that increasing the number of
augmented images can result in a higher classification accura-
cy. Nevertheless, there is a limit in the number of manipula-
tions that an image maybe subjected to. In this case, DA ad-
justments generated almost 25 new images from every image
in the original image-set. Hence, the final image-set contains
4000 images in each object class with the total number of
images amounting to 32,000. Both the image dataset used to
train our approach and its code have been partly released on
our website (www.carbonlab.eu).

Training set and testing set

The final image-set was then divided into two subsets: the
training and the testing sets. Of the two, the training set was
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used to train the BM image classifier and the testing set to
assess its performance. Using the splitting function, 80% of
the images of the final image-set was assigned to the training
set and the remaining 20% to the testing group. The selection
of the 80% and 20% proportion of images, respectively, de-
rives from a detailed study, which aimed to enhance the per-
formance and reliability of the BM tool (Kylili et al. 2019).
Each training category contained 3200 images, while discrete
testing classes featured 800 images. In aggregate, the total
training samples comprised 25,600 images, whereas the over-
all testing samples consisted of 6400 images.

At the end of the training process, the training accuracy and
the testing accuracy were obtained from:

TP + TN

Accuracy = s (3)
where letters TP refer to the true positives, which are the
positive samples whose predicted class has been correctly
matched. Acronym TN refers to the true negatives, which
are the negative samples whose actual class is their negative
predicted class. Finally, TS are the total samples that have
been tested by the BM image classifier.

Validation set

In building a new image database called the validation set, a
number of new images were collected for the eight categories.
This set was used to validate the performance of the BM
classifier. The difference between the validation set and the
previous sets is that the BM image classifier never encoun-
tered or trained on these validation images before. These im-
ages were processed through the BM for the first time
allowing us to map out its capability of generalising, which
means to correctly classify the input images (validation
accuracy).

Results

This section outlines the results obtained from the training,
testing, and validation of the BM image classifier. The aim
was to boost the capability of the BM technique in achieving a
high level of prediction as it pertains to the class where the
input image belongs. “Qualitative and quantitative evalua-
tion” describes the qualitative and quantitative evaluation of
the classifier, while “Validation results” outlines the valida-
tion results. All calculations were executed on an Intel®
Xeon® machine equipped with an Intel CPU Core E5-2630
v3 (2.40 GHz) with 48.0 GB of memory (RAM) and an
NVIDIA Quadro K4200 graphics card, clock-rated at
784 MHz with 28.6 GB of memory.

Qualitative and quantitative evaluation

After assigning the network weights owing to the Rectified
Linear Unit (ReLU) initialisation, we used stochastic optimi-
sation relying on the Adadelta optimiser with a learning rate of
0.001. Practically, ReLU is an activation function that is linear
for input values greater than zero. In this case, the output value
is equal to the input value. However, for negative input values
ReLU behaves as a non-linear function. Under these circum-
stances, the output value always yields a zero value.
Mathematically, the ReLU activation function can be
expressed as g(z) =max {0, z}, where z is the input value
(Goodfellow et al. 2016). Additionally, regulariser £;_¢,, that
penalises the weights in the learning process and helps im-
prove the final accuracy of the method, was implemented.
Regulariser ¢, ¢, is a combination of the Ridge (£;) and the
Lasso (¢,) regression methods, and it was selected following a
detailed analysis, which identified the regulariser that best
fitted the accomplished classification task. According to
Kylili et al. (2019), regulariser £; ¢, produced the highest
validation accuracy when compared with regulariser £; and
regulariser ¢, separately or in the absence of a regulariser.

Furthermore, the BM divides the training samples into groups
of images called mini-batches. For each mini-batch, the algorithm
calculates an error and updates its internal parameters (weights).
With the creation of all mini-batches, an average error is comput-
ed for the training and the testing process of the model. This error
decreases as the number of epochs, that is the number of times
that the whole training set is processed through the algorithm
progresses. By increasing the number of epochs, one would ex-
pect an improvement in the training and testing accuracy and loss
of the BM image classifier. Based on these observations, we
examined the following two scenarios in order to evaluate the
performance and trustworthiness of the BM image classifier.

The first scenario evaluated the performance of the BM
image classifier by varying the number of epochs. The second
scenario assessed the performance of the method by altering
the number of images allocated to the mini-batch. Regarding
the first scenario, two cases were investigated during which
the BM algorithm was permitted to execute (1) 6 epochs and
(2) 50 epochs. For this investigation, 10 images were assigned
to each mini-batch. Findings pertaining to the training and the
testing performance of the 50 and the 6 epochs are displayed
in Figs. 4 and 5, respectively. Closer inspection of Fig. 4 a and
b, for 50 epochs, offered inspiration to further examine wheth-
er the BM performance past epoch 6 (cross-over between
training and loss) embraces some unwanted training image
features. These traits were reflected by the fluctuations in the
testing loss (Fig. 4a). To appraise this assertion, the BM was
tested by permitting it to progress until epoch 6. As illustrated
in Fig. 4 aand b, 50 epochs scored a training accuracy of 98%
at a training loss of 0.10. The testing accuracy of the 50 epoch
run (Fig. 4b) peaked at 95% at a testing loss of 0.20.
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Fig. 4 a Displays the model training and testing loss curves, while b
shows the respective accuracy curves after 50 epochs

Meanwhile, the 6 epoch run (Fig. 5 a and b) produced a
training accuracy of 93% with a loss of 0.25. Likewise, the
testing accuracy dropped to 92% at a loss of 0.29. Comparing
the two cases of the first scenario, the BM, which was permit-
ted to run for 50 epochs, yielded higher training and testing
accuracy and a smaller error in relation to the 6 epoch com-
putation. Clearly, the BM image classifier improves itself pro-
gressively on every epoch, and if the number of epochs is
adequate the overall accuracy would progress up to a certain
level. Results from the 50 epoch case are comparable to the
findings of a previous investigation during which the image
classifier was built on three categories of marine debris, name-
ly, plastic bottles, plastic buckets, and plastic straws. For the
record, the training accuracy attained in previous research by
the authors was almost 100%, while the testing accuracy
amounted to about 99% (Kylili et al. 2019).

Referring to the second scenario, three cases were devised
to assess the performance of the BM image classifier.
Collectively, the three cases, which featured 5, 10, and 16
images (batch size), made-up the mini-batch. For all cases,
the number of epochs was set to 50. The performance of the
proposed image classifier, using different batch sizes, is
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Epoch

Fig. 5 a Presents the training and testing loss and b shows the accuracy
curves, respectively, for 6 epochs

depicted in Fig. 6. Since the training loss and training accuracy
for all batch sizes were comparable, only the respective testing
loss and accuracy are presented. The top graph of Fig. 6 shows
the testing loss for each batch size, while the bottom graph of
Fig. 6 depicts the corresponding testing accuracy. Batch size
5, as demonstrated in Fig. 6a, exhibits the highest loss 0f 0.22
compared with the other two batch sizes of 10 and 16, which
yielded a testing loss 0 0.20 and 0.18, respectively. Inspecting
Fig. 6b, which displays the testing accuracyi, it is evident that
for all batch sizes the testing accuracy reached a peak of al-
most 96%.

Summarising, the 50 epochs and batch size of 16 generated
the highest training and testing accuracy, while it produced the
lowest loss of about 0.18. At the same time though the vali-
dation accuracy is the most important parameter, which gov-
erns the method’s performance and mirrors how well the
learning process fared during the training process.

Validation results

The performance of the BM image classifier was eval-
uated on the validation set, which the classifier never
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Fig. 6 a Shows the testing loss of the BM image classifier for three
different batch sizes: 5, 10, and 16. b Presents the testing accuracy of
the method for all of the cases

encountered or trained at before. The validation accura-
cy was computed from
Validation Accuracy = S 4)
TS
where CP are the correct predictions, which are the
validation samples correctly identified by the image
classifier and TS is the total number of validation sam-
ples. As it can be observed in Fig. 7, the BM image
classifier was able to discern the different categories of
marine debris and label each image with its respective
class. The classifier successfully assigned the correct
label to an image even though some of the images
contained other distractions, such as the chain shown
in the “Net” snapshot (Fig. 7). Besides correctly identi-
fying marine debris and other images, the BM image
classifier has at various instances falsely recognised ob-
jects such as those depicted in the collage of Fig. 8.
Regarding the first scenario, the bar chart of Fig. 9 summa-
rises the performance of the BM obtained from 400 validation
samples or 50 images for each class. With a validation accu-
racy of 88.7% and 89%, respectively, the 50 epochs and the 6

epochs realised an almost identical performance. Examining
each class separately, it is evident that for the “Bucket,”
“Fish,” and “Straw” categories the 50 and the 6 epoch cases
yielded the same number of correct image identifications.
Tests on images featuring bottles produced almost the same
results with a difference of £+ 1 image, as illustrated in Fig. 9.
In relation to the plastic “Bag” and “Wrap” (Wrapping), the
discrepancy in identifying the objects stands at =4, while for
“Net” and “Other” it ranged between + 5. More specifically,
the BM image classifier having completed 6 epochs generated
the highest validation score for the “Bag” and the “Net,” while
for the “Wrap” and the “Other” classes, the 50 epoch classifier
was more accurate. Remarkably, the overall validation perfor-
mance of both BM image classifiers built on 50 epochs and 6
epochs, respectively, remained almost identical at 89%, which
means that 356 validation samples out of 400 were correctly
identified. Hence, in this investigation the performance of the
BM appears to be independent of the number of epochs as
demonstrated by the validation accuracy.

Shifting attention to the second scenario (Fig. 10), it is
apparent that varying the number of images in the mini-
batch (batch size) yields a slightly different validation accura-
cy. Of these, batch size 5 produced the highest validation
accuracy of 90% or 360 correct classifications out of 400
validation samples. Batch size 10 and 16 generated a slightly
lower validation accuracy of 88.7% and 88.2%, respectively.
Interestingly, the validation results contrast with the testing
loss of the qualitative and the quantitative evaluation (Fig. 6)
in which batch size 5 scored the highest loss and yet the best
validation accuracy (Fig. 10). Because the performance and
trustworthiness of the BM image classifier is better served by
the validation accuracy, it is recommended to select the com-
bination of batch size 5 and 50 epochs. Concluding, the rec-
ommended BM image classifier attained a training accuracy
of 98% with a training loss of 0.13, a testing accuracy of 96%
and a testing loss of 0.22 accompanied by a validation accu-
racy of 90%.

Another idea that aimed to test the capabilities of the bot-
tleneck method to recognise plastics at the coast and the sea
dealt with an external parameter, namely, the resolution of the
images. Image resolution is an important parameter since a
high-resolution depiction is characterised by richer informa-
tion with presumably good quality making it easier for the BM
classifier to successfully discern plastic debris. To test how
sensitive and effective the image detection technique is to
resolution, it was decided to vary the resolution of the images
in a systematic manner. In this regard, the resolution (pixels
per inch) of the validation set images was gradually reduced
by 50%, 75%, 87.5%, and 93.75% of their original size.
Subsequently, the truncated size images were processed
by the BM image classifier probing in this way the
evolution of its competence in telling whether the same
images contained plastics.
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Fig. 7 Some examples of the successful recognition of images, at the coast and the sea, conducted by the BM image classifier. Labels display the correct items

Results presented in Fig. 11 reveal the total correct classi-
fications as a function of image resolution. Strikingly, the BM
image classifier retained the same high performance in
distinguishing between the different categories of plastic de-
bris despite a drastic reduction in the resolution of the valida-
tion images (Fig. 11). In other words, the algorithm is capable
of identifying marine debris even from very poor resolution
images. It is only when the resolution of images was scaled
down by ¥4 (75%) of their original size that the ability of the
BM classifier to correctly recognise marine debris deteriorated
dramatically. Because the findings of this research study were
obtained from images which exhibit much higher average

Fig. 8 Some examples of the
unsuccessful recognition of
images conducted by the BM
image classifier. Labels denote
false items

@ Springer

resolution (125 pixels per inch) compared with the reduced
size images which suffered a 75% reduction in quality (30
pixels per inch), the results of the deep-learning technique
presented herein appear credible.

Conclusion

The method expounded in this paper is based on
convolutional neural networks (CNNs) that utilise the bottle-
neck method (BM) to create an image classifier for discerning
marine plastics at the shoreline and the sea. The BM image
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Fig. 9 Classification results. Bar chart depicting the correct classification
samples obtained for the 50 epochs (blue bars) and 6 epochs (misty rose
bars). Overall, both cases scored a performance of 89%, meaning that
356/400 images were correctly recognised

classifier that learnt on the training set was evaluated on the
testing set with its performance assessed on the validation set.
Two scenarios were examined in this study, which gauged the
performance of the technique. Initially, the first scenario ex-
amined the variation in the number of epochs, while the sec-
ond scenario varied the size of the mini-batch. Results from
the two scenarios demonstrated that the BM image classifier
of 50 epochs and batch size 5 achieved the highest validation
accuracy of 90%.

Arithmetically, the 90% accuracy means that 360 out of the
400 images featuring plastics or from another category were
correctly identified by the BM. Thus, the BM image classifier
formulated on these parameters can recognise and differenti-
ate between plastic debris and other objects, like fish and
unrelated bodies found in the marine environment, with a very
high level of accuracy rendering the method reliable. The fact
that the machine learning technique proposed herein can dis-
tinguish between plastic debris from marine life and other
unrelated bodies render this classifier a powerful tool in the
fight against marine litter at sea as well as on land. As the
number of categories of marine objects grows, one would
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Fig. 10 Validation accuracy for varying batch sizes, spanning from 5 to
10 and 16 images. As indicated by the negative trend line, batch size 5
performs better than the batch sizes 10 and 16
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Fig. 11 Resolution dependence. This figure presents the total number of
correct classifications on validation images when reducing the resolution
by 50%, 75%, 87.5%, and 93.75%. Interestingly, the performance of the
BM image classifier retains its capability even with 3/4 of reduction in
resolution

expect the performance of the BM image classifier to deterio-
rate. Apparently, this is not happening in the case presented
here since the proposed method not only does it maintain its
performance but it fares better in relation to the three object
classes (plastic bottles, plastic buckets, and plastic straws)
investigated before by Kylili et al. (2019).

Underpinning previous results, the resolution dependence
investigation revealed that the quality of the images used in
the 8 categories of our investigation was sufficiently high and,
therefore, lend credibility to the findings. This is reflected by
the fact that even when the images retained only 25% of their
initial resolution size, the BM image classifier was still able to
correctly pinpoint marine debris. This is an important obser-
vation as the BM retains its capabilities to correctly differen-
tiate plastic debris even in inferior quality images. Other than
the broad diversity of objects that the proposed BM image
classifier can recognise, it can successfully identify debris
irrespective of whether they are encountered in the sea or the
shore. Depending on the scene in which the object appears, it
could trick the image classifier to erroneously recognise an
item. However, as evidenced from the findings presented in
this study the BM classifier has proved very reliable in iden-
tifying plastic objects either in the sea or the coast. Simply put,
this performance ranks the BM image classifier as robust and
multitasking.

Despite its merits, the BM technique exhibits certain short-
comings. For example, the BM classifier is able to identify
marine debris items from still images. That is, the BM can tag
the class of the plastic debris featured in a snapshot image
scene. One other limitation that is strongly related to the clas-
sification accuracy of the BM is that the images, which made
the dataset, were manually selected. At the outset, the manual
selection ensures the high correlation of the images with the
purpose of the proposed image classifier. Only images with a
good representation of plastic debris were among those which
made it into the dataset. Considering the difficulties of manu-
ally selecting the images from various sources, we were
bounded by the finite number of available images. Overall,
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200 images were collected for each class. With the aid of data
augmentation manipulations these images were later on ex-
panded to 4000 per class. Moreover, from the plethora of
types of plastic debris encountered in the marine environment,
the proposed BM image classifier can classify the eight pre-
dominant classes. These comprise six types of plastic debris,
one species of marine life, and the “other” class. In the near
future, we plan to expand the number of categories that the
BM can identify in order for the technique to become even
more broad in scope. Currently, the proposed approach does
not focus on a specific geographical region, but it is rather
generic in nature. Incorporating geospatial information and
temporal details in the output result of the BM classifier is
another forthcoming goal. For that to happen the original cam-
era or video-camera will have to tag the captured images and
footage onsite.

Concluding, the BM image classifier proposed in this study
constitutes a significant step to the creation of an intelligent
identification system for tracking plastic debris in various set-
tings like the sea and the shoreline. It is worth mentioning that
the most common way of sorting out marine debris is manu-
ally conducted by humans. Clearly, the method recommended
here can automate the process of classifying debris into sev-
eral categories, giving a high validation accuracy at a moder-
ate computational effort. Owing to the fact that the BM image
classifier is fast, rigorous, and reliable renders it a highly
promising intelligent tool for recognising marine plastics.
Ultimately, it is envisioned that this research work will con-
stitute a leap forward towards mapping with more accuracy
the abundance of plastic litter in the marine environment help-
ing humanity craft more efficient strategies in tackling them.

Future work

As already explained, the proposed image classifier was
grounded on a CNN technique, that is, the BM classifier. In
turn, the BM derives from the VGG16 pre-trained model.
Among other future plans it will be meaningful to test the
performance of other CNN methods on the same database.
One state-of-the-art CNN method that appears promising is
known as the You Only Look Once—version 3 (YOLOV3).
Preliminary results associated with the application of the
YOLOV3 algorithm (Redmon and Farhadi 2018) on the
customised image-set produced comparable results to those
of'the BM proposed herein. Certain attributes that differentiate
YOLOV3 from the BM are the multi-object detection in an
image scene as well as the (near) real-time object classification
and localisation in video footage featuring marine debris.
While running more experiments using YOLOV3, it will help
to change its internal parameters. Such changes are expected
to generate valuable results regarding the technique’s dexter-
ity to identify marine debris. Ultimately, we plan to apply

@ Springer

YOLOV3 in real-time on videos so as to study the abundance
of plastic debris across the shorelines of Cyprus.
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