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Abstract
Although the number of cholera infection decreased universally, climate change can potentially affect both incidence and
prevalence rates of disease in endemic regions. There is considerable consistent evidence, explaining the associations
between cholera and climatic variables. However, it is essentially required to compare and interpret these relationships
globally. The aim of the present study was to carry out a systematic review in order to identify and appraise the literature
concerning the relationship between nonanthropogenic climatic variabilities such as extreme weather- and ocean-related
variables and cholera infection rates. The systematic literature review of studies was conducted by using determined
search terms via four major electronic databases (PubMed, Web of Science, Embase, and Scopus) according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. This search focused on
published articles in English-language up to December 31, 2018. A total of 43 full-text studies that met our criteria have
been identified and included in our analysis. The reviewed studies demonstrated that cholera incidence is highly
attributed to climatic variables, especially rainfall, temperature, sea surface temperature (SST) and El Niño Southern
Oscillation (ENSO). The association between cholera incidence and climatic variables has been investigated by a variety
of data analysis methodologies, most commonly time series analysis, generalized linear model (GLM), regression
analysis, and spatial/GIS. The results of this study assist the policy-makers who provide the efforts for planning and
prevention actions in the face of changing global climatic variables.
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Introduction

Environmental factors are likely to be affected by climate
change as the result of direct and indirect impacts. The rise
in mean global temperature due to anthropogenic activities
and increased fossil fuel consumption and CO2 emissions
can lead to melting of glaciers, rising sea levels, and increased
risk of extreme weather (floods, storms, and heat waves)
which can indirectly cause long-term drought, food shortages,
natural disasters, and health risks. The rate of infectious dis-
eases such as malaria, diarrhea, and cholera could be changed
by changing climatic conditions which together lead to more
than 3 million deaths per year (Campbell-Lendrum et al.
2007). Cholera is known as an acute diarrheal disease caused
by a free-living, nonspore, and gram-negative bacterium
called Vibrio cholerae (V. cholerae). Its natural milieu is both
fresh- and saltwater environments (Colwell 1996; Nkoko et al.
2011), and the best environmental conditions are water tem-
perature of 30 °C, 15% salinity, and pH = 8.5 (alkaline envi-
ronments) (Chowdhury et al. 2017). It was reported that there
are nearly 1.3 to 4.0 million cholera cases and 21,000 to
143 , 000 de a t h s g l ob a l l y ev e r y y e a r (Week l y
Epidemiological Record 2017). The total number of cases
reported to WHO in 2017 was 179,835, 13,818, and
1,034,123 for Africa, the USA, and Asia, respectively.
Therefore, cholera has been remaining as one of the most
important global health threats, especially in low-income
and developing countries (Weekly Epidemiological Record
2018). The disease can be transmitted person-to-person, espe-
cially by the food and waterborne mode which is highly asso-
ciated with insufficient access to sanitation, poor hygiene,
inadequate safe water supplies, and food contamination. In
other words, this disease is known as an indicator of depriva-
tion and absence of social development (Taylor et al. 2015).

It was indicated that the transmission and incidence of
cholera are significantly influenced by environmental param-
eters such as seasonality (Hashizume et al. 2010; Pascual et al.
2002), temperature (Luque Fernández et al. 2009; Olago et al.
2007), rainfall (Hashizume et al. 2008; Ruiz-Moreno et al.
2007b), sea surface temperatures (SST) (Bouma and Pascual
2001), and the El Niño Southern Oscillation (ENSO) events
(Nkoko et al. 2011; Pascual et al. 2002; Ramírez 2014).
Periodic variation in the sea surface temperature (El Niño)
and the air pressure of the atmosphere (Southern Oscillation)
in the equatorial Pacific Ocean is known as ENSO which has
environmental and socio-economic effects globally
(McPhaden et al. 2006; NOAA n.d.). The reviewed papers
showed the most cholera endemic regions are Bangladesh,
India, Haiti, Nigeria, Ethiopia, the Democratic Republic of
the Congo (DRC), Tanzania, and Kenya with more than
100,000 cases per year (Ali et al. 2015). It was reported by
WHO that Yemen with more than one million suspected cases
per year followed by DRC and Somalia with 56,190 and

75,414 cases, respectively, had the highest numbers of cholera
cases in their recent history (Weekly Epidemiological Record
2018, b). On the continent of Africa, in Kenya, changing in
rainfall patterns and inadequate health equipment were recog-
nized as the most important parameters in the incidence of
cholera disease (Stoltzfus et al. 2014). However, in some re-
gions of Africa, there was found a complex relationship be-
tween the incidences of cholera and rainfall. So that, increas-
ing in rainfall during El Niño time periods led to rise in the
number of cholera, while decreasing in rainfall end to increase
the number of cholera cases in other regions (Moore et al.
2017). This pattern of rainfall could happen in the same re-
gion. The dual pattern of rainfall on cholera can be attributed
to “dilution” impact of rainfall on pathogen concentration in
the environment and then increasing its effect on secondary
transition during rainfall extreme events (Ruiz-Moreno et al.
2007a). It also was reported that a significant correlation be-
tween the high temperature and the incidence of cholera in
Tanzania and Zanzibar (Reyburn et al. 2011; Trærup et al.
2011). The similar results were observed in Bangladesh to
report the relationship between aforementioned climatic pa-
rameters and the incidence of cholera (Hashizume et al. 2008;
Hashizume et al. 2010; Islam et al. 2009). Droughts, floods,
and their related factors such as river discharge, changing in
rainfall, and monsoon patterns can influence on not only the
concentration of pathogens in water bodies but also the nutri-
ent concentration, salinity, pH, and finally on the survival of
the bacterium. As the consequent, human exposure and sus-
ceptibility to cholera infection can also be increased by chang-
ing these phenomena and subsequently decreasing the sani-
tary conditions levels (Jutla et al. 2011; Pascual et al. 2002).
As the relationship between cholera incidence and climatic
variables has been investigated by a variety of data analysis
methodologies in different regions around the world, it is crit-
ically important to combine and compare the results of these
studies to assist national and international policy-makers
which provide the redouble efforts for planning and preven-
tion actions in the face of changing global climatic variables.
Therefore, the main aims of our study were to summarize and
assess the existing universal findings of previous studies that
reporting climate variability, extreme weather, ocean related
variables, and their effects on the incidence of cholera.

Methods

Search strategy and study selection

We applied the strategies of the Preferred Reporting Items for
Systematic Review and Meta-Analysis Protocol (PRISMA)
and MOOSE guidelines to conduct the systematic search
(Shamseer et al. 2015; Stroup et al. 2000). We searched orig-
inal research studies published in English language with no

34907Environ Sci Pollut Res  (2020) 27:34906–34926



restriction on year or country up to December 31, 2018. The
searched databases were EMBASE, Scopus, Web of Science,
and PubMed databases. Combinations of search terms from
two categories (climate change keywords AND cholera key-
words) were applied to search for the relevant literature.
Search terms related to climate change were “Climate
Change” OR “Climate” OR “Global warming” OR
“Weather” OR “Precipitation” OR “Heat” OR “Rain*” OR
“Drought*” OR “Temperature” OR “Humidity” OR
“Flood*” OR “Season*” OR “Runoff” OR “variability” OR
“ENSO” OR “El Nino” OR “sea surface temperature,” and
cholera keywords were “Cholera” OR “Vibrio cholera” OR
“Diarrhea”OR “Water-borne disease”OR “Water-related dis-
ease.” The EndNote X7.4 (Thomson Reuters, New York,
USA) was used to manage the imported citations, and dupli-
cated papers were checked and removed. In the case of un-
available papers, however, the full texts were requested from
the authors by e-mail. We applied only the abstracts (if it
contained enough information) while the author did not an-
swer our e-mail, or finally, papers were excluded from our
study.

The original research studies were included, but reviews,
letters, non-English language papers, conference abstracts,
short communications, news articles, and posters were exclud-
ed from our study. The articles included if (1) they published
in peer-reviewed journals, (2) the outcome measures were
incidence or the number of cholera cases, (3) they included
methods to assess the effect of climatic variables on incidence
of cholera, and (4) they reported at least one continuous year
data. The search strategy is presented in Fig. 1.

Screening and data extraction

Included articles were screened according to the title
and abstract information by evaluation of two indepen-
dent reviewers (ZA and AB). The two reviewers have
compared their results and resolved differences by con-
sulting the other authors (MG and HM). In the second
step, the full text of qualified studies was assessed by
authors (ZA, AB, SN, MK, and YM). The extraction of
data was done using a standardized form to determine
the eligible studies. The specific questions in the con-
tent of methods and applicability were determined and
are presented in S1. The required data from scientific
papers were recorded in the summary tables based on
the specific questions and applied factors, including the
name of the first author, year of publication, country,
study outcome, study design, main results, and limita-
tions. We did not include exposure/outcomes and signif-
icant quantitative summary statistics because of hetero-
geneity in the designing of systematic review study.
Furthermore, quality analysis of the included studies
was not undertaken.

Results

Overall, 13,083 articles were identified by designated litera-
ture search on the four abovementioned databases. After ex-
cluding duplicates, 10,900 articles were evaluated based on
title and abstract. In the screening step, 10,841 were unrelated
to the purpose of our study and were excluded. Finally, the
remaining 59 studies were reviewed for eligibility evaluation
which at the end, 43 full-text articles met the inclusion criteria
(Fig. 1). Methodology, exposure, results, and assessed lag
time were eligible for the systematic review and are summa-
rized in Table 1. The analysis of the findings is summarized
below.

Where were the included studies investigated and for
which time periods?

Themajority of the reviewed studies (67%) were performed in
Bangladesh and several countries in Africa which about more
than one-third of the total studies belong to Bangladesh (n =
17). No scientific articles were reported upon in the developed
countries in Europe and North America except one in
Sweden (Table 2). Almost all of the reviewed studies were
conducted in underdeveloped and developing countries. Eight
publications were investigated at the national and state scale
(Constantin de Magny et al. 2006; Gil et al. 2004; Ngwa et al.
2016; Ramirez and Grady 2016; Ramirez et al. 2013;
Semenza et al. 2017; Stoltzfus et al. 2014; Trærup et al.
2011), twenty-eight studies provided effect estimates at the
district level (Akanda et al. 2011; Akanda et al. 2009; Cash
et al. 2014; Constantin de Magny et al. 2012; Eisenberg et al.
2013; Emch et al. 2010; Hashizume et al. 2008; Hashizume
et al. 2013; Hashizume et al. 2010; Islam et al. 2009; Jutla
et al. 2011; Koelle et al. 2005; Lama et al. 2004; Lobitz et al.
2000; Luque Fernández et al. 2009; Ohtomo et al. 2010;
Pascual et al. 2000; Pezeshki et al. 2012; Rajendran et al.
2011; Ramírez 2014; Reyburn et al. 2011; Rodo et al. 2002;
Ruiz-Moreno et al. 2007a; Sebastian et al. 2015; Speelmon
et al. 2000; Wu et al. 2018; Xu et al. 2014), three studies were
done at the several national and district scale (Constantin de
Magny et al. 2008; Emch et al. 2008; Jutla et al. 2013), and
five papers were at the continental scale (Constantin de
Magny et al. 2007; Moore et al. 2017; Olago et al. 2007;
Paz 2009; Rieckmann et al. 2018). All articles were published
from 2000 to 2018.

It can be estimated that almost 95% of all published
reviewed papers were reported that the cholera incidence
was investigated over extended periods of time from 1960 to
2016. However, two papers were performed in India and Haiti
which investigated the effect of weather variables on the chol-
era incidence from 1901 to 1940 and 1875 to 1900, respec-
tively (Fig. 2). The greatest number of included papers used
the time unit of months (almost 63%, n = 27) while daily,
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weekly, seasonality, and yearly units were allocated in
11.63%, 18.60%, 2.32%, and 4.65% of studies, respectively
(Fig. 3).

Which climate variables were affected cholera
incidence and what were their effects?

The climate variables which have been considered in the
reviewed studies included rainfall, air temperature, ENSO in-
dices, relative humidity (RH), SST, sea surface height (SSH),
river discharge, flood, drought, Indian Ocean Index (IOI)/
Indian Ocean Dipole (IOD), and chlorophyll variables (Fig.
4). Each study recognized one or more climatic variables that
contributed to the cholera incidence and had a role in the
transmission of the disease. Among these factors, rainfall,
SST/SSH, temperature, and ENSO were the most important
variables in all studies. A smaller portion of papers included
other environmental variables (e.g., RH, solar activity,
chlorophyll).

Rainfall More than 58% (n = 25) of the articles described the
relationship between cholera incidence and rainfall, and in
most of them, rainfall had an important role in cholera epi-
demics. A strong positive association between rainfall patterns
and cholera epidemics was determined in Ghana (Constantin
de Magny et al. 2006); Kolkata, India (Constantin de Magny
et al. 2008); Tanzania (Reyburn et al. 2011); Ghana, Togo,

Benin, and Nigeria (west of Africa) (Constantin de Magny
et al. 2007); Cameron (Ngwa et al. 2016); and Zambia
(Luque Fernández et al. 2009). Furthermore, the analysis of
cholera incidence in Peru between 1997 and 1998 (Ramírez
2014) and 1996 to 1999 (Ramirez and Grady 2016), with the
consideration of the 1997–1998 El Niño, demonstrated that
rainfall was strongly correlated with the cholera incidence, but
there was no evidence of an El Niño–cholera association in the
earlier part of the decade (Ramirez and Grady 2016). The
daily record of the cholera cases between May and
December 2005 over the 11 regions of Senegal emphasized
that the dynamics of cholera disease are linked strongly with
heavy rainfall during the winter season (Constantin de Magny
et al. 2012). In India (Bengal), cholera cases between 1996
and 2008 were significantly correlated with moderate to
highest (> 7 cm) rainfall as an ideal condition for
V. cholerae infection (Rajendran et al. 2011). In addition,
the increased risk of cholera in Haiti (Eisenberg et al. 2013)
and Peru (Ramirez et al. 2013) was associated with heavy
rainfall as the most significant influenced factor. Contrary to
above discussed studies, cholera incidence was negatively
correlated with India rainfall at a long period in Bangladesh
(Koelle et al. 2005); it was related to below average rainfall in
India/Pakistan (Jutla et al. 2013), and also, it was significantly
related to lower precipitation from July to December in Iran
(Pezeshki et al. 2012). Several articles were found both nega-
tive and positive correlations between the cholera incidence

Fig. 1 PRISMA flow diagram describing paper selection through the different phases of a systematic review
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and rainfall because of complex rainfall–cholera relationship
and also spatial and temporal variations. In India, a negative
correlation was observed between cholera and rainfall in the
southern region of Madras, while a positive association was
found in the northeast cluster (Ruiz-Moreno et al. 2007a). In
Dhaka, Bangladesh, the number of cholera cases was in-
creased from 14 to 24% for each 10 mm increase and decrease
in rainfall above and below the threshold (45 mm), respective-
ly (Hashizume et al. 2008). In another study in Bangladesh, at
the end of the monsoon, increasing rainfall caused a peak in
cholera disease, while in the spring, decreasing rainfall pre-
dicted growth in the number of cholera cases (Hashizume
et al. 2010). Cholera in Kenya had a negative association with
rainfall from April to June, but it was changed to a positive
relationship between October and December (Stoltzfus et al.
2014). During El Niño periods in the regions of East Africa,
the higher cholera disease rates were observed during the peak
of rainfall months, while in some regions, there was a negative
association between rainfall and cholera occurrence (Moore
et al. 2017). In some cases, no significant association was
detected between cholera incidence and rainfall (Islam et al.
2009; Trærup et al. 2011; Wu et al. 2018). The results of a
study on Cholera in Bangladesh and Vietnam illustrated that
rainfall was not associated with cholera in Bangladesh, while
rainfall decrease the possibility of cholera outbreaks by 4–7%
in Hue, Vietnam, and increase the probability of cholera by
10% inNha Trang, Vietnam (Emch et al. 2008). In India, there
was a significant positive correlation between rainfall and the
number of cholera cases during 2000–2004, but there was not
found any correlation between 2005 and 2010 (Sebastian et al.
2015). Similar findings of these disconnected connections
were also found in Peru (Ramirez and Grady 2016). This
highlights the nonstationarity of climate and cholera link. In
some regions, rainfall was influenced by ENSO events and the
intermittent warming of surface waters in the equatorial
Pacific Ocean which are discussed in the next section.

Air temperature We assessed 17 articles that examined the
association between air temperature and cholera infection
rates. Although, different definitions were applied by these
articles, including minimum, mean, and maximum tempera-
tures over yearly, monthly, weekly, and daily periods. The
analysis results in different studies demonstrated that temper-
ature rising positively affects the variability of the cholera
incidence in Peru (Speelmon et al. 2000), several countries
in East Africa (Kenya, Tanzania, Uganda) (Olago et al.
2007), Zambia (Luque Fernández et al. 2009), Bangladesh
(Islam et al. 2009), Cameron (Ngwa et al. 2016), and also
Iran (Pezeshki et al. 2012). After the strong El Niño 1997–
1998 and rising the environmental temperature in Lima, Peru,
the reported cholera cases were increased compared to the
entire decade (Lama et al. 2004). In Southeastern Africa coun-
tries, including Uganda, Kenya, Rwanda, Burundi, Tanzania,T
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Malawi, Zambia, and Mozambique, cholera cases between
1971 and 2006 were multiplied by 1.87 with increasing in
annual mean air temperature by 0.1 °C (Paz 2009). Lower
incidence of cholera in 1983–2008 was related to lower tem-
peratures in the first 15 weeks of the year in Bangladesh
(Hashizume et al. 2010), and also, cholera cases detected be-
tween 1998 and 2004 in Tanzania had a significant positive
correlation with maximum and minimum temperature

(Trærup et al. 2011). In 1875–1900, the chances of cholera
epidemic in India and Pakistan increased sixfold by increasing
the temperature above the average. They demonstrated that
almost 50% of the cholera outbreaks happened when the air
temperature is higher than 31 °C (Jutla et al. 2013). A higher
number of cholera cases in the latter half of the 1990s were
reported by two different studies in Piura which was correlated
significantly with the mean and maximum of air temperatures

Fig. 2 The study period of scientific articles included in the systematic review

Table 2 Number of scientific articles included in the systematic review according to the cholera outcome in each country

Africa Asia Americas Europe

Country Number Country Number Country Number Country Number

Africa* 5 Bangladesh 17 Peru 6 Sweden 1

Tanzania 2 India 5 Haiti 2

Kenya 1 Iran 1

Cameron 1 Pakistan 1

Senegal 1 China 1

Zambia 1 Vietnam 1

Ghana 1

Total 12 Total 26 Total 8 Total 1

*Scientific articles which have done in several counties in Africa
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after El Niño 1997–1998 (Ramírez 2014; Ramirez and Grady
2016). There was no significant association between monthly
cholera cases and temperature in Bengal and Vellore, India
(Rajendran et al. 2011; Sebastian et al. 2015), and also in
Bangladesh and Vietnam (Emch et al. 2008). However, the
results of a study in Tanzania showed that cholera incidence
had a positive and negative correlation with the minimum and
the maximum temperature, respectively (Reyburn et al. 2011).

SST/SSH Cholera transmission has sometimes been influenced
by SST or SSH. Out of the reviewed studies that met our
quantitative inclusion criteria, 14 articles were evaluated this
association with just SST, while four papers were examined
the effect of both SST and SSH and cholera disease transmis-
sion. According to the reviewed studies, cholera incidence in
local coastal of Bangladesh (Akanda et al. 2011; Cash et al.
2014; Koelle et al. 2005; Lobitz et al. 2000; Ohtomo et al.
2010), Peru (Gil et al. 2004; Ramírez 2014; Ramirez and
Grady 2016; Ramirez et al. 2013), Swedish (Semenza et al.
2017), and China (Xu et al. 2014) were positively correlated

with SST/SSH. In Ghana, during a 20-year study period
(1975–1995), there was a strong association between land
and sea surface temperature anomalies (LSTAs) and cholera
case incidence (Constantin de Magny et al. 2006). Between
1971 and 2006, in the southeastern African countries, includ-
ing Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi,
Zambia, and Mozambique, the cholera rates multiplied by
1.31 with 0.1 °C increase in the SST (Paz 2009). Increases
in SST were the most influential on cholera outbreaks in Hue,
Vietnam, whereas in Nha Trang, SSH had significant correla-
tion with cholera incidence (Emch et al. 2008). There was not
reported a significant relationship between cholera incidence
and seasonal SST in Bangladesh (Emch et al. 2008; Emch
et al. 2010; Jutla et al. 2011). Although, Emch et al. was found
a negative significant correlation between cholera incidence
and SSH during the pre-monsoon period (Emch et al. 2010).
Reyburn et al. did not detect any effect of SST and SSH on
cholera disease in Tanzania (Reyburn et al. 2011), and
Constantin de Magny et al. removed the factor of SST from
their applied model in Bangladesh because of an anomaly in
the single grid point or the 5° grid box mean (Constantin de
Magny et al. 2008).

ENSO More than 23% of reviewed studies examined the ob-
served or the modeled ENSO in their analysis in which half of
them were conducted in Bangladesh (n = 5). Although, most
of the studies examined the warm phase of ENSO, El Niño.
Analysis of monthly cholera between 1980 and 1998 in
Bangladesh by Pascual et al., as the first to quantify the
ENSO–cholera link, showed that changes in the atmospheric
circulation of south Asia led to regional temperature anoma-
lies and subsequently the influence of ENSO on cholera inci-
dence (Pascual et al. 2000). This observation was confirmed
by another study that analyzed the cholera cases in
Bangladesh from 1980 to 2001 and found a strong association
between cholera and ENSO events in the last 20 years (1980–

Fig. 4 The climate variables
included in the reviewed papers

Fig. 3 Time units used in all studies included in the systematic review
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2001) (Rodo et al. 2002). However, cholera cases which had
been detected between 1991 and 1998 in Peru were not linked
with ENSO (Lama et al. 2004). Cholera transmission demon-
strated an obvious interannual variation with the strong corre-
lation by SST in the Bay of Bengal and ENSO in a short
period of time (under 7 years), during 1966–2002 in
Bangladesh (Koelle et al. 2005). In addition, the relationship
between cholera hospitalizations and the ENSO did not re-
main constant during 25 years (1983–2008) in Bangladesh
and 5–6-year long coherent cycles between ENSO and chol-
era rates were indicated (Hashizume et al. 2013). The results
of another study in Bangladesh have shown that the increasing
in monsoon rainfall and SST corresponded to ENSO event
and led to an increase in the post-monsoon cholera outbreaks
(Cash et al. 2014). Two different studies were performed in
Peru: first, of the period 1990–1992, the cholera emergence
contributed to ENSO neutral (La Niño) conditions rather than
El Niño (Ramirez et al. 2013) and, in the second one, it was
reported that a strong link existed between El Niño and chol-
era cases in the latter part of the 1990s while no correlation
was found in the earlier part of the decade (Ramirez and Grady
2016). In another study in Peru, climate anomalies during the
1997–1998 El Niño such as the rising in sea surface level and
air temperatures (by several months) and also increasing the
amount of rainfall and decreasing the maximum temperature
(concurrent) caused a rise in cholera infection in 1998
(Ramírez 2014). Essentially, the ENSO link was mediated or
facilitated by rainfall, demonstrating a connection between
global and local climate. SST rising change rainfall pattern
inland in coastal Peru and other regions which can effect on
cholera incidence (Ramirez and Grady 2016). The analysis of
cholera incidence in East Africa between 1978 and 1999
(Olago et al. 2007) and 2000–2014 (Moore et al. 2017) indi-
cated that El Niño events and related rainfall had close posi-
tive association with cholera disease outbreak.

Chlorophyll Out of the reviewed studies that met our quanti-
tative inclusion criteria, 6 papers were evaluated the correla-
tion between chlorophyll concentration and cholera disease.
The cholera incidence in India (Kolkata) and also in
Bangladesh (Matlab) of the period of 1998–2006 had a statis-
tically significant relationship with chlorophyll concentration
(Constantin de Magny et al. 2008) which was similar to the
relationship of chlorophyll values and cholera prevalence in
Bangladesh (Akanda et al. 2011; Emch et al. 2008). However,
these relationships were not seen in Tanzania (1997–2006)
(Reyburn et al. 2011) and Vietnam (1983–2003) (Emch
et al. 2008). In another study in Matlab, Bangladesh, ocean
chlorophyll concentration was positively correlated with chol-
era during the pre-monsoon period, while there was no rela-
tionship during the post-monsoon period (Emch et al. 2010).
Although the simultaneous ocean concentration of chloro-
phyll had no significant association with the cholera incidence

in China, the correlation became stronger as time was delayed
(Xu et al. 2014).

River discharge, flood, drought, and streamflow Correlation
of the cholera incidence with flood (n = 5), river discharge
(n = 3), drought (n = 2), and streamflow (n = 3) was assessed
in some studies. In a 20-year study period (1990–2010) per-
formed in sub-Saharan Africa, the cholera outbreak happened
in one of every 15 floods and one of every three droughts.
Floods and droughts were known as the most notable factors
associated with cholera outbreaks; however, due to long du-
rations of drought, the prevalence of cholera outbreaks was
higher during this phenomenon (Rieckmann et al. 2018).
During cholera outbreaks in Bangladesh between 1890 and
2000, spring cholera outbreaks were negatively related to
streamflow, but cholera rates in autumn were positively cor-
related to streamflow. In contrast, the highest cholera cases in
spring were observed during the strong drought years, while
the most autumn number of cholera cases was detected in high
flood years (Akanda et al. 2009). In a study that was conduct-
ed in three African countries (Kenya, Tanzania, and Uganda),
cholera incidence in long rains season occurred during flood
and streamflow, while throughout El Niño years, it was coin-
cided with high streamflow peaks in September, October,
November, and December. This pronouncement emphasizes
on the significant relationship between cholera rates and
flooding during these months (Olago et al. 2007). According
to the results of cholera outbreaks analysis (1980–2007) in
Bangladesh, streamflow and flood in July, August,
September, and October months had a remarkable positive
effect on the cholera incidence in summer and fall seasons,
but this relationship was not detected during wet season
(Akanda et al. 2011). The analysis results of a study in Peru
demonstrated that river discharge was strongly correlated with
cholera incidence (Ramirez and Grady 2016). This relation-
ship was negative in Bangladesh (Akanda et al. 2009; Emch
et al. 2008), while river discharge had a positive effect on
cholera in Nha Trang, Vietnam (Emch et al. 2008).

Other environmental variables A small proportion of
reviewed papers assessed the function of other environmental
factors such as RH (n = 4), IOI/IOD (n = 3), and solar activity
(n = 2) on the cholera occurrence (Fig. 4). The cholera inci-
dence was negatively correlated with solar activity from 1980
to 1998 in Bangladesh (Ohtomo et al. 2010), while further
studies have revealed that monthly cholera occurrence was
positively associated with sunshine hours (Islam et al. 2009).
Moreover, no significant correlation was found between mean
of relative humidity and cholera cases in India (2000–2010)
(Sebastian et al. 2015). Conversely, in another study in India
that examined the cholera outbreaks during 1996–2008,
monthly average of relative humidity was related to increases
in the cases of cholera disease during monsoon season

34916 Environ Sci Pollut Res  (2020) 27:34906–34926



(Rajendran et al. 2011). In addition, a similar relationship was
found in Tanzania between 1997 and 2006 (Reyburn et al.
2011). The cholera incidence in India (Kolkata) and also in
Bangladesh (Matlab) between 1998 and 2006 had a statisti-
cally significant relationship with chlorophyll concentration
(Constantin de Magny et al. 2008) which was similar to the
relationship of chlorophyll values and cholera prevalence in
Bengal Delta region of Bangladesh (Akanda et al. 2011).
However, these relationships were not seen in Tanzania
(1997–2006) (Reyburn et al. 2011). Although the simulta-
neous ocean concentration of chlorophyll had no significant
association with the cholera incidence in China, the correla-
tion became stronger as time was delayed (Xu et al. 2014).
The investigated relationship between cholera cases and
Indian Ocean Dipole index in Dhaka and Matlab,
Bangladesh (1983–2008), showed that cholera outbreaks were
associated with the strength of the IOD (Hashizume et al.
2013). In two different studies that were conducted in various
country in Africa, IOI was significantly correlated with chol-
era incidence during the early 1990s in the 2- to 4-year peri-
odic band (Constantin de Magny et al. 2007) and in the 2–3-
year periodic band from 1989 to 1995 (Constantin de Magny
et al. 2006).

Whatmethods and effect measures have been used in
the reviewed studies?

As demonstrated in Fig. 5, the most commonly used methods
in the reviewed studies were time series analysis, generalized
linear model (GLM), regression analysis, and spatial/GIS. As
can be seen from Fig. 6, the applied effect measures were
shown in the reviewed papers. Almost 44% of studies have
used coefficient of correlation (r) to assess the association
between the cholera incidence and climatic variables. The rest
of studies were reported outcome measures by using beta co-
efficient (β), risk ratio (RR), incidence rate ratio (Memish
et al. 2014), odds ratio (OR), attributable fraction (AF), inci-
dence rate (IR), and Moran’s Index.

Out of the selected studies, seven of them have used the
time series models to investigate the effect of climate factors
on the cholera incidence. Thesemodels was applied to analyze
time series data and extract significant statistics and other
characteristics of the data (Rangaswamy et al. 2013). A non-
linear time series approach was fitted by Pascual et al. to
evaluate the specific functions of the underlying factors such
as ENSO in the cholera incidence in Bangladesh by reporting
r as the effect measure (Pascual et al. 2000). In another study
in Bangladesh, three different techniques were used to dem-
onstrate the correlation between cholera rates and ENSO event
during 21 years (1980–2001) including, singular spectrum
analysis (SSA) for isolation of the interannual variability data,
maximum entropy method (MEM) for determination of fre-
quencies in the interannual patterns, and the time series

analysis for quantification the strength of the relationship be-
tween cholera and ENSO with the effect measure of r (Rodo
et al. 2002). Koelle et al. (2005), Jutla et al. (2013), and
Ramirez et al. (2013) also applied a time series method to
determine the association between local climatic variables
and cholera by using the coefficient of correlation (r) and
OR. The time series analysis method was used to investigate
the extensive periodic structure of cholera cases as well as the
association between cholera rate, solar activity, and El Niño.
This method was exerted alongside with spectral analysis
based on maximum entropy method (MEM) as a nonlinear
least squares (LSM) method. They used Kendall’s τb and
Spearman’s ρ as correlation coefficients (Ohtomo et al.
2010). Similarly, of the period 2000–2010 in Peru, different
methods of time series models such as Seasonal Auto-
Regressive Integrated Moving Average (SARIMA) model,
segmented regression model, auto-regressive model, and har-
monic regression model were used (Sebastian et al. 2015).

The generalized linear model (GLM) is a flexible general-
ization of linear regression which can be applied to find
highest likelihood estimation of parameters with observations
(Nelder and Wedderburn 1972). The GLM with different dis-
tribution models, i.e., negative binomial and Poisson regres-
sion models, was applied in seven studies. Poisson regression
models have been used to determine the possible correlation
between cholera disease and climatic variables. In a study
assessing the cholera outbreaks in sub-Saharan Africa, self-
controlled case series method was used as a sensitivity analy-
sis by adjusting the time-fixed confounding between coun-
tries. This method was inspired by the case crossover design
applying Poisson regression of the countries with just cholera
outbreaks (Constantin deMagny et al. 2008). In another study
in southeastern Africa, the possible relationship between chol-
era and the annual variability of SST and air temperature of the
period 1971–2006 was estimated by Poisson Regression
Model (Paz 2009). The effect measure in both aforementioned
studies was standardized by coefficients or β coefficients.
Hashizume et al. conducted two different studies to investi-
gate the correlation between weather factors and cholera cases
using Poisson regression models over the period of 1996 to
2002 (Hashizume et al. 2008) and 1983–2008 (Hashizume
et al. 2010) in Bangladesh; moreover, the effect measures
were β coefficients and AF, respectively. This method also
was applied to assess the significant associations between
cholera and climatic factors in Zambia (RR) (Luque
Fernández et al. 2009), Tanzania (RR) (Trærup et al. 2011),
and Cameron (Memish et al. 2014; Ngwa et al. 2016).

In statistical modeling, regression analysis is used to eval-
uate the relationships between a dependent variable and one or
more independent variables. It also widely used for prediction
and forecasting a phenomena. Linear regression is the most
common form of regression analysis which the correlations
are modeled by linear predictor functions (Freedman 2009).
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Lama et al. used multiple linear regression models to assess
the associations between ENSO and temperature and also
cholera incidence in Peru for the years of 1991–1998 (Lama
et al. 2004). In another study in Peru, regression analysis was
applied to assess the impact of higher air temperatures

associated with the 1997–1998 El Niño event on the increas-
ing of environmental V. cholerae and 1998 cholera outbreak
(Speelmon et al. 2000). Statistical analysis with linear regres-
sion demonstrated that cholera outbreaks occurred in the sum-
mer of 1998 were associated with the SST peak (Gil et al.

Fig. 5 The used data analysis methods included in the review papers

Fig. 6 The applied effect measure
included in the reviewed papers
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2004). Linear multivariate regression analysis was applied to
describe the influences of hydroclimatic on cholera transmis-
sion cycles (1980–2007) in Bangladesh (Akanda et al. 2011).
Linear regression model also was applied to estimate the ef-
fects of ENSO, rainfall, and flood related changes in cholera
incidence in Africa from 2000 to 2014 (Moore et al. 2017).
Five reviewed studies have exerted descriptive statistics such
as quantitative measures of dependence included Spearman’
rho (Cash et al. 2014; Xu et al. 2014), Pearson (Akanda et al.
2009; Ramirez et al. 2013), and Kendall’s tau (Akanda et al.
2009; Olago et al. 2007) to assess the impact of climate var-
iables on cholera incidence.

Cluster/spatial correlation analysis was also applied in
studies that investigated in India (with an effect measure of
Moran’s Index) (Ruiz-Moreno et al. 2007a) and Cameron
(Ngwa et al. 2016) to report cholera cases during 1901–1940
and 2010–2011, respectively. Conditional logistic regression
model and also correlations were used to investigate climatic
triggers, causing cholera disease in Sweden during 2006–
2014 (Semenza et al. 2017) and in Bangladesh of the period
1983–2009 (Wu et al. 2018), as well as the correlations were
estimated with effect measures of RR and OR, respectively.
Cross-wavelet coherency analysis, as a data analysis tech-
nique (geological time series), is a helpful mathematical tool
to detect the evolution of the nonstationarity series (with the
periodic behavior) and allow quantification of periodicity as-
sociations between time series. In addition, this method has
been used to investigate the ecological and epidemiological
spatial as well as temporal dynamics of disease (Constantin de
Magny et al. 2007; Rohani et al. 2003). This technique was
applied to examine the effect of climate variability on cholera
treats in Ghana during 1975–1995 (Memish et al. 2014;
Constantin de Magny et al. 2006) and on cholera dynamics
in Bangladesh between 1983 and 2008 (r) (Hashizume et al.
2013) and 1997 to 2009 (r) (Jutla et al. 2011) and in Peru for
the period 1991–2001 (β coefficients) (Ramirez and Grady
2016). The wavelet analyses were applied to assess the asso-
ciation of cholera incidence across the five West African
countries with IOI and rainfall (Constantin de Magny et al.
2007). In modeling seasonal time series with nonstationary
statistics for a specified season across the years, SARIMA
model is helpful (Abraham and Ledolter 2008). Out of the
studies, two different studies in India applied SARIMAmodel
to examine the effect of rainfall, temperature, and relative
humidity on cholera disease during 1996–2008 in Bengal (r)
(Rajendran et al. 2011) and between 2000 and 2010 in Vellore
(r) (Sebastian et al. 2015). Reyburn et al. were investigated the
relationship between relative humidity, temperature, rainfall,
SST/SSH, and CHL on cholera outbreaks between 1997 and
2006 in Tanzania (Reyburn et al. 2011) by reporting r as the
effect measure. Thirteen of forty-three reviewed articles used
less commonly analytical methods which included least
squares models (LSM) (r) (Ohtomo et al. 2010; Ramírez

2014; Ramirez and Grady 2016); generalized estimating equa-
tions (GEE) (Emch et al. 2010); singular spectrum analysis
(SSA) and maximum entropy method (MEM) (r) (Ohtomo
et al. 2010; Rodo et al. 2002); self-controlled case series
(SCCS) (IR and β) (Constantin de Magny et al. 2008;
Rieckmann et al. 2018); classification and regression tree
(Stoltzfus et al. 2014); principal component analysis (PCA)
(Islam et al. 2009); cross-correlation analysis (IR) (Constantin
de Magny et al. 2012); distributed lag nonlinear models,
“SIWR” model (OR) (Eisenberg et al. 2013); binominal mul-
tivariate binary logistic regression (β) (Pezeshki et al. 2012);
segmented regression model, auto-regressive model,
Harmonic regression model (r) (Sebastian et al. 2015); bivar-
iate and multivariate statistical models (Emch et al. 2008); and
multivariate analysis (RR) (Stoltzfus et al. 2014).

How long the temporal lag has been identified in the
reviewed studies?

More than 50% of reviewed studies quantified the temporal
lag for the happening/changing the weather conditions to the
cholera disease detection. The lag timings assessed in varia-
tion periods by published papers for different climatic vari-
ables in spite of the same disease. Monthly scales highlighted
as the importance of lag time in many studies. The analyzed
lag times effects in cholera rates varied extensively byweather
conditions and region (e.g., region with dry weather or abun-
dant rain). Therefore, the lags of rainfall effects were varied
between 0 and 14 months in India (Ruiz-Moreno et al. 2007a)
and Bangladesh (Koelle et al. 2005). Moreover, in two differ-
ent studies in Haiti, there was a rainfall–cholera relationship at
a lag of 6 days (Eisenberg et al. 2013; Jutla et al. 2013). A time
lag of 15–30 days was observed between rainfall and cholera
incidence in Cameron (Ngwa et al. 2016), Senegal
(Constantin de Magny et al. 2012), Zambia (Luque
Fernández et al. 2009), Ghana (Constantin de Magny et al.
2006), and Tanzania (Reyburn et al. 2011). There was also a
delay effect of 0 to 8 weeks for increase rainfall above the
threshold (45mm) and a time lag of 0 to 16weeks for decrease
rainfall below the same threshold in Bangladesh during chol-
era outbreaks in 1996–2002 (Hashizume et al. 2008). In other
cholera investigations in Bangladesh, low rainfall caused a
cholera peak in spring with 0–16 weeks lag and high rainfall
led to a peak at the end of the monsoon with 0–8 weeks
(Hashizume et al. 2010). In Piura, coastal area in northern
Peru, a time lag of 1 month was observed between rainfall
and cholera incidence during the 1997–1998 El Niño
(Ramírez 2014; Ramirez and Grady 2016), While the lag ef-
fect of rainfall on cholera incidence in Vietnam was estimated
at 2 months (Emch et al. 2008).

The lag effect of air temperature on cholera incidence was
evaluated in eight reviewed studies. The lowest lag time was
attributed to a study in Cameron with 2 weeks (Ngwa et al.
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2016) and followed by Peru with 3 weeks (Speelmon et al.
2000). It was also estimated 0–4 weeks in Bangladesh
(Hashizume et al. 2010), 4 weeks in Tanzania (Trærup et al.
2011), 6 weeks in Zambia (Luque Fernández et al. 2009), and
8 weeks in India (Jutla et al. 2013). The results of air
temperature–cholera correlation in Tanzania have shown that
cholera cases were negatively associated with maximum tem-
perature with 2 months lag and positively associated with
minimum temperature with 2–4 months (Reyburn et al.
2011). The highest lag time between air temperature and chol-
era incidence was observed in Peru with 6 months during
1991–2001 (Ramirez and Grady 2016), while it was 5 months
for the mean and the maximum temperatures in the same
region between 1997 and 1998 (Ramírez 2014). The lag effect
of ENSO on cholera incidence estimated in three studies in
Bangladesh with 11 months (Pascual et al. 2000), 8 months
(Rodo et al. 2002), and 9 months (Koelle et al. 2005). The lag
effect of RH was assessed in only one paper, in which the
results demonstrated that cholera outbreaks were positively
correlated with humidity at a lag of 5 months (Reyburn et al.
2011). Chlorophyll also was evaluated in India/Bangladesh
(Constantin de Magny et al. 2008) with 5 months lag and in
China (Xu et al. 2014) and Bangladesh (Emch et al. 2008)
with 2 months lag. The lag effect of SST/SSH on cholera
outbreaks was in the minimum with 2 weeks in Swedish
(Semenza et al. 2017), while it was in the maximum in
Bangladesh with 10 months (Koelle et al. 2005). In two stud-
ies in Peru, significant associations were observed between
SST and cholera transmission at lag 0–1 month (1997–1998)
(Ramírez 2014) and 4–6 months (1991–2001) (Ramirez and
Grady 2016). There was also a delay effect of 2 months for
SST and 1 month for SSH during cholera incidence between
1999 and 2008 in China (Xu et al. 2014) and 5.7 months lag
between LSTA and cholera incidence in 2–3 periodic band
during 1989–1995 in Ghana (Constantin de Magny et al.
2006).

Discussion

This review has recognized forty-three analytical research
studies to identify the climate change effects as the biggest
health threat on cholera disease rate. Our study included only
systematic reviewwhich investigated the relationship between
cholera incidences accrued during widely time period in the
different regions of the world to climate change factors in
reviewed published papers. Rebaudet et al. evaluated the ef-
fects of the environmental determinants on cholera epidemics
as a systematic review in just inland Africa (Rebaudet et al.
2013).We endeavor to provide a comprehensive evaluation of
the cholera incidence/prevalence related to climate change and
also report the knowledge gaps of relevant current published
papers.

It was depicted that most cholera cases recorded in coastal
areas such as Bangladesh, India, and Southeastern Africa
countries. It could be related to the natural presence of the
bacterium V. cholerae in coastal, riverine, and estuarine eco-
systems in which climatic changes alter its distribution and
occurrence (Constantin de Magny et al. 2008). Five impres-
sive features that have altered the outbreak patterns of infec-
tious disease, including cholera, are river basins, agriculture,
tourism, coastal systems, and human health. The changes in
climate change variables can extremely change these five fac-
tors. However, the disease patterns are different in some re-
gions of the world. For instance, European countries are ex-
posed to the climatic change effects, but cholera is not an
important public health problem (Deen et al. 2020).
According to previous literature, there are several important
similarities such as the risk factors, the transmission routes,
and the dynamics of cholera in areas worldwide where the
infection happens, but there are also vital differences in the
rate of disease. In Eastern Asia, cholera infection has seasonal
recurrence. In Yemen, cholera infection outbreak is unexam-
pled and is still continuing. Some areas of sub-Saharan Africa
have become endemic for the infection, while other parts have
apparently unforeseeable outbreaks. For several years, the
cholera is absent in the Americas but the infection has now
become endemic in some parts like Haiti. All in all, the world-
wide cholera picture continues to develop and will likely
change in the ongoing years. However, it seems that in the
coming time, cholera infection will continue to affect pauper-
ized populations without proper access to safe and adequate
water and also sanitation (Ciscar et al. 2011; Deen et al. 2020).

In the tropical Indian Ocean, variability in interannual cli-
mate could lead to sea level anomalies, changes in rainfall
patterns and flooding (Hashizume et al. 2013). In other words,
elevated rainfall and flooding were known as the intermediate
factors between SST anomalies and cholera incidence (Cash
et al. 2008; Cash et al. 2010; Ramirez and Grady 2016).
During four monsoon months, heavy rainfall led to flooding
and opened mixing of water between rivers, sewers, drains,
and water reservoirs which caused contamination of water
bodies on the submerged areas with V. cholerae (Akanda
et al. 2011; Akanda et al. 2009; Jutla et al. 2013). Heavy rains
also can cause nutrient runoff, leading to plankton bloom
changes in coastal areas (Ramirez et al. 2013). This enables
that the bacteria’s survival may increase with washing away of
predators of V. cholerae during heavy rainfall, enhancing po-
tentially the exposure rates. (Ramirez and Grady 2016).
Furthermore, the destruction of sanitation facilities such as
water and wastewater systems during flooding facilitated the
mixing of sewage with surface and ground waters and in-
creased the risk of population exposure with contaminated
water by V. cholerae especially in a society with poor avail-
ability to safe water (Curriero et al. 2001; Jutla et al. 2013).
The rainfall with complex pathways can have a dual role in
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cholera transmission. Cholera incidence can reduce organism
concentrations due to a dilution effect of rainfall or increase
contamination of water supplies by flooding (Ramirez and
Grady 2016). In another way, during low rainfall periods or
in the dry seasons, limited access to safe and sufficient water
and thereby lack of hygiene and adequate sanitation concerns
led to increasing the risk of cholera disease outbreak in the
exposed population (Hashizume et al. 2010; Rieckmann et al.
2018). Indeed, water scarcity in the dry seasons because of the
reduced volume of streamflow resulted in the intrusion of
salinity front followed by planktons moving toward the inland
freshwater and finally provides a proper condition for
V. cholerae growth (Akanda et al. 2011; Hashizume et al.
2013). Although, several studies have shown that both in-
creased and decreased rainfalls in the same region and same
time period are determining factors in rising the cholera inci-
dence (Hashizume et al. 2008; Hashizume et al. 2010; Moore
et al. 2017; Ruiz-Moreno et al. 2007a; Stoltzfus et al. 2014).
Overall, floods and droughts could affect the bacterium con-
centration in the human surrounding environment, the surviv-
al of the organisms (through effects on nutrient availability,
salinity and pH), human exposure to the bacterial pathogen,
sanitary environment, and susceptibility to the infection
(Hashizume et al. 2008). Moreover, within regions where
these climate parameters existed to maintain cholera transmis-
sion, seasonal variations in these factors could be the main
determinants of the intensity and duration of transmission
(Hashizume et al. 2010; Pascual et al. 2000; Sebastian et al.
2015).

Changing in the environmental factors could influence sea
surface temperature (SST), rainfall, nutrient availability, salin-
ity, and sea surface height (Xu et al. 2014). Warm phase of
ENSO, El Niño, also has potential impact on cholera trans-
mission through sea and air temperatures with their effects on
the phytoplankton bloom (Pascual et al. 2000). Evidence had
accrued to emphasize the correlation between ambient tem-
perature and cholera incidence (Lama et al. 2004; Luque
Fernández et al. 2009; Pezeshki et al. 2012; Ramirez and
Grady 2016). This correlation could be due to the acceleration
to the growth and multiplication of V. cholerae, which influ-
ences the abundance and also toxicity of V. cholerae in the
aquatic milieu. Indeed, warm water promotes plant or algal
growth and subsequent change in pH levels of aquatic envi-
ronments. It also influences on plankton blooms formation.
All changes provide favorable conditions for the multiplica-
tion of V. cholerae and increase the incidence risk of cholera
disease in the population (Constantin de Magny et al. 2008;
Wu et al. 2018). Two remote drivers of interannual climate
variability, ENSO events and SST anomalies, were known as
the effective factors on cholera transmission in several inves-
tigations located on the coastal part which subsequently could
increase the nutrient concentration and also phytoplankton
bloom (Akanda et al. 2011; Griffith et al. 2006; Lipp et al.

2002; Lobitz et al. 2000; Ramirez and Grady 2016). During El
Niño, below average air pressure and convective activity con-
duct warmer temperatures and heavy rains from the western
end to the eastern end of the Pacific Ocean basin. Elevated sea
surface temperature and height associated with El Niño can
lead to the promotion of plankton blooms and proliferation of
V. cholerae and also the transmission of contaminated waters
to the coast (Ramírez 2014). Moreover, other pathways of
SST impact on cholera incidence may have occurred via local
air temperature and rainfall as mediated (Ramirez and Grady
2016). One of the other climate models that lead to interannual
climate variations in the tropical Indian Ocean was the Indian
Ocean Dipole (IOD) which occurs by ocean–atmosphere in-
teractions and affect regional ocean climate (Yamagata et al.
2004). This event could strongly change the sea level varia-
tions which consequently can have an impact on rainfall,
flooding, and outbreaks of cholera (Constantin de Magny
et al. 2006; Constantin de Magny et al. 2007; Hashizume
et al. 2013). Favorable conditions such as raising temperature
in marine and estuarine environments with a large number of
phytoplankton and zooplankton, as a main marine reservoir of
V. cholerae, can influence the ecology of V. cholerae which
increase the transmission of the cholera disease to the human
population using untreated water (Constantin de Magny et al.
2008; Xu et al. 2014). Although, according to Jutla et al. re-
port, the impact of SST on cholera may be coincidental and
high or low river discharge influences the association between
SST and phytoplankton, so that nutrient runoff during heavy
rains and river discharge which may happen during strong El
Niños could affect the abundance of phytoplankton rather than
SST (Jutla et al. 2011; Ramirez et al. 2013). The results of
these studies were commonly consistent, indicating that the
epidemics of cholera were influenced by climate in most re-
gions. But despite finding a strong link between El Niño and
cholera, it may be complex and nonstationary. ENSO effects
can be “more sensitive” to the variability of ENSO character-
istics overtime, different landscapes, human communities, and
events (Constantin de Magny et al. 2007; Ramirez and Grady
2016; Rodo et al. 2002). Moreover, the characteristics of dif-
ferent ENSO events (e.g., effect on SST) should be assessed to
find how it can impact the transmission of disease (Ramirez
et al. 2013). It is important to note that the vital role of inter-
action between both extrinsic and intrinsic factors in determin-
ing infectious disease dynamics is demonstrated during refrac-
tory times. It was shown that when population susceptibility
levels are decreased due to immunity, then the size of cholera
outbreaks solely reflects climate forcing very weakly (Koelle
et al. 2005).

A range of diverse statistical methods has been applied to
study the effect of climate variables on cholera diseases which
included time series analysis, generalized linear model, and
linear/multiple regression analysis (Table 1). Some of them
were developing a prediction model for cholera according to
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climate relationships (Constantin de Magny et al. 2008;
Eisenberg et al. 2013; Pascual et al. 2000). The time series
analysis studies seek to directly investigate the relationship of
disease trends over time on historical and concurrent weather.
Epidemiological time series analyses of the nonstationarity
correlation between exposure covariates and disease dynamics
can evaluate with wavelet analysis. This method determines
whether the specific periodic cycle of disease incidence cor-
responds to its exposure covariate (Hashizume et al. 2013).
Standard GLMs such as negative binomial and Poisson
models were the basic methods (short-term associations).
The time series regression also was applied in studies that
explore the dependence of disease cycle on medium- or
long-term weather patterns such as ENSO (Imai et al. 2015;
Imai and Hashizume 2014). The spatial methods often
encompassed three main targets included: visual display of
target data or descriptive (GIS/choropleth maps), evaluating
global and local clustering by identified tests (spatial scan
statistics/Moran’s Index) and analyzing data to evaluate the
intensity of spatial processes (splines/kriging) (Diggle 2013;
Ostfeld et al. 2005). Time series regression with auto-
regressive model was applied in studies with forecasting ap-
proaches. In these studies, Box–Jenkins methods such as
SARIMA often used and forecast target disease in the short-
term future according to the historical weather data as predic-
tors (Iacono et al. 2017).

Many papers have assessed the importance of lag time
between climatic factors and cholera incidence. This delayed
effect could be explained by climatic variables which indirect-
ly influenced the incidence of cholera. Sources of this lag
compromise the time needed for the potential growth of
V. cholerae population in their environment, dynamics of ex-
posure, incubation period, and at the end delays in reporting
(Iacono et al. 2017). Depending on the respective lag between
the growth rate of microorganisms and the clinical symptoms,
the lag between income and outcome data can differ.
Understanding lag time could be helpful for an early notifica-
tion system in public health. The time lag was shorter for
maximum temperatures than minimum temperature
(Reyburn et al. 2011), shorter for high rainfall than low rainfall
(Hashizume et al. 2008; Hashizume et al. 2010), longer for
temperature than rainfall (Jutla et al. 2013; Luque Fernández
et al. 2009; Ramírez 2014; Ramirez and Grady 2016; Reyburn
et al. 2011), and very long for ENSO and SST (Pascual et al.
2000; Ramirez and Grady 2016; Rodo et al. 2002). The wide
variation in time lag by studies in spite of the same disease
could be due to the mechanism of cholera manifestation such
as incubation period and the transmission dynamics of
V. cholerae which play a critical role in the causal pathway.
Most of the reviewed studies used monthly data, but studies
with daily data units were less. In some cases, when the time
lags and incubation periods were short, using the longer time

unit (monthly) can lead to an underestimation of risk factors.
On the other way, studies conducted on vast geographic areas
or long-time scales may be failed in demonstrating the rela-
tionships that happen in country level or daily or weekly pe-
riods (Imai and Hashizume 2014; Naish et al. 2014).
Therefore, selection of the most biologically possible and ro-
bust time units was acceptable for analysis.

It is necessary to consider that the effects of climate vari-
ability on the burden of cholera disease are complex and de-
pend on several factors from local socio-economic to environ-
mental conditions. Different studies have shown that emerg-
ing infectious disease including cholera are associated with
changing seasons, natural disasters, global travel, war, and
several conditions that lead to inadequate sanitation, poverty,
and social disruption. Due to mentioned factors, cholera infec-
tion has frequently reemerged over more than couple of cen-
turies (Morens and Fauci 2013). Nowadays, despite remark-
able improvement in development of diagnostic and therapeu-
tic of cholera, the simplicity of world travel between different
nations and increased globalization has added various layers
of complexity to containing this infectious disease that affect
both the health and the economic stability of distinct societies.
This reemerging disease may cause public fear, economic
loss, human toll, and other adverse outcomes (Deen et al.
2020; Nishiura et al. 2017) .

Finally, it is important to note that according to the
Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report, the increase in fossil fuel con-
sumption and the consequent increase in CO2 emissions
from anthropogenic activities caused more than half of the
increase in global average temperatures from 1951 to 2010
and affect climate on the local and regional scale
(Pachauri and Reisinger 2008). Based on climate model
results using the representative concentration pathway
(RCP) scenarios, global average temperature increases be-
tween 0.3 and 0.7 °C for the period 2016–2035 relative to
1986–2005 (similar for the four RCPs) (Pachauri et al.
2014). Changing average temperature of atmosphere and
ocean could change the global hydrological systems, melt-
ing snow/ice, and changing precipitation patterns, which
influence on quantity and quality of water resources. It
also may cause rising in sea levels and the number of
heavy precipitation events in some regions. The behavior
of ENSO may influence by global climate change
(Pachauri et al. 2014). In recent decades, the impacts of
both natural and anthropogenic climate change caused se-
vere effects on human and natural systems across the
world which by the integration of technological, behavior-
al, and policy options in societies, and importantly, policy
linkages among regional, national, and sub-national cli-
mate policies can develop potential climate change miti-
gation advantages.
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Limitations of reviewed papers and the current study

Several limitations were elucidated by the authors of the dif-
ferent reviewed studies. Most of the studies were done in
developing countries with more prevalent cholera disease,
where water facilities, sanitation services, and hygiene infra-
structure are not developed completely. Therefore, it is neces-
sary to consider all these factors and determine their contribu-
tion to cholera incidence before climatic factors. Indeed, they
were unable to merge socio-economic data into their analysis
to investigate the possible effects of income and poverty on
climate–cholera correlation. The other limitations in studies
were lack of data, unavailability of data, or low reliability of
data. The majority of cases were clinically recognized without
any laboratory-confirmed (overestimate), or they were under-
reported because of refusing the clinical care; also, less severe
cases did not include in the surveillance data (underestimate).
In some remote and rural areas where access to health systems
can be difficult, the surveillance system may not be consistent
and many cases are not recorded. Moreover, in some regions,
the cholera cases were reported by a passive surveillance sys-
tem with low reliability. Other challenges of available data
and methods consist of methodological barriers that resulted
from the limited understanding of the complicated biophysical
mechanisms, concurrent effects of correlated variables, poor
evaluation of exposure and outcomes, unsuitable study de-
sign, weak adjustment of confounders, and poor quality and
reporting bias of data.

There were some limitations in our study. First, some of the
relevant literature has been missed due to the following:
reviewing just in English language, papers which not peer-
reviewed, unpublished results, and not recognized by our
search terms. Second, it is possible that we have missed relat-
ed studies because of the failure of the online search engines.
Third, there was not an assessment of the risk of bias in the
reviewed papers. However, we designed our study according
to the systematic review methods, so it was possible to de-
crease bias in our identification of studies.

Recommendations for future research

We recommend the following aspects for future research.

1) Environmental factors, socio-economic demographics
and interventions should be considered in examination
of cholera determinants. This would help to better under-
stand cholera epidemiology and recognize the most im-
portant predictors for the prediction of biological–climate
relationships on cholera transmission.

2) It needs to extend current scenarios according to socio-
economic and population growth development to mini-
mize confounding effects population characteristics such

as tourism development, urbanization, and population
growth.

3) All environmental factors with a possible role in the chol-
era incidence in the study area should be systematically
applied in future studies. The present study would help for
the selection of the most effective variables in the future
studies. It should be necessary to consider units of mea-
surement, time-scale, and lagged effects.

4) To enhance the comparability among studies and find the
same approach for reporting the results, standardization of
indicators would be required. Thus, confidence intervals
and effect measures for all variables would be needed.

5) To develop cholera prevention and control programs, dis-
ease surveillance should be improved by awareness of
inter-epidemic period as information on the cholera ende-
micity. Moreover, identification of prevalent bacterial se-
rotypes in the study area during inter-epidemic periods
and the introduction of another serotype would be helpful
for control measures activity and prevention of the trans-
mission of the organism.

6) In the evaluation of cholera-climate relationships, it
would be useful to take precise attention to time lags,
seasonal of long-term cholera trends, severe climatic
events, and nonlinear effects.

Conclusion

Our synthesis of 43 studies indicated that changing rainfall
patterns, rising temperatures, and subsequent effects due to
global climate change can affect the risk of cholera diseases
in endemic regions. The results of present study have impli-
cations that can be used toward the control of cholera inci-
dence. This useful information can apply to develop accurate
forecasting models which succor public health services for
urgent decisions in providing lead time to manage a proactive
and targeted response. In addition, we expect to enable public
health investigators and policymakers to be conscious about
regional, national, and sub-national impacts of climate change
on cholera rates and to help assign research priorities and
provide adequate equipment.
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