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Abstract
Phthalates and bisphenols are two typical classes of endocrine-disrupting chemicals (EDCs) which cause endocrine disorder in
humans and animals. Phthalates and bisphenols are suggested to be associated with thyroid dysfunction. However, the effects of
combined exposure and the detailed mechanisms are yet poorly understood. We investigated the combined effects of di (2-
ethylhexyl) phthalate (DEHP) and bisphenol A (BPA) on thyroid function during puberty. Female Sprague Dawley rats were
gavaged from postnatal 28 to 70 days with a single or combined exposure of DEHP (0, 150, and 750 mg/kg/day) and BPA (0, 20,
and 100 mg/kg/day) according to a 3 × 3 factorial design. The thyroid weights reduced after combined exposure to the highest
dose of DEHP and BPA, which noted their adverse effects on thyroid. Additionally, DEHP could increase the number of
follicular epithelial cells in thyroid. Both DEHP and in combination with BPA could disturb the levels of thyroid hormones in
serum, such as TT3 and TT4. Meanwhile, the possible mechanism was also discussed in the present study. DEHP treatment
induced a significant increase of phosphorylation of cAMP-response element binding protein (Creb) via estrogen receptor α
(Esr1), while the upregulation was nullified by the concomitant presence of BPA. In conclusion, the complex action of DEHP/
BPA mixture may disturb the thyroid hormone homeostasis, which ultimately would affect the development of thyroid during
puberty.
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Introduction

Endocrine-disrupting chemicals (EDCs) widely exist in the
environment, which have drawn much attention due to their
adverse effects on multiple systems. Essentially, these EDCs
can disrupt hormone balance by mimicking or blocking hor-
mones (Gore et al. 2015), which would ultimately damage
physiology function, such as endocrine and reproductive sys-
tems (Riaz et al. 2016) (Ma et al. 2017).

As typical EDCs, di-2-ethylhexyl phthalate (DEHP) and
bisphenol A (BPA) are utilized in a range of consumer prod-
ucts, including personal care products, plastics, and food
packaging, leading to widespread human exposure (Guo and
Kannan 2012) (Kang et al. 2006) (Welshons et al. 2006).
Meanwhile, their adverse effects are also widespreadly con-
cerned (Hogberg et al. 2008) (Guidry et al. 2015). Previous
studies demonstrated that phthalate exposure was associated
with an increased risk of breast cancer (Ahern et al. 2019)
(Lopez-Carrillo et al. 2010). Additionally, BPA exposure
has adverse effects on the endocrine and reproductive systems
(Markey et al. 2001) (Bilgi et al. 2019) (Li et al. 2019) and its
prepubertal exposure may also elevate the susceptibility to
mammary carcinogens (Leung et al. 2017). Recently, epide-
miological evidence suggested that both DEHP and BPA
might contribute to increase the risks of thyroid diseases, such
as thyroid cancer and benign nodule (Liu et al. 2020) (Marotta
et al. 2019) (Xie et al. 2017).

Thyroid hormones (THs) are essential endocrine messen-
gers for the growth and development of virtually all verte-
brates (Mendoza and Hollenberg 2017). The synthesis and
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secretion of THs are modulated by the hypothalamic-
pituitary-thyroid (HPT) axis. As known thyronine (T4), triio-
dothyronine (T3), or thyroid stimulating hormone (TSH) may
regulate the function of thyroid (Mondal et al. 2016).
Accumulating evidences have shown the associations be-
tween phthalates exposure and altered TH levels (Johns
et al. 2016) (Chuang et al. 2017) (Morgenstern et al. 2017)
and thyroid functions (Meeker et al. 2007) (Miller et al. 2009)
(Pan et al. 2017). Several studies have demonstrated that
DEHP was negatively linked to the levels of total T3 (TT3),
total T4 (TT4), and TSH in adults and pregnant women (Park
et al. 2017) (Gao et al. 2017). Another study found that DEHP
was negatively associated with the levels of free T3 (FT3) and
free T4 (FT4) in children (Weng et al. 2017). Furthermore, an
investigation reported that TSHwas inversely correlated to the
urinary BPA level across pregnancy (Aung et al. 2017). Other
data indicated that BPA was positively associated with FT4
(Aker et al. 2016). While several studies demonstrated the
adverse effect of DEHP or BPA single exposure on thyroid,
few direct evidence of their combined effects on thyroid hor-
mone homeostasis has been emphasized.

To date, humans are concurrently exposed to a large
number of chemicals through various routes (Suk et al.
2002). Previous studies have shown that BPA and DEHP
in utero exposure exerted adverse effects on fetal male
reproductive development and cord blood estradiol levels
(Sunman et al. 2019), as well as phthalates and BPA expo-
sure during in utero windows of susceptibility in relation to
the testosterone concentrations and breast development in
offspring girls (Watkins et al. 2017). Additionally, most
data support the effects of bisphenol A and some
phthalates on the development of obesity and type 2 dia-
betes mellitus (Stojanoska et al. 2017). Comparing with a
single exposure, combined exposure to several chemicals
may induce some entirely different effects. There is a con-
cern that different EDCs act in synergy and may result in
so-called cocktail effects. Anne Katchy et al. found that co-
exposure to BPA and soy-based phytoestrogens could lead
to additive estrogenic effects (Katchy et al. 2014).
However, another study revealed that nonyl phenol (NP)
and dibutyl phthalate (DBP) could disrupt the function of
Sertoli cells and hormone levels in serum, while their mix-
ture effects were mainly antagonistic (Hu et al. 2014). In
concordance, other authors found that antagonism on the
expression levels of genes was involved in pituitary-
gonadal cross- ta lk af ter exposure to DEHP and
polychlorinated biphenyls (PCBs) (Fiandanese et al.
2016). A recent study has also indicated antagonistic inter-
actions of neurotoxicity after a combined exposure to lead
(Pb) and DEHP (Li et al. 2018). Additionally, an in vitro
experiment described that the combined effect of BPA and
DBP might be antagonistic in the modification of TNF-α
expression (Couleau et al. 2015). Cassandra D. Kinch

revealed that exposure to environmental concentrations of
the contaminants BPA, DEHP, nonylphenol, and
fucosterol can lead to morphological defects of zebrafish
embryos, which was distinct from individual contaminants,
in a manner that cannot be explained by simple additive
effects (Kinch et al. 2016). Besides, a mixture of phthalates
and BPA presented in human amniotic fluid could disturb
the human G protein-coupled receptor (RXFP2) function,
and produce potential antagonistic effects that are not
displayed by the compounds, individually (Suteau et al.
2020). Although DEHP could also prompt the upregulation
of thyroid transcription factor-1 (TTf-1), TSHr, and the
expression of NIS in thyroid tissue (Dong et al. 2017), as
well as neonatal exposure to BPA disturbed the function of
HPT axis in adult rats in estrus (Fernandez et al. 2018),
through binding to TH receptors in a non-competitive pat-
tern (Jung et al. 2007), no study to date has understood the
deleterious impact of cocktails of DEHP and BPA in vivo
on the thyroid. Accordingly, we supported the hypothesis
that co-exposure to DEHP and BPA may exert an effect
that differs from the ones of each disruptor alone on the
thyroid, which is considered as one of the most important
endocrine organs.

Collectively, in order to explore the combined effects of
DEHP and BPA on thyroid hormone homeostasis in vivo, a
3 × 3 factorial design was used in the present study and several
parameters such as thyroid weight, histological changes, and
serum hormonal levels were investigated after exposure to
DEHP and BPA in adolescent female rats. In addition, estro-
gen receptor pathway and other related indexes involved in
the possible mechanism were also detected and analyzed.
Hopefully, our current study may contribute to provide some
scientific clues for evaluating the combined effects of DEHP
and BPA on thyroid function, and highlight the necessity of
eliminating the substance from plastic products.

Materials and methods

Animals

Sixty-three female Sprague Dawley rats (SPF grade) (three-
week-old) were obtained from the Center for Experimental
Animals at China Medical University (Shenyang, China) with
a National Animal Use License number of SYXK-LN 2013-
0001. All experiments and surgical procedures were approved
by the Animal Use and Care Committee of China Medical
University, which complies with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
All efforts were made to minimize the number of animals and
their suffering. Rats were housed at a temperature of 24 ± 1 C
with 12-h light/12-h dark cycles and humidity 50–60%. Solid-
bottomed polycarbonate cages with stainless steel wire-bar
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lids were used to house 2 rats per cage containing corn-cob
bedding and nesting material. Food (Changsheng biotechnol-
ogy, Shenyang, China) and tap water were provided ad
libitum. Animals were housed for 1 week before being entered
into the study.

Design and treatments

DEHP, BPA, and corn oil were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The study was conducted in
9 groups of 7 rats according to a 3 × 3 factorial design, and the
detailed grouping and administration are shown in Table 1.
The female rats were gavaged with vehicle (corn oil) or DEHP
(0, 150, 750 mg/kg/day) and BPA (0, 20, 100 mg/kg/day)
which was dissolved in corn oil until adulthood (endpoint:
postnatal day 70) (Boughammoura et al. 2020) by a well-
trained technician. The DEHP dose 1 (150 mg/kg/day) was
equal to 1/200 of the half lethal dose of DEHP for rat, and
DEHP 150 mg/kg/day also based on no-observed-adverse-
effect-level (NOAEL) of 30 mg/kg/day in rats (David et al.
2000). Further, the DEHP dose 2 (750 mg/kg/day) was equal
to 1/40 of the half lethal dose of DEHP for rat, and the DEHP
750 mg/kg/day was also known to be able to induce adverse
impact in rats without causing systemic toxicity (Shelby
2006). Similarly, BPA dose 1 (20 mg/kg/day) was equal to
1/200 of the half lethal dose of BPA for rat, and also based on
NOAEL of 5 mg/kg/day in rats while dose 2 (100 mg/kg/day)
was equal to 1/40 of the half lethal dose of BPA for rat (US
Environmental Protection Agency 2011). The intragastric ad-
ministration was performed at a fixed time (8:30–9:30 a.m.)
every day. All rats’ body weights were measured and recorded
at the end of each week.

Sample collection and preparation

All animals were sacrificed under chloral hydrate anesthesia
within 24 h after the last treatment. The blood samples were
obtained from the aorta abdominal in each group after animals
were anesthetized and then were allowed to clot. Serum was
obtained by centrifugation at 3000 rpm for 15 min and then
stored at − 80 C before hormonal detection. The thyroid sam-
ples were rapidly removed, weighted, and snap-frozen in liq-
uid nitrogen or fixed in paraformaldehyde for later analysis.

HE staining and histological evaluation

Thyroids were fixed in paraformaldehyde, processed and
trimmed, embedded in paraffin, sectioned to a thickness of
4 μm, and stained with Hematoxylin and Eosin Staining Kit
(Beyotime, Shanghai, China) for microscopic examination.

Enzyme-linked immunoabsorbent assay

Total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3),
and TSH levels in serum of rats were measured using the rat’s
THs ELISA kits (Jiangsu Meilian Bioengineering Institute,
China) according to the manufacturer’s instructions. All sam-
ples were run in duplicate.

Quantitative real-time PCR

Total RNA was extracted from the thyroid using a TRIzol®
Reagent (Invitrogen Inc., Burlington, ON, Canada), followed
by being reverse transcribed to cDNA with a HiScript II Q
Select RT SuperMix for qPCR Kit (Vazyme Biotech,
Nanjing, China) according to the manufacturer’s instructions.
Primers specific for genes were designed and synthesized by
Sangon Biotech (Shanghai, China). The primers are shown in
Table 2. Real-time PCR was carried out using ChamQ
Universal SYBR qPCR Master Mix (Vazyme Biotech,
Nanjing, China) on a Light Cycler 480 II (Roche, Germany)
PCR detection system according to the protocol provided by
the manufacturer. Glyceraldehyde 3-phosphate dehydroge-
nase (Gapdh) was used as an internal reference due to previ-
ous successful application. The relative quantification of
mRNA levels was performed using the comparative Ct meth-
od and formula 2−ΔΔCt (Bustin et al. 2009).

Immunohistochemistry

Sections of the thyroid gland were deparaffinized, rehydrated,
and subjected to antigen retrieval. Antigen retrieval was per-
formed in Tris-EDTA buffer bymicrowave for 15min, slowly
cooled down to room temperature. Endogenous peroxidase
activity was blocked with hydrogen peroxide, and then the
sections were incubated at 4 C overnight with the primary
antibodies: rabbit antibody anti-Esr1 (1:200) and anti-
phospho-Creb (1:200) (Affinity Biosciences, Cincinnati,

Table 1 3 × 3 factorial design
SD ♀ rats n = 63 (7 per group) BPA

NO Dose 1 (20 mg/kg) Dose 2 (100 mg/kg)

DEHP NO Ctrl B20 B100

Dose 1 (150 mg/kg) D150 B20 +D150 B100 +D150

Dose 2 (750 mg/kg) D750 B20 +D750 B100 +D750
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OH, USA). After incubation with the primary antibodies, the
sections were incubated with appropriate biotinylated immu-
noglobulin and avidin-biotin peroxidase complex. Using
DAB (Maxim Biotechnologies, Fuzhou, China) complexes
visualized the reaction product. The average optical density
of immunohistochemistry in each sample was analyzed using
Image-Pro Plus software. Each stained section was evaluated
by a minimum of 5 randomly selected × 20 high-power fields
for further statistical analysis.

Bioinformatics analysis

STITCH and chEMBL databases were used to identify the
potential targets for the toxicity of DEHP and BPA, and
Cytoscape software was used to construct an interaction net-
work related to the molecular targets of DEHP and BPA. Gene
oncology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) signaling pathway enrich-
ment analysis were performed on potential targets of DEHP
and BPA using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID).

Statistical analysis

All experiments were performed at least in triplicate, and data
were presented as the mean ± standard deviation (SD).
Statistical analyses of the mean were performed by one-way
ANOVA and least-significant difference (LSD) using the
SPSS software, version 21.0 (SPSS, Inc., Chicago, IL,
USA). Data transformation or nonparametric test was per-
formed when the data cannot meet the homogeneity of the
variance. Statistical significance was defined as P < 0.05.

Results

Effects of 6-week exposure to DEHP and BPA on body
weight and thyroid coefficient

To evaluate the effect of DEHP and BPA on the growth and
development of rats, hair growth, mental state, and body

weight were observed. We found the rats in all groups sur-
vived well and no apparent differences in living status and hair
growth were observed. Although an upward trend in body
weight was displayed in each rat, no significant changes oc-
curred among all groups. Notably, after 3 weeks, DEHP-
exposed groups showed an increasing tendency in body
weight compared with the control. On the contrary, BPA-
exposed groups showed an decreasing tendency in body
weight than the control (Fig. 1a). In addition, we measured
the thyroid weight of each group in the end of the experiment
and found that the coefficient of thyroid organ in the DEHP
750 + BPA 100 group was significantly lower than that of the
control (P < 0.05), and also lower than that of the DEHP 750
group (P < 0.05) (Fig. 1b).

Histological changes in thyroid due to exposure
to DEHP and BPA

HE staining was conducted to assess histological changes in
the thyroid. The basic structure and function unit of thyroid
tissue in rats is thyroid follicles, which present slightly spher-
ical. Each follicle is composed of simple epithelial cells,
termed follicular cells. A small number of larger C cells are
located beside the follicle. The results showed that the

Table 2 The primer sequences used in the study

Primer Type Primer sequence

Esr1 Forward AATTCTGACAATCGACGCCAG

Reverse GTGCTTCAACATTCTCCCTC
CTC

Creb Forward ATTGCCCCTGGAGTTGTTAT

Reverse CTGCTTCCCTGTTCTTCATTAG

Gapdh Forward GCTCTCTGCTCCTCCCTGTTCT

Reverse CAGGCGTCCGATACGGCCAAA

Fig. 1 Dynamic change of body weight ratio and relative thyroid weights
of rats after exposure to DEHP and BPA (mean ± SD) (n = 7). aDynamic
change of body weight ratio of rats. bRelative thyroid weights of rats. An
asterisk indicates significantly different at P < 0.05

40885Environ Sci Pollut Res  (2020) 27:40882–40892



numbers of follicular epithelial cells in the thyroid tissues of
rats exposed to DEHP 750 (P < 0.05) or BPA 100 were higher
than that of the control (Fig. 2a, b). Additionally, the thyroid
follicular diameters of rats in DEHP 750, BPA 100, and
DEHP 750 + BPA 100 groups show a lower tendency than
those in the control, but no statistical difference was found
(Fig. 2a, c).

Exposure to DEHP and BPA altered THs and TSH levels
in serum

ELISA data showed that TT3 level in serum of rats exposed to
DEHP 150 was slightly increased, while a significant reduc-
tion was found when combined with BPA treatment
(P < 0.05), and that of rats exposed to DEHP 750 + BPA 20
was significantly lower than that of rats exposed to DEHP 750
(P < 0.05) (Fig. 3a). Compared with the control, the serum
TT4 level of rats in the DEHP 750, BPA 20, BPA 100, and
the combined exposure groups was significantly reduced
(P < 0.05). Notably the combined exposure to DEHP and
BPA further reduced the TT4 level of rats comparing with
the single exposure to DEHP (P < 0.05) (Fig. 3b). FT3, FT4,
and TSH levels in serum of rats in each group showed no
significant changes compared with those in the control group
(Fig. 3c–e).

Potential targets and pathway enrichment analysis
of DEHP and BPA

STITCH and chEMBL databases were used to identify the
potential targets for the toxicity of DEHP and BPA. We ob-
tained 46 molecular targets of DEHP and 52 molecular targets
of BPA. An interaction network containing 89 nodes was
established using Cytoscape software (Fig. 4a). The Venn
diagram showed that 14 targets are common to both com-
pounds (Fig. 4b), which is considered as one of the important
target sets of DEHP and BPA. Remarkably, the result sug-
gested that Esr1 may act as a mediator in the interaction be-
tween DEHP and BPA. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID) was used
to analyze the GO enrichment of potential targets of DEHP
and BPA based on the terms of biological process (BP) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) signal
pathway enrichment. From the consensus 47 biological pro-
cesses, including 36 statistically significant biological process
with P value < 0.05, 15 biological processes and KEGG sig-
naling pathway with the smallest P value were chosen to dis-
play (Fig. 4c, d). We noticed that some biological processes
may be related to the toxicity of DEHP and BPA, such as
transcription regulation and steroid hormone–mediated sig-
naling pathways, while KEGG signal pathway included

Fig. 2 Effects of DEHP and BPA
on the histology of thyroids (n =
7). a Hematoxylin-eosin staining
(H&E staining) of the thyroid
gland (original magnification, ×
40). Scale bar = 50 μm. b
Quantification of thyrocytes
staining in each group. c
Quantification of thyroid
follicular cavity diameter in each
group. An asterisk indicates
significantly different at P < 0.05
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steroid hormone biosynthesis, VEGF, estrogen receptor, thy-
roid hormone, prostate cancer, FoxO, and tumor and PI3K-
AKT signaling pathway.

Effects of DEHP and BPA on Esr1-mediated
transcriptional activation

Protein and mRNA levels of Esr1 were measured by immu-
nohistochemical staining and RT-PCR in the study.
Immunohistochemical results showed that Esr1 expression
in the thyroid tissues of rats exposed to DEHP 750 and BPA
100 was higher, and DEHP 750 was significantly higher than
that of the control (P < 0.05), while the expression level of
Esr1 in the DEHP 750 + BPA 100 exposure group was sig-
nificantly lower than that in the DEHP 750 and BPA 100
exposure group (P < 0.05) (Fig. 5a, b). Meanwhile, the Esr1
mRNA levels of rats exposed to DEHP 750 + BPA 100 were
significantly lower than that of rats exposed to DEHP 750
(P < 0.05) (Fig. 5c). After the change of Esr1 was observed,

the expression of its downstream p-Creb was further detected.
Compared with the control, the expression of p-Creb in the
DEHP 750 and BPA 100 exposed groups showed an in-
creased way, and the DEHP 750 treatment was significant
(P < 0.05) (Fig. 5d, e), while the mRNA levels of Creb in
each group were not significantly changed (Fig. 5f).

Discussion

The present study focuses on the combined effects induced by
two endocrine disruptor compounds, DEHP and BPA in fe-
male rats during puberty. Firstly, both DEHP and BPA have
the potential to disrupt thyroid hormone homeostasis, while
BPA showed a greater impact on serum TH levels than
DEHP. Moreover, both DEHP and BPA individually could
increase the number of follicular epithelial cells of thyroid.
The combined effect of DEHP and BPA may depend on
Esr1, further leading to the alteration of phosphorylation of

Fig. 3 Comparation of THs and
TSH levels in serum in each
group (n = 7). a Total T3. b Total
T4. c FT3. d FT4. e TSH. An
asterisk indicates significantly
different at P < 0.05
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Creb, and disturb the development of thyroid. No study to date
has reported the interactions between DEHP and BPA on
thyroid function indicated by in vivo experiment. In the pres-
ent study, a 3 × 3 factorial design is used to analyze the com-
plex effects of multiple EDCs on thyroid function, which can
provide the opportunity to detect the interactions among
multi-components (Collins et al. 2014). Since a 42-day
in vivo experiment during puberty was used to clarify the
toxicity of DEHP and BPA on thyroid development, a higher
dose than human exposure was necessary. Hopefully, as a
gross assessment of the short-term combined effects of
DEHP and BPA on thyroid function, the present study may
provide some references for our subsequent research, which

contributes to our understanding of the adverse effect of EDCs
mixture on human health during puberty.

Although the sequence of events that leads from puberty
chemical exposure to altered dysfunction and even cancer is
not completely understood, a weight of evidence is emerging
that exposure to these chemicals during developmental pe-
riods produces persistent changes in growth, and functions
in that tissue over the lifespan. Exposure to BPA and DEHP
during puberty is of concern, based on numerous epidemio-
logical studies reporting a range of effects associated with
DEHP and BPA exposure, such as the effects related to
neurobehavior, growth and development, and reproductive
tissue dysfunction (Gore et al. 2015). In humans, thyroid

Fig. 4 Target analysis of DEHP
and BPA. a Chemicals-targets
interaction network. b Venn
diagram of potential targets of
DEHP and BPA. c Biological
process enrichment analysis of
DEHP and BPA targets. d
Analysis of KEGG signaling
pathway enrichment of DEHP
and BPA targets
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hormone is important for normal development of the central
nervous system, cardiovascular system, and other organs
(Bernal 2007). Kim and Park reviewed that BPA can interfere

with thyroid hormone synthesis, transport, and metabolism,
and may affect thyroid function through several possible
mechanisms of action (Kim and Park 2019). Furthermore,

Fig. 5 Effects of DEHP and BPA on relative gene expression in the
thyroid (n = 7). a Immunohistochemistry for Esr1 in the thyroid
(original magnification, × 20). Scale bar = 200 μm. b The average
optical density of Esr1 in the thyroid. c The mRNA expression of Esr1.

d Immunohistochemistry for phosphorylation of Creb in the thyroid
(original magnification, × 20). e The average optical density of
phosphorylation of Creb in the thyroid. f The mRNA expression of
Creb. An asterisk indicates significantly different at P < 0.05
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laboratory results found that neonatal exposure to BPA de-
creased the serum T4 and increased TSH levels in female rats
(Fernandez et al. 2018); Dongjing et al. also reported a de-
creased tendency for total T4 levels and increased TSH levels
in offspring with DEHP-treated pregnant female rats, while no
change was found in total T3 (Dong et al. 2019). Other studies
showed significantly reduced thyroid hormones (T3, T4) after
DEHP exposure, whereas TSH was not affected (Liu et al.
2015). In the present study, along with the increasing dosage
of DEHP or BPA, total T4 levels also decreased, especially at
higher dose of BPA (100 mg/kg). When co-exposure to tox-
icants decreased the levels of total T3 and T4 in contrary to the
single EDCs, the main effect analysis showed that BPA may
have a greater impact on TH levels in serum than DEHP. TSH
levels in serum were unaffected by DEHP and BPA which is
consistent with the previous studies.

It is well known that DEHP and BPA may mimic or
antagonize the effects of estrogens in target tissue, which
could mediate main activities through the estrogen recep-
tors (Casals-Casas and Desvergne 2011) (Tucker et al.
2018). Different compounds may induce the expression of
different target genes via the same estrogen receptors
(Katchy et al. 2014). Remarkably, women make up the ma-
jority of thyroid patients, and thyroid cancer is the most
common malignancy tumor of the endocrine system, whose
incidence is 2.9-times more common in women than in men
(Rahbari et al. 2010). Increasing evidences suggested that
estrogen may play an important role in the development and
progression of thyroid cancer through estrogen receptors
(Huang et al. 2014) (Fan et al. 2015). Similarly, our find-
ings also suggested that thyroid gland may become a sen-
sitive target of BPA and DEHP, and their exposure can
affect the development of pubertal thyroid via disturbing
the function of Esr1. Additionally, overall less is known
about the exact mechanism of how DEHP and BPA affect
the development of thyroid, bioinformatic analysis provid-
ed clues that Esr1 may act as an interaction mediator of
DEHP and BPA, and compound-target-pathway enrich-
ment analysis prompted us to focus on the estrogen signal-
ing pathway in the present study. A significant reduction of
mRNA expression of Esr1 was measured in the DEHP750
+ BPA100–treated rats in comparison with BPA100 treat-
ment. Then, the protein levels of Esr1 were detected, which
showed a slight but not significant increase after DEHP or
BPA alone treatment. Interestingly, the upregulation after
exposure to DEHP or BPA was nullified by the concomi-
tant presence of the other. It is clear that phosphorylate
activation of the Creb through Esr1 has already been de-
scribed in several models (Belcher et al. 2005) (Bouskine
et al. 2009). Collectively, our data demonstrated that DEHP
and BPA may change the levels of Esr1, further altered the
levels of phosphorylated Creb, and ultimately effected the
development of thyroid in adolescent female rats.

Conclusion

Together these data suggested that both DEHP and BPA have
the potential to disrupt the thyroid hormone homeostasis,
which might ultimately affect the thyroid function. Although
the interaction of combined exposure is complex and not a
simple summation of their single effect, our findings will
deepen our understanding of the combined effects of DEHP
and BPA on the thyroid development in adolescent female
rats. Whether phthalates and bisphenols can induce the ex-
pression of related genes via a similar mechanism will be an
interesting subject for the future exploration. Considering that
humans are exposed to thousands of chemicals, a thorough
analysis of combined effects of mixtures in humans needs to
be undertaken to create a more reliable risk assessment of
EDCs.
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