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Abstract
The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants
(WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal
(BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and
further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of
polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus
removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs
still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of
Accumulibacter and Tetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while
the relative abundances of Competibacter andDefluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as
high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate
accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study
provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) perfor-
mance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.

Keywords Wastewater treatment plants (WWTPs) . Candidatus Accumulibacter . Polyphosphate-accumulating metabolism
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Introduction

The excessive discharge of nitrogen and phosphorus is the
main reason leading to water eutrophication. Quantities of
wastewater treatment plants (WWTPs) had been established

to prevent nitrogen and phosphorus from entering aquatic wa-
ter systems (Zhang et al. 2016). For these two nutrients, re-
ducing the phosphorus input into lakes possibly played a more
important role in the eutrophication control (Schindler et al.
2008).

As an economical process for phosphorus removal, an en-
hanced biological phosphorus removal (EBPR) system had
been widely applied in WWTPs. However, the performance
of EBPR was vulnerable to the insufficient carbon source
(Oehmen et al. 2007), high temperature (Panswad et al.
2003), and other adverse environmental factors (Nielsen
et al. 2019). Thus, the simultaneous chemical phosphorus re-
moval (SCPR) process was increasingly adopted in WWTPs.
In the SCPR system, phosphorus removal reagent was dosed
at the end of the aerobic zone, which could coprecipitate with
the residual phosphorus and further decrease the phosphorus
concentration in effluent. However, the chemical reagent
could flow back into the biological zone along with the sludge
reflux, which would reversely affect the operational
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characteristics and the bacterial community in the system, es-
pecially for those related to phosphorus removal (Auger et al.
2013; Zheng et al. 2018).

Polyphosphate-accumulating organisms (PAOs) and
glycogen-accumulating organisms (GAOs) were the two
common bacterial groups related to the biological phos-
phorus removal (BPR) . For PAOs, Candidatus
Accumulibacter (hereafter referred to as Accumulibacter)
was considered to be the most significant genus which
had been extensively examined (Li et al. 2019; Nielsen
et al. 2019; Zhang et al. 2018). Accumulibacter could take
up volatile fatty acids (VFAs) to synthesize poly-β-
hydroxyalkanoates (PHAs) in the anaerobic zone accom-
panied by the phosphorus release and excessively absorb
phosphorus in the aerobic zone using the energy from the
PHA decomposition (Oehmen et al. 2007). In recent
years, Tetrasphaera was also found to be an important
PAO group, which widely existed in WWTPs around
the world (Muszynski and Zaleska-Radziwill 2015;
Nielsen et al. 2019; Stokholm-Bjerregaard et al. 2017).
Tetrasphaera could obtain energy from fermenting glu-
cose and proteins (Liu et al. 2019). Several other putative
PAOs were also identified, such as Comamonadaceae (Ge
et al. 2015), Dechloromonas (Gunther et al. 2009;
Terashima et al. 2016), Thiothrix (Rey-Martínez et al.
2019), and Microlunatus (Kawakoshi et al. 2012; Zhong
et al. 2018). GAOs always coexisted with PAOs in the
WWTPs. The common GAOs included Candidatus
Competibacter (hereafter referred to as Competibacter)
and Defluviicoccus (Coats et al. 2017; Xia et al. 2018).
I t is general ly accepted that PAOs decomposed
polyphosphate to obtain energy, while GAOs needed to
decompose glycogen. Polyphosphate hydrolysis was
much faster than glycogen decomposition; thus, PAOs
took up VFAs more quickly and possessed a competitive
advantage. But the PAO abundance declined under some
adverse conditions, and then, the abundance of GAOs
increased (Tu and Schuler 2013). PAOs could survive
by changing metabolic pathways from polyphosphate ac-
cumulating metabolism (PAM) to glycogen accumulation
metabolism (GAM) under adverse conditions according to
Acevedo et al. (2012, 2017). In the SCPR system, the
addition of phosphorus removal reagent reduced the
amount of phosphorus available to PAOs, which was dis-
advantageous to PAOs. At present, there are few studies
on the community structures of PAOs and GAOs in the
SCPR system.

In this study, the phosphorus removal performance in a
full-scale SCPR system operated for a long term was investi-
gated. And the bacterial community structures, particularly the
populations of PAOs and GAOs, were analyzed using quan-
titative polymerase chain reaction (qPCR) and high-
throughput sequencing.

Materials and methods

Description of the SCPR system

The modified anaerobic-anoxic-aerobic (A2O) process was
applied in the SCPR system (Fig. 1). In this system, the reflux
sludge mixed with 10% of the influent flowed into the
preanaerobic zone to deplete the oxygen and subsequently
entered into the anaerobic zone, where it mixed with the re-
maining 90% of the inflow. The internal recycle from the end
of the aerobic zone to the anoxic zone was adopted. The ratios
of sludge reflux and internal reflux were 100% and 300%,
respectively. The municipal wastewater was treated in this
system, without industrial wastewater. The influent flow rate
was 2.0 × 105 t/day. The influent chemical oxygen demand
(COD) and total phosphorus concentrations were 180–
400mg/L and 3–6mg/L, respectively. The hydraulic retention
time (HRT) and the sludge retention time (SRT) were 10 h and
16 days, respectively. Aluminum sulfate (Al2(SO4)3) was
added at the end of the aerobic zone (that is the end of the
O3 zone) to ensure that the total phosphorus concentrations in
effluent stably met the discharge standard of the total phos-
phorus (0.5 mg/L). The dosage of Al2(SO4)3 was 33 g/m3,
which was excessive compared with the value from the theo-
retical calculation. Samples were collected along the wastewa-
ter flow. The COD, ortho-phosphate, mixed liquor suspended
solid (MLSS), mixed liquor volatile suspended solids
(MLVSS), and some other parameters were detected.
Moreover, activated sludge samples were lyophilized using
the freeze dryer system (FreeZone®, Labconco Co., USA)
and then stored at − 20 °C for subsequent DNA extraction.

Restorability tests for the BPR performance

Batch tests were carried out to verify the BPR performance of
the activated sludge in the SCPR system. The activated sludge
was collected at the end of the aerobic zone, which was up-
stream of the Al2(SO4)3 addition point. Three conical bottles
of 1000 mL were used in the tests, and the real domestic
sewage was used as the influent. Tests were operated under
alternating anaerobic/aerobic mode for three cycles without
the addition of Al2(SO4)3. The anaerobic phase was 1.5 h,
and the aerobic one was 3 h. The mixed liquid was sampled
regularly during the cycles, and the VFAs and phosphorus
concentrations were determined.

Analytical methods

MLVSS,MLSS, sludge volume index (SVI), phosphorus, and
COD were measured as described by the APHA standard
methods (2005). VFAs and PHAs were analyzed by gas chro-
matography (Agilent 6890A, USA) according to Zeng et al.
(2016). A PerkinElmer fluorescence spectrometer (LS55,
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USA) was adopted to analyze the chemical compositions in
the aquatic water from the SCPR system, and the results were
presented and analyzed as described by Chen et al. (2003).
The Standards of Measurements and Testing (SMT) protocol
was used to analyze the phosphorus fractions in the activated
sludge (Pardo et al. 2004). According to the SMT protocol, the
total phosphorus was fractionated into organic phosphorus
(OP) and inorganic phosphorus (IP), and IP was further frac-
tionated into apatite phosphorus (AP) and non-apatite inor-
ganic phosphorus (NAIP).

Quantitative PCR

Genomic DNA of the activated sludge in the SCPR system
was extracted using the FastDNA™ SPIN Kit for Soil (MP
Biomedicals, USA). The 16S rRNA genes of bacterial and
Accumulibacter were quantified by Mx3005P (Agilent
Technologies, USA). The ppk1 genes of Accumulibacter
(clades IA, IIA, IIB, IIC, IID, and IIF) were quantified to
reveal its clade-level structures. The programs and primers
referred to the previous research (Fan et al. 2019).

High-throughput sequencing

The high-throughput sequencing of the genomic DNA was
conducted by the Illumina MiSeq PE3000 platform in
Majorbio Co., Ltd. (Shanghai, China). The 338F and 806R
primers were used. The sequences were quality-filtered and
analyzed according to Guo et al. (2018). The raw sequences
had been submitted to Sequence Read Archive (SRA) at
NCBI with PRJNA595869.

Results and discussions

Characteristics of activated sludge

The MLSS and MLVSS maintained at 4500 ± 235 mg/L and
2900 ± 190 mg/L, respectively. The ratio of MLVSS/MLSS
was about 64%, which indicated a considerable proportion of
inorganic components in the activated sludge. Inorganic com-
ponents are favorable to improve sludge compactness and
settleability, which signified the low SVI of 83 mL/g MLSS.
However, there are some disadvantages with the lowMLVSS/
MLSS, such as the high sludge yield and low sludge fermen-
tation efficiency.

Al2(SO4)3 altered the phosphorus fractions in the acti-
vated sludge through coprecipitating with phosphorus.
Thus, the phosphorus fractions in the sewage sludge were
analyzed using the SMT protocol, and the results are
shown in Table 1. Based on the results, the TP content
reached up to 37.8 ± 1.8 g/kg MLSS. The IP fraction was
the dominant constituent, accounting for 84.7 ± 1.3% of
TP. Among IP, NAIP was the major fraction with a per-
centage of 75.8 ± 4%. AP represents phosphorus com-
bined with calcium ions, and NAIP represents those
coprecipitated with aluminum ions, iron ions, and other
ions. Results indicated that the activated sludge contained
higher TP content than that described by Wang et al.
(2018). Meanwhile, the NAIP proportion was also much
higher than that found by Wang et al. (2018), which was
due to the addition of Al2(SO4)3. Moreover, the sum of
OP and NAIP was as high as 86.7% of the TP, indicating
the high proportion of releasable and bioavailable phos-
phorus, which should be considered in the subsequent
sludge treatment (Ruban et al. 2001).

Fig. 1 Schematic of the full-scale SCPR system. The numbers represent
the manual sampling points (1, effluent of the primary sedimentation
tank; 2, effluent of the anaerobic zone; 3, effluent of the anaerobic zone

after HAc addition; 4, effluent of the anoxic zone; 5, effluent of the
aerobic zone 1; 6, effluent of the aerobic zone 2; 7, effluent of the aerobic
zone 3; 8, effluent of the secondary sedimentation tank)
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Carbon and nutrient conversions along the
wastewater flow

The SCPR system presented stable removal performance of
organic matter and nutrients. The TP removal efficiencies
were as high as 93 ± 3% according to long-term monitoring
data. Figure 2 shows the conversions of the organic matter and
ortho-phosphate concentration along the wastewater flow at
2018-09-26 and 2018-10-24. In the anaerobic zone, most of
the VFAs from the influent wastewater were consumed, ac-
companied by the increase of PHA content in the sludge,
while the phosphorus release was not observed. In the anoxic
zone, the phosphorus concentration kept stable and the PHA
content slightly decreased. In O1 zone, the phosphorus con-
centration decreased by 36% and 67%, respectively. In O2

zone, the phosphorus concentration rose back, which was
probably due to the phosphorus release from sludge. After
Al2(SO4)3 addition at the end of the O3 zone, the phosphorus
concentration declined. The PHA content in the oxic zones
further decreased. In the secondary sedimentation tank, phos-
phorus concentration continued to descend to 0 mg/L at the
lowest.

In the EBPR system, PAOs release phosphorus into bulk
liquid in the anaerobic stage and excessively absorb phospho-
rus in the aerobic zone (Oehmen et al. 2007). In this SCPR
system, these phenotypes were not observed because
Al2(SO4)3 was overdosed. The excess Al2(SO4)3 could recir-
culate into the anaerobic zone along with the reflux sludge and
coprecipitate with the phosphate, which caused a rapid decline
of the phosphorus concentration in the anaerobic zone. PAOs

Fig. 2 Variations of the
phosphate, VFAs, and PHAs
along the wastewater flow
sampled at a 2018-09-26 and b
2018-10-24 (PST, effluent of the
primary sedimentation; AN1, ef-
fluent of the anaerobic zone;
AN2, effluent of the anaerobic
zone after HAc addition; AX, an-
oxic zone; O1, aerobic zone 1;
O2, aerobic zone 2; O3, aerobic
zone 3; EFF, effluent of the sec-
ondary sedimentation tank)

Table 1 Phosphorus fractions in
the activated sludge Content (g/kg SS) Percentage (%) Reference

TP OP NAIP AP OP NAIP AP

37.8 ± 1.8 4.6 ± 0.1 24.3 ± 0.7 8.5 ± 2.0 12.3 64.2 22.5 This study

7.1–27.6 1.7–8.1 3.1–16.3 1–4.3 26.8 ± 7.9 52.0 ± 10.4 18.1 ± 8.4 Wang et al.
(2018)a

a Sampled from forty-six WWTPs located in 30 provinces of China
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could not obtain enough phosphorus, leading to the decline of
PAM activity. PAOs obtained energy more quickly through
PAM, which ensured the preferential absorption of VFAs.
Therefore, the decrease of PAM activity made it difficult for
PAOs to obtain enough VFAs and accumulate sufficient
polyphosphate, which decreased the proliferation rate of
PAOs and finally caused the reduction of their relative abun-
dances. Partial PAOs might survive and proliferate through
altering their metabolic mode from PAM to GAM under the
low content of polyphosphate (Acevedo et al. 2017; Welles
et al. 2015). Besides, some groups of PAOswere possibly alive
through PAM, but the ortho-phosphates released by them in
the anaerobic zone were immediately precipitated with
Al2(SO4)3. All these three situations weakened the phenotype
of phosphorus release in the anaerobic zone and absorption in
the aerobic zone. The community structures should be inves-
tigated to deepen the understanding of this SCPR system.

Organic dynamics along the wastewater flow

The organic compositions in the bulk liquid were analyzed
and presented using the excitation-emission matrix (EEM)

(Fig. 3). As described by Chen et al. (2003), the EEM could
be divided into five regions, i.e., tyrosine-like region (I),
tryptophan-like region (II), fulvic acid–like region (III), the
soluble microbial by-product-like (SMP) region (IV), and hu-
mic acid–like region (V). As shown in Fig. 3a, the effluent of
the primary settling tank (PST) contained abundant organics,
which presented high fluorescence intensity. The excitation-
emission area volume of tryptophan-like organics (ΦII) was
3.1 × 106 Au nm2, lower than those of SMPs (6.6 × 106

Au nm2) and humic acid–like organics (8.7 × 106 Au nm2),
but its normalized percent of fluorescence response (PII,n) was
the highest of 35% (Table 2).

In the anaerobic zone, the fluorescence intensity of the five
regions decreased (Fig. 3b). The excitation-emission area vol-
ume of regions I–V, respectively, decreased by 75%, 63%,
43%, 45%, and 20% (Table 2), indicating the higher biode-
gradability of aromatic proteins (regions I and II). After the
acetate addition, the fluorescence intensity was unchanged
(Fig. 3c). In the anoxic zone, the fluorescence intensity of
these five compositions kept declining. Compared with the
influent, the excitation-emission area volume decreased by
95%, 87%, 75%, 54%, and 20%, respectively (Table 2). In

Fig. 3 Three-dimensional fluorescence spectra of soluble organics in the
bulk liquid along the wastewater flow (PST, effluent of the primary
sedimentation; AN1, effluent of the anaerobic zone; AN2, effluent of

the anaerobic zone after HAc addition; AX, anoxic zone; O1, aerobic
zone 1; O2, aerobic zone 2; O3, aerobic zone 3; EFF, effluent of the
secondary sedimentation tank)
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the O1 zone, the fluorescence intensity further decreased (Fig.
3e). The excitation-emission area volume of regions I–V de-
creased by 98%, 94%, 85%, 64%, and 30%, respectively.
However, the fluorescence intensity and the normalized per-
cent of fluorescence response kept stable in all the three aero-
bic zones (Fig. 3e–g), suggesting that aeration had a weak
effect on the removal of fluorescent organics. In the effluent,
SMPs and humic acid–like compositions became the major
fluorescent substances with their normalized fluorescence re-
sponse of 29% and 38%, respectively (Fig. 3h, Table 2). EEM
results showed that there were diverse organic matters in the
wastewater, which provided the material basis for microbial
diversity.

Bacterial community structure in the SCPR system

The community structure in the SCPR system was investigat-
ed using high-throughput sequencing. The bacterial popula-
tion exhibited high richness and diversity, with the Chao1 and
Shannon indexes as high as 1498 and 5.46. In the phylum
level,Proteobacteriawas the dominant phylumwith a relative
abundance of 52%, and the Gammaproteobacteria (18.6%),
Betaproteobacteria (15.4%), and Alphaproteobacteria
(11.1%) were the major classes which affiliated to
Proteobacteria. Chloroflexi, Bacteroidetes, Actinobacteria,
and Nitrospirae were also the major bacterial phyla in this
SCPR system, and the relative abundances were 13.7%,
9.51%, 8.45%, and 4.2%, respectively. The relative abun-
dances of Firmicutes, Acidobacteria, Planctomycetes, and
Saccharibacteria were all below 3%.

In this study, the community structures of PAOs and GAOs
were the focuses. The putative populations of PAOs are shown
in Fig. 4a, including Ca. Accumulibacter, Tetrasphaera,

Dechloromonas, Microlunatus, Tessaracoccus, Thiothrix,
and Comamonadaceae. In this study, the relative abundance
of Accumulibacter was only 0.59%. Five Accumulibacter
OTUs were observed, among which OTU1816 (41.8%) and
OTU1602 (37.8%) were dominant. The relative abundance of
Accumulibacter was also quantified using qPCR (Fig. 5a). The
copy numbers of the Accumulibacter 16S rRNA gene and
bacterial 16S rRNA gene were 2.40 × 1010 and 3.24 × 1012

copies/g sludge, respectively. According to Harms et al.
(2003) and He et al. (2007), the average copy numbers of
bacterial and Accumulibacter 16S rRNA gene were 3.6 and
2. Therefore, the relative abundance of Accumulibacter
was 1.33% according to qPCR data, slightly higher than
the ratio got by high-throughput sequencing. The clade-
level population of Accumulibacter was investigated using
ppk1 genes (Fig. 5b). Based on the qPCR results, clades
IIC and IID were the dominant clades in this SCPR system
with ratios of 39.3% and 37.6%, respectively. Different
Accumulibacter clades had different metabolic characteris-
tics. Clade IIC was observed as a dominant clade in diverse
wastewater treatment systems (He et al. 2007; Mao et al.
2015; Mielczarek et al. 2013; Muszynski et al. 2018; Ong
et al. 2014; Qiu et al. 2019). Particularly, the dominant
clades in this SCPR system were consistent with those in
18 WWTPs from six countries (Mao et al. 2015). These
suggested that the fine-scale population of Accumulibacter
in this SCPR system was not affected by the addition of
Al 2 (SO4) 3 a l though the re l a t i ve abundance o f
Accumulibacter was low. Results both from high-
throughput sequencing and qPCR indicated that
Accumulibacter exhibited relatively lower abundance in
the SCPR system than that observed in EBPR plants
(Stokholm-Bjerregaard et al. 2017).

Table 2 Excitation-emission area volume and the percent of fluorescence response following the wastewater flow

Sample points Φi
a (× 10−6, Au nm2) Φi,n

b (× 10−6, Au nm2) Pi,n
c

I II III IV V I II III IV V I II III IV V

1 PST 1.30 3.14 6.64 2.43 8.76 26.54 51.28 31.94 21.30 15.42 18% 35% 22% 15% 11%

2 AN1 0.32 1.16 3.78 1.34 7.02 6.47 18.91 18.19 11.72 12.35 10% 28% 27% 17% 18%

3 AN2 0.26 1.04 3.22 1.50 8.10 5.33 16.92 15.48 13.11 14.26 8% 26% 24% 20% 22%

4 AX 0.07 0.40 1.66 1.12 7.05 1.46 6.50 7.97 9.77 12.40 4% 17% 21% 26% 33%

5 O1 0.03 0.20 1.00 0.88 6.14 0.59 3.31 4.79 7.71 10.80 2% 12% 18% 28% 40%

6 O2 0.03 0.21 1.04 0.90 6.30 0.59 3.38 5.00 7.91 11.10 2% 12% 18% 28% 40%

7 O3 0.03 0.22 1.06 0.93 6.26 0.66 3.58 5.08 8.11 11.01 2% 13% 18% 29% 39%

8 EFF 0.03 0.21 1.01 0.91 5.85 0.66 3.46 4.85 7.99 10.29 2% 13% 18% 29% 38%

PST effluent of the primary sedimentation, AN1 effluent of the anaerobic zone, AN2 effluent of the anaerobic zone after HAc addition, AX anoxic zone,
O1 aerobic zone 1, O2 aerobic zone 2, O3 aerobic zone 3, EFF effluent of the secondary sedimentation tank
a The excitation-emission area volume for each region
b The normalized excitation-emission area volume for each region
c The normalized percent of fluorescence response
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Tetrasphaera was another significant genus of PAOs
(Fernando et al. 2019; Liu et al. 2019). In this study, the
relative abundance of Tetrasphaera was only 0.20%, and
only two OTUs were observed. Tetrasphaera was a fer-
mentative bacterial group, which obtained energy from
the fermentation of proteins and polysaccharides. In a
WWTP in Denmark, the re la t ive abundance of
Tetrasphaera reached up to 21.2% (Stokholm-
Bjerregaard et al. 2017). Similarly, in 4 Polish full-scale
WWTPs, Tetrasphaera constituted 11–25% of all bacteria
(Muszynski and Zaleska-Radziwill 2015). The diet struc-
ture with abundant milk and meat in Denmark and Poland
possibly caused the high content of protein compositions
in the sewage, which was conducive to Tetrasphaera pro-
liferation. However, the Al2(SO4)3 was added in the
SCPR system, which consumed the phosphorus source
and limited the proliferation of Tetrasphaera.

Dechloromonas was affiliated to the Rhodocyclaceae fam-
ily, the same as Accumulibacter (Terashima et al. 2016). In
this study, the relative abundance of Dechloromonas was
1.85%, which was higher than Accumulibacter and
Tetrasphaera. Dechloromonas was subdivided into four taxa
with OTU1181 (43.0%) and OTU2458 (48.3%).
Comamonadaceae had a high growth rate in the activated
sludge ecosystems (Ge et al. 2015; Saunders et al. 2016). In
this SCPR system, Comamonadaceae was divided into seven
OTUs with a relative abundance of 1.92%, among which
OTU2205 and OTU2208 exhibited higher proportions of
42.6% and 28.6%.

In the SCPR system, Competibacter and Defluviicoccus
were the predominant genera of GAOs (Fig. 4b). The relative
abundances of Competibacter andDefluviicoccuswere 5.77%
and 1.28%, respectively. For Competibacter, sixteen OTUs
were observed, among which OTU124 was the dominant
one with a ratio of 91.2%. ForDefluviicoccus, five OTUswere
found with OTU725 (83.2%) as the dominant one. Results
showed that the relative abundances of Competibacter and
Defluviicoccus were both higher than previous findings
(Stokholm-Bjerregaard et al. 2017). According to Nielsen
et al. (2019), Competibacter and Defluviicoccus were GAOs
possessing the canonical GAM mode. In this mode,
VFAs were taken up and transformed into glycogen at
anaerobic conditions. At aerobic conditions, glycogen
was degraded to supply the energy and substrate for their
proliferation, and the remaining glycogen was trans-
formed into PHAs for storage. In the EBPR system,
PAOs used the energy from the hydrolys is of
polyphosphate to preferentially absorb VFAs. In the
SCPR system, Al2(SO4)3 coprecipitated with the phos-
phorus in the bulk liquid, which created an environment
with a high ratio of carbon to phosphorus. These condi-
tions limited the metabolism and proliferation of PAOs,
whereas GAOs got more VFAs and grew better.

Fig. 4 The populations and relative abundance of a PAOs and bGAOs in
the SCPR system
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BPR restorability batch tests

To verify the BPR performance of the activated sludge in this
SCPR system, the alternating anaerobic/aerobic operation was
carried out (Fig. 6). Chemical reagent was not added in the
tests. The phosphorus and VFA concentrations were regularly
detected, and the ratios of phosphorus release to VFA uptake
(Prel/VFAupt) were calculated. In the first cycle, the activated
sludge showed slight BPR performance. The phosphorus con-
centration increased from 2.6 to 6.4 mg/L during the anaerobic
stage and rapidly declined to 0.2 mg/L after 1 h of aerobic
reaction. The Prel/VFAupt was 0.13 mmol-P/mmol-C. In the
second cycle, the phosphorus concentration at the end of the
anaerobic stage increased to 10.0 mg/L, and the Prel/VFAupt

increased to 0.19 mmol-P/mmol-C. In the third cycle, the
maximum phosphorus concentration and Prel/VFAupt in-
creased to 12.2 mg/L and 0.20 mmol-P/mmol-C, respectively.

The Prel/VFAupt had been used as an indicator of the
PAM activity, which was generally higher than
0.5 mmol-P/mmol-C in EBPR systems (Acevedo et al.
2017; Oehmen et al. 2007; Schuler and Jenkins 2003).
Results showed that although no typical characteristics
of PAM were observed in the SCPR system, the PAM
activity of the activated sludge gradually recovered after
the Al2(SO4)3 addition was stopped, which corresponded
to the existence of diverse PAOs.

The addition of chemical reagents in the SCPR system
increased the operation cost of sewage treatment. This study
demonstrated that PAOs still existed in the SCPR system and
could recover the PAM activity after stopping the addition of
the chemicals. Therefore, it is possible to enhance the BPR
performance by gradually reducing or even stopping the ad-
dition of chemical reagents in the SCPR systems, so as to
reduce the operating costs.

Fig. 5 The abundances of 16S rRNA genes of bacteria and Accumulibacter in the SCPR system

Fig. 6 The variations of
phosphorus and VFA
concentration during the
anaerobic/aerobic cycles after
stopping dosing Al2(SO4)3
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Conclusion

In the long-term SCPR system with Al2(SO4)3 addition, the
PAM phenotype disappeared. PAOs were still present in the
system with relatively low abundances, while GAOs of
Competibacter and Defluviicoccus possessed relatively high
abundances. However, the PAOs in the system showed high
diversity and maintained the PAM ability. The activated
sludge could recover the BPR performance after the
Al2(SO4)3 addition was stopped. These results proved the po-
tential of the SCPR system to resume EBPR performance.
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