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Abstract
Suspended sediment load (SSL) estimation is a required exercise in water resource management. This article proposes the use of
hybrid artificial neural network (ANN) models, for the prediction of SSL, based on previous SSL values. Different input
scenarios of daily SSL were used to evaluate the capacity of the ANN-ant lion optimization (ALO), ANN-bat algorithm (BA)
and ANN-particle swarm optimization (PSO). The Goorganrood basin in Iran was selected for this study. First, the lagged SSL
data were used as the inputs to the models. Next, the rainfall and temperature data were used. Optimization algorithms were used
to fine-tune the parameters of the ANN model. Three statistical indexes were used to evaluate the accuracy of the models: the
root-mean-square error (RMSE), mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE). An uncertainty analysis of the
predicting models was performed to evaluate the capability of the hybrid ANN models. A comparison of models indicated that
the ANN-ALO improved the RMSE accuracy of the ANN-BA and ANN-PSO models by 18% and 26%, respectively. Based on
the uncertainty analysis, it can be surmised that the ANN-ALO has an acceptable degree of uncertainty in predicting daily SSL.
Generally, the results indicate that the ANN-ALO is applicable for a variety of water resource management operations.

Keywords River suspended sediment load . Artificial neural network . Ant lion optimization . Bat algorithm . Particle swarm
optimization . Sensitivity analysis
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Introduction

Sediment transport, which is among the most important as-
pects of river flow, is significantly influenced by the flow
condition and the size of the particles (Ehteram et al. 2019c).
The characteristics of sedimentation in fluvial systems can be
better understood, through a process known as suspended
sediment load (SSL) estimation. Sedimentation stems from
erosion and weathering (Misset et al. 2019). Suspended sedi-
ment load and sediment transportation are affected by geolog-
ical and geomorphological issues (Chang et al. 2019). The
SSL prediction represents a major issue in the fields of hy-
draulic engineering and river basin development. The influ-
ence of different meteorological parameters (rainfall, temper-
ature and discharge), on sediment transport, renders the
modelling of SSL a complicated undertaking (Samantaray
and Ghose 2018). In order to overcome the issues of complex-
ity and nonlinearity that come with SSL prediction, data-
driven models are often brought into the picture. The selection
of an appropriate model for SSL prediction has proven to be
an exceedingly difficult task (Talebi et al. 2016). According to
the literature, empirical models fall short when it comes to
comparison with accurate SSL predictions (Khan et al. 2018;
Khosravi et al. 2018; Samantaray and Ghose 2018; Chang
et al. 2019; Misset et al. 2019). As such, the prediction of
the SSL based on local data is deemed the way forward for
an accurate SSL prediction (Jothiprakash and Garg 2009).
Jothiprakash and Garg (2009) used artificial neural network
(ANN) to predict the volume of sediment in a reservoir. They
opined that the accuracy level of ANN is above that of a
regression model. The major benefit that comes with ANN
usage is its capacity to model mathematical relationships, be-
tween input and output data, through a learning process, with-
out prior knowledge of the problems (Melesse et al. 2011;
Nourani and Andalib 2015; Ethteram et al. 2018; Ehteram
et al. 2019c). To prepare an adequate architecture of ANN,
several trial and error procedures need to be carried out. Also
required is extensive input data for the training process
(Ehteram et al. 2019c). Melesse et al. (2011) used ANN, mul-
tiple linear regression (MLR) and multiple nonlinear regres-
sion (MNLR) to estimate SSL. According to the results
attained, the ANN estimations for most simulations were bet-
ter than those realized through the MLR and MNLR. Kisi
et al. (2012) employed genetic programming (GP), ANN
and adaptive neuro-fuzzy inference system (ANFIS) to esti-
mate SSL. They concluded that GP is superior to the ANFIS
and ANN models. Kakaei Lafdani et al. (2013) investigated
the estimation of daily SSL with a support vector machine
(SVM) and ANN. Streamflows and rainfall were employed
as the input data. They reported that the ANN model is
significantly more accurate than other SSL estimation
models. Vafakhah (2012) used the ANFIS and ANN models
for the modelling of SSL. They forwarded that the ANFIS

model provides a better estimation than the ANN model.
Tayfur et al. (2013) investigated the potential of ANN-
genetic algorithm (GA) for predicting SSL. They found the
performance of ANN-GA to be superior to that of ANN. Afan
et al. (2014) used radial basis function neural network
(RBFNN), and multilayer perceptron (MLP) neural network,
for SSLmodelling. They claimed that theMLPmodel delivers
better accuracy than the RBFNNmodel. Nourani and Andalib
(2015) examined the capabilities of least square support vector
machine (LSSVM) and ANN models in estimating SSL. The
results indicate that the LLSVM model provides better accu-
racy than the ANN model. Talebi et al. (2016) utilized regres-
sion trees and model trees for estimating SSL. They reported
that the performance of regression trees and model trees is
superior to that of the ANN model. Emamgholizadeh and
Demneh (2018) examined the proficiency of GP, ANN and
ANFIS for SSL modelling. The results give credence to the
fact that the accuracy level of the GEP model is above that of
the ANN and ANFIS models.

While data-driven models are highly regarded for
predicting hydrological variables, these models require tuning
through training algorithms (Banadkooki et al. 2020). In order
to complete the final network training, it is essential that the
entire data-driven model be fine-tuned. Of late, optimization
algorithms such as bat algorithm (BA), GA, particle swarm
optimization (PSO), shark algorithm (SA) and firefly algo-
rithm (FFA) have been used to train data-driven models, in
order to determine their optimal parameter values (Allawi
et al. 2018; Ehteram et al. 2018a, b, 2019a, b; Farzin et al.
2018; Abobakr Yahya et al. 2019; Yousif et al. 2019;
Valikhan-Anaraki et al. 2019; Najah Ahmed et al. 2019;
Afan et al. 2020). According to the relevant literature, optimi-
zation algorithms increase the convergence speed of tradition-
al training algorithms, such as the gradient descent method
and the backpropagation algorithm (Allawi et al. 2018;
Ehteram et al. 2018b; Farzin et al. 2018). To the best of our
knowledge, no previous attempt has been made to employ an
ANNmodel–based ant lion optimization (ALO) for predicting
SSL, thus the aim of this study.

ALO was initially introduced by Mirjalili (2015). Scholars
frequently used the ALO for a variety of optimization issues.
These optimization issues include those related to energy con-
sumption forecasting (Wang et al. 2018), parameter optimiza-
tion of SVM (Tian et al. 2018), optimal power flow (Ali et al.
2017) and hydraulic turbines (Tharwat and Hassanien 2017).
The forte of the ANN model lies in its capacity to optimize
ANN parameters such as weight connections and bias values.
In this paper, a novel ALO algorithm was used to train the
ANN model. An innovative hybrid ANN model was intro-
duced for the forecasting of daily SSL. The two main goals
of this undertaking are (a) to evaluate the capacity of hybrid
ANN models for SSL estimation and (b) to evaluate the un-
certainty of the ALO, BA and PSO algorithms for the training
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of ANN models. The following sections provide information
on the applied models, the study location and the data in-
volved. We close with an output analysis and an explanation
on the conclusions derived.

Materials and methods

Artificial neural network

The inspiration of ANN model came from the desire to provide
intelligent calculations that mimics the routine structure of brain.
The ANNmodels are composed of computational units, namely
neurons (Allawi et al. 2018; Ehteram et al. 2018b; Farzin et al.
2018). Each neuron is linked to other neurons by means of
weight connections. The ANNmodel is mostly made up of three
layers: an input layer, the hidden layers and an output layer. An
illustration of the most frequently employed ANN model is pre-
sented in Fig. 1.

For this study, only one hidden layer network was used, as
it was deemed sufficiently dynamic for the prediction of any
hydrological variable. Many investigations have been con-
ducted to determine the optimal number of hidden neurons
in the ANN model. These investigations led to the introduc-
tion of several empirical equations. The following equation
(Karkalos et al. 2019) was employed for this study:

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N inp þ Nout

p þ a ð1Þ

where Ninp is the number of input neurons, Nout is the number
of output neurons, a is the number between zero and 10 and n
is the number of hidden neurons.

A variety of transfer functions exist which can be used to
construct an artificial neural network neuron. Transfer func-
tions are needed to describe the input-output relationship at
each neuron layer. Nonlinear transfer functions are usually
employed to introduce nonlinearity into the network. In order
to minimize the network error, it is essential that the

components of weights and biases be fine-tuned. The ANN
models use training algorithms to find the optimal value of
weight connection and biases (Ethteram et al. 2018;
Tikhamarine et al. 2020). The most commonly used algorithm
for ANN training is the backpropagation algorithm (BPA).
The BPA is a traditional method for tuning the weight and
bias values. Currently, optimization algorithms are frequently
applied for the training of ANN hyperparameters. It is note-
worthy that the BPA may experience slow convergence and
may also be trapped in local minima. The BPA executes an
iterative gradient descent procedure to decrease the network
error.

Ant lion optimization

The ALO is capable of mimicking the hunting behaviour of
ant lions in nature. An ant lion (ANL) moves along a circular
path to dig a hole in sand (Mirjalili 2015). The ant lion larvae
hide at the bottom of the pit (trap) and wait for ants (prey).
With the arrival of the prey (ant), the ant lions pull it into the
pit by throwing sand towards the edge of the hole. The per-
formance of the algorithm is based on the following assump-
tions (Wang et al. 2018):

1- Ants (the prey) move randomly in the search space, and
the traps of the ANLs affect the movement of the ants.

2- The best fitness ANL makes a large hole.
3- The ability to hunt an ant, by an elite ANL, is proportional

to the fitness of that ANL.
4- Each ant (AN) may be hunted by each ANL in each iter-

ation (Fig. 2).

Random walk of ants

The ALO has two groups of search agents: ant (prey) and ant
lion. The best search agents (ant lions) never change their

Fig. 1 Schematic structure of ANN (three-layer MLP)

38096 Environ Sci Pollut Res  (2020) 27:38094–38116



locations, except during the substitution of a special ant. Ant
agents can perform random walks in the search space
(Mirjalili 2015). The ants trapped in a hole may be hunted
by the ant lions. Through random walks, ants update their
position around the search space (Mirjalili 2015).

X t ¼ 0; cumsum 2rt t1ð Þ−1ð Þ; cumsum 2rt t2ð Þ−1ð Þ;…; cumsum 2rt tnð Þ−1ð Þ½ � ð2Þ
where t is the step of random walk, cumsum is the cumulative
sum, n is the maximum number of iterations, n is the popula-
tion size and r is the stochastic function which is computed
through the following equation (Mirjalili 2015):

r tð Þ ¼ 1←if rand > 0:5ð Þ
0←if rand≤0:5ð Þ

� �
ð3Þ

Equation (3) ensures that the ants move within the bound-
aries of the search space

Rj
t ¼

X i−atið Þ � dti−cti
� �

bti−ai
� � þ cti ð4Þ

where ati is the minimum step of randomwalk (RW), X t
i is the

position of ith anti at tth iteration, bi is the maximum step of

random walk, Rj
t is the position of anti i after performing the

random walk to nearby ant lion j, cti is the minimum ith var-
iable at tth iteration and dti is the maximum ith variable at tth
iteration (Fig. 2).

Trapping hole of the ANL

As mentioned above, the traps of the ANLs affect the random
walks of the ANs. The following equation is used to mathe-
matically model this hypothesis (Wang et al. 2018):

dti ¼ Ant liontj þ dt ð5Þ
cti ¼ Ant liontj þ ct ð6Þ

where ct is the minimum of all variables at tth iteration, cti is

the minimum of all variables for ith ant, dt is the maximum of
all variables at tth iteration and dti is the maximum of all
variables for ith ant. Figure 3 shows the random walk of an
ant.

Building the trap

A roulette wheel mechanism is used to simulate the ANL’s
hunting ability. As shown in Fig. 3, the ANs are hypothesized
to be trapped in only one chosen ANL pit. The ALO algorithm
uses the roulette wheel mechanism to select ANLs based on
their fitness during optimization. The fitter ANLs are more
likely to be successful in hunting an ant (Mirjalili 2015).

Sliding ants towards the ant lion

When the ANL realizes that there is an AN in the trap, it
throws sand towards the edge of the hole to pull the prey
(ant) in. This behaviour is simulated through the following
equation:

Fig. 3 Random walk of an ant

Fig. 2 Hunting behaviour of
ANLs
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ct ¼ ct

I

dt ¼ dt

I

ð7Þ

where ct is the minimum of all variables at tth iteration, dt is
the maximum of all variables at tth iteration and I is the ratio.
The computation of the I parameter is portrayed in Fig. 4.

Catching prey and rebuilding the trap

In order to increase its chances of catching new AN, the ANL
has to alter its position to the position of the hunted ant. This
behaviour is simulated in Eq. (10)

Ant liontj ¼
Antti←if f Antti

� �� �
< f Ant lionti

� �� �
Ant liontj←otherwise

� �
ð8Þ

where Antti is the location of jth ANL, Antti is the position of
ith ANL and t is the current iteration.

Elitism

The ALO has two groups of search agents: ant (prey) and ant
lions. The best search agents (ant lions) only alter their loca-
tions during the substitution of a special ant. Ant agents can
perform random walks in the search space (Mirjalili 2015).
The ant lions hunt ants trapped in a hole. The ant lion with a
superior fitness level in each iteration is regarded an elite ant
lion. The following equation is used to attain the position of
the ants (Mirjalili 2015):

Antti ¼
Rt
A þ Rt

e

2
ð9Þ

where Rt
A is the random walk around the ant lion (ANL) cho-

sen by way of the roulette mechanism (RM), Rt
e is the random

walk around the elite ant lion at tth iteration and Antti is the
location of ith ant lion at tth iteration (Fig. 4).

Bat algorithm

BA is an optimization algorithm for global optimization. This
algorithm mimics the behaviour of bats. Each bat flies ran-
domly with a velocity (vi) at location (solution) xi with a
changing frequency or loudness (Ai). When the bat seeks
and finds its prey, its frequency, pulsation rate (r) and loud-
ness are altered. The position, velocity and frequency of bats
are updated as follows (Cui et al. 2019):

f l ¼ f min þ f max− f minð Þ � β ð10Þ
yl tð Þ ¼ yl t−1ð Þ þ vl tð Þ; t ¼ 1;…; T ð11Þ
vl tð Þ ¼ yl t−1ð Þ−Y*½ � � f l; t ¼ 1;…; T ð12Þ

where fmin is the minimum frequency, fmax is the maximum
frequency, β is the random value, yl(t) is the position at time
step (t), Y∗ is the best solution, fl is the frequency and T is the
total period of assessment.

Subsequent to the selection of a solution from among the
best current solutions, a new solution for each bat is derived
locally through Eq. (13) (random walk)

y tð Þ ¼ y t−1ð Þ þ εA tð Þ; t ¼ 1;…; T ð13Þ
where A(t) is the average loudness and ε is the random num-
ber. Figure 5 shows the flowchart of the BA. The pulsation
rate increases when a bat finds its prey, while the loudness
decreases. The loudness and pulsation rate values are updated
as follows:

rtþ1
l ¼ r0l 1−exp −γtð Þ½ �Atþ1

l ¼ αAt
l ð14Þ

where γ and α are the constant values.

Particle swarm optimization

The PSO is applied in a wide variety of areas. This includes
rock strength estimation, energy demand forecasting, coeffi-
cient discharge estimation, water resource management and
classifier selection (Wang et al. 2018). PSO’s group of parti-
cles seeks out the best global (gbest) and personal (pbest) posi-
tions. The updating of the position, and velocity of particles in
this algorithm, is based on the following equation:

Vnew ¼ ω� V þ C1 � r1 pbest−Xð Þ þ C2 � r2 gbest−Xð Þ ð15Þ
X new ¼ X þ Vnew ð16Þ
where X is the current position of the particles, C1 and C2 are
the acceleration coefficients, r1 and r2 are the random values
and ω is the inertia weight.

Hybrid ANN and optimization models

As mentioned previously, the output of ANN is affected by
the bias and weight values. The aim of any optimizer is to
determine the optimal values of the ANN parameters. To
achieve this goal in the hybrid ANN and optimization models,
optimization algorithms are employed to optimize the weight
and bias values. These weight and bias values are then used as
inputs to the optimization algorithms. Put plainly, each agent
in each optimization algorithm is a representative of a bias or
weight value. The optimization-simulation process usually
begins with the initialization of a collection of random agents.
The hybrid ANN optimization models are trained with the
initial position of the agents (i.e. with their original weights
and bias parameters). At the next level, the fitness of the
agents is computed. An objective function (i.e. the root-
mean-square error) is defined to decrease the hybrid model
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error. The calculated error is decreased through alterations in
the position of the agents. This process continues until a stop-
ping criterion is met.

Case study

An agricultural basin located in the north of Iran was se-
lected for this case study. The Goorganrood basin is posi-
tioned at longitude 10′ 54° to 26′ 56° N and latitude 35′ 36°

to 38′ 15° E, as shown in Fig. 6. Except for the period
between May and July, a wet climate with moderate tem-
peratures prevails in this area. The average annual rainfall
is 515 mm, while the average annual temperature is
17.8 °C. The lowest and highest rainfall levels occur in
August and March, respectively. August is the hottest
month and January the coldest.

The construction of accurate SSL prediction models
involves the generation of input data for all the soft
computing models, by means of statistically significant

Fig. 4 Flowchart of ant lion optimization
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lagged combinations of historical SSL. These inputs
were used for a 1-day-ahead forecast of SSL. In this
study, first, the soft computing models were evaluated
using the data at Narmab station in the Goorganrood
basin. Three hundred eighty daily data were used from
the Narmab station. Then, climate data of the Salian
station, Narmab station, Tamar station and Basir Abad
station were used to validate the models. Three thousand
six hundred daily data of these stations were used as the
inputs to the models; 70% and 30% of data were used

for the training and testing levels, respectively, as shown
in Figs. 7 and 8. Different data splitting ratios have been
examined to achieve the best data splitting ratio.
However, the best results were obtained for 70% of data
and 30% of data for the training and testing levels, re-
spectively. Figure 9 shows the best objective function
value obtained for different sizes of data through the
ANN model. The results indicated that the best results
are obtained by the 70% and 30% of data for the train-
ing and testing levels, respectively.

Fig. 5 Flowchart of bat algorithm
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Table 1 shows the statistical characteristics of data. Themean,
maximum and minimum values at the Narmab station is 41,000,
65,000 and 2800, respectively. In this study, the SSL was esti-
mated with and without meteorological data. First, Eq. (18) was

used to estimate SSLwithout meteorological data. Then, the SSL
was estimated using meteorological data.

Statistical analysis generated a unique set of inputs, with a
total of five different input combinations derived by way of

Fig. 6 Location of the case study

Fig. 7 Time series of SSL for the
training stage
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the periodicity (day) and historical SSL. In this study, first, the
soft computing models are evaluated using

SSL tð Þ ¼ f SSL t−1ð Þ½ �; 1 : Number of scenariosð Þ
SSL tð Þ ¼ f SSL t−1ð Þ;SSL t−2ð Þ½ �; 2 : Number of scenariosð Þ
SSL tð Þ ¼ f SSL t−1ð Þ; SSL t−2ð Þ; SSL t−3ð Þ½ �; 3 : Number of scenariosð Þ
SSL tð Þ ¼ f SSL t−1ð Þ; SSL t−2ð Þ; SSL t−3ð Þ;SSL t−4ð Þ½ �; 4 : Number of scenariosð Þ
SSL tð Þ ¼ f SSL t−1ð Þ; SSL t−2ð Þ; SSL t−3ð Þ;SSL t−4ð Þ; SSL t−5ð Þ½ �; 5 : Number of scenariosð Þ

ð17Þ

where t − 1 is the pervious-day SSL, t − 2 is the previous 2-day
SSL, t − 3 is the previous 3-day SLL, t − 4 is the previous 4-
day SLL and t − 5 is the previous 5-day SSL.

The principal component analysis

In this study, the principal component analysis (PCA) is
used to reduce the dimensionality of input data. The PCA
is used to select the appropriate climate data for predicting
SSL at the Salian station, Narmab station, Tamar station
and Basir Abad station. The PCA converts the given input
data into a smaller number of independent variables
(Noori et al. 2011). The new set of variables is named
principal components (PCs). A set of principals has a
number of features, including the following: (1) all PCs
are uncorrelated, (2) each PC is a linear integration of
input variables and (3) the first PC explains most of the
variability in the data (Noori et al. 2011).

Z ¼ ai1X 1 þ ai2x2 þ…þ aipX p ð18Þ

where Zi represents PCs, X is the input variable and a is
the eigenvector. The dimension of new future space is

determined by the eigenvalues. The variance of data along
the new feature space is described by the eigenvalues
(Noori et al. 2011).

R−λIj j ¼ 0 ð19Þ

where I is the unit matrix, R is the variance-covariance
matrix and λ is the eigenvalues.

The sample size of data should be investigated before
modellers use the PCA. Kaiser-Meyer-Olkin (KMO) coeffi-
cient is computed to investigate the adequacy of sample sizes.
The minimum value for KMO should be 0.5. In this study, the
value of KMO was 0.85, 0.84, 0.79 and 0.65 for the Salian
station, Tamar station, Basir Abad station and Narmab station,
respectively (Tayfur et al. 2013).

KMO ¼ ∑ correlationð Þ2
∑ correlationð Þ2 þ ∑ partial correlationð Þ2 ð20Þ

The lagged meteorological data of temperature, discharge
and rainfall were used for a 1-day-ahead forecast of SSL.

Fig. 8 Time series of SLL for the
testing stage
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1. Q (t − 1), Q(t − 2) and Q(t − 3) are the previous-day
discharge, two-previous-day discharge and three-
previous-day discharge, respectively.

2. R(t − 1), R(t − 2) and R(t − 3) are the previous-day rainfall,
two-previous-day rainfall and three-previous-day rainfall,
respectively.

3. T(t − 1), T(t − 2) and T(t − 3) are the previous-day tem-
perature, two-previous-day temperature and three-
previous-day temperature, respectively.

Tables 2, 3, 4 and 5 show the descriptive statistics of
the PCs and eigenvectors obtained through the PCA
application.

Narmab station

The cumulative variance proportion (CVP) shows the contri-
bution rate of PCs. The CVP of 0.90 or more than 0.90 is
significant (Zhao and Huang 2017). As observed in Table 2,

Fig. 9 a, b Sensitivity analysis for
the data splitting ratios

38103Environ Sci Pollut Res  (2020) 27:38094–38116



the analysis of first four principal components summed up a
contribution rate of 93%. The eigenvectors evaluate the coef-
ficients for the formation of PCs. The coefficients of 0.75 or
more than 0.75 have the most effects on the PCs (Zhao and
Huang 2017). The results indicated that Q(t − 1), R(t − 1) and
T(t − 1) had the most effect on the first four PCs in the Narmab
station.

Basir Abad station

As observed in Table 3, the first four principal components
summed up a contribution rate of 91%. The results indicated
that the Q(t − 1), R(t − 1) and T(t − 1) had the most effect on
the first four PCs. Thus, the first four principal components
were used as the inputs to the models.

Table 1 Statistical indices of the
collected data for SSL and
meteorological inputs

Parameter Station

Narmab River Tamar Salian station Basir Abad

SSL (tons)

Min 28,000 25,000 24,550 25,200

Max 65,000 63,000 64,500 67,000

Mean 41,000 43,000 40,500 42,000

Standard deviation 32.23 31.12 30.98 34.23

Rainfall (mm)

Min 12 10 23 18

Max 45 67 45 66

Mean 18 34 32 34

Temperature (°C)

Min 8 12 10 14

Max 38 38 33 39

Mean 23 22 25 27

Discharge (m3/s)

Min 10 14 12 12

Mean 14 18 15 18

Max 25 29 21 28

Table 2 Outputs of the PCA model for the selection of the appropriate metrological inputs for the Narmab River station

Inputs PC (1) PC (2) PC (3) PC (4) PC (5) PC (6) PC (7) PC (8) PC (9) PC (10) PC (11) PC (12)

Eigenvectors obtained through the application of PCA

Q(t − 1) 0.91 0.86 0.85 0.83 0.78 0.54 0.45 0.22 0.20 0.19 0.17 0.15

R(t − 1) 0.89 0.80 0.79 0.78 0.76 0.51 0.26 0.24 0.20 0.19 0.17 0.14

T(t − 1) 0.78 0.77 0.76 0.75 0.74 0.50 0.30 0.29 0.18 0.18 0.16 0.12

Q(t − 2) 0.70 0.69 0.63 0.55 0.52 0.49 0.29 0.28 0.17 0.15 0.12 0.11

R(t − 2) 0.65 0.65 0.60 0.44 0.50 0.48 0.18 0.17 0.16 0.14 0.12 0.10

T(t − 2) 0.54 0.53 0.45 0.43 0.42 0.40 0.21 0.15 0.12 0.10 0.09 0.09

Q(t − 3) 0.43 0.40 0.39 0.38 0.37 0.29 0.16 0.14 0.09 0.08 0.07 0.07

R(t − 3) 0.40 0.39 0.38 0.35 0.34 0.28 0.14 0.12 0.07 0.05 0.05 0.05

T(t − 3) 0.39 0.35 0.35 0.32 0.32 0.26 0.12 0.11 0.05 0.02 0.02 0.02

Q(t − 3) 0.36 0.34 0.32 0.30 0.31 0.25 0.10 0.10 0.01 0.01 0.01 0.01

R(t − 3) 0.32 0.30 0.30 0.29 0.30 0.23 0.09 0.09 0.01 0.01 0.01 0.01

T(t − 3) 0.30 0.28 0.29 0.27 0.25 0.22 0.08 0.07 0.01 0.01 0.01 0.01

Variance proportion (%) 42 24 14 10 5 3 0.5 0.5 0.25 0.25 0.25 0.25
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Salian station

As observed in Table 4, the first two PCs summed up a con-
tribution rate of 90%. Thus, they were used as the inputs to the
models. The results indicated that the Q(t − 1), R(t − 1) and
T(t − 1) had the most effect on the first two PCs.

Tamar station

As observed in Table 5, the first two PCs summed up a con-
tribution rate of 90%. Thus, they were used as inputs to the

models. The results indicated that the Q(t − 1), R(t − 1) and
T(t − 1) had the most effect on the first two PCs.

Simultaneous parameter and input uncertainty
estimation

In this study, an integrated framework was used to quantify
the parameter and input uncertainty of the used soft computing
models. The parameters of ANN models (bias values and
weight connections) can be considered as the source of uncer-
tainty. The input data (temperature, rainfall and discharge) can
be considered as another source of uncertainty. Thus, it is

Table 3 Outputs of the PCA model for the selection of the appropriate metrological inputs for the Basir Abad station

Inputs PC (1) PC (2) PC (3) PC (4) PC (5) PC (6) PC (7) PC (8) PC (9) PC (10) PC (11) PC (12)

Eigenvectors obtained through the application of PCA

Q(t − 1) 0.90 0.84 0.85 0.84 0.69 0.67 0.32 0.30 0.29 0.21 0.19 0.18

R(t − 1) 0.86 0.83 0.79 0.77 0.55 0.52 0.30 0.28 0.26 0.19 0.17 0.16

T(t − 1) 0.75 0.76 0.76 0.75 0.54 0.51 0.28 0.27 0.20 0.17 0.16 0.14

Q(t − 2) 0.69 0.65 0.63 0.62 0.53 0.50 0.22 0.21 0.19 0.16 0.15 0.13

R(t − 2) 0.64 0.62 0.60 0.58 0.50 0.49 0.20 0.18 0.17 0.14 0.12 0.10

T(t − 2) 0.53 0.55 0.54 0.53 0.49 0.44 0.19 0.18 0.16 0.10 0.09 0.09

Q(t − 3) 0.42 0.41 0.40 0.39 0.38 0.36 0.17 0.16 0.15 0.08 0.07 0.07

R(t − 3) 0.39 0.38 0.37 0.36 0.37 0.35 0.16 0.15 0.14 0.05 0.05 0.05

T(t − 3) 0.38 0.37 0.36 0.34 0.35 0.34 0.15 0.14 0.13 0.02 0.02 0.02

Q(t − 3) 0.35 0.34 0.35 0.33 0.34 0.32 0.14 0.12 0.11 0.01 0.01 0.01

R(t − 3) 0.30 0.29 0.34 0.32 0.32 0.31 0.12 0.11 0.10 0.01 0.01 0.01

T(t − 3) 0.29 0.28 0.33 0.30 0.30 0.29 0.10 0.09 0.07 0.01 0.01 0.01

Variance proportion (%) 40 25 14 12 3 3 1 1 0.25 0.25 0.25 0.25
≥ 90

Table 4 Outputs of the PCA model for the selection of the appropriate metrological inputs for the Salian station

Inputs PC (1) PC (2) PC (3) PC (4) PC (5) PC (6) PC (7) PC (8) PC (9) PC (10) PC (11) PC (12)

Eigenvectors obtained through the application of PCA

Q(t − 1) 0.89 0.87 0.84 0.80 0.79 0.45 0.26 0.25 0.24 0.23 0.20 0.15

R(t − 1) 0.88 0.82 0.80 0.76 0.74 0.42 0.26 0.25 0.23 0.22 0.19 0.14

T(t − 1) 0.76 0.75 0.70 0.65 0.63 0.31 0.22 0.20 0.20 0.19 0.17 0.12

Q(t − 2) 0.55 0.54 0.52 0.50 0.48 0.29 0.21 0.20 0.20 0.19 0.14 0.11

R(t − 2) 0.50 0.49 0.47 0.46 0.45 0.26 0.20 0.19 0.19 0.18 0.14 0.10

T(t − 2) 0.45 0.47 0.46 0.45 0.44 0.27 0.19 0.18 0.18 0.17 0.12 0.09

Q(t − 3) 0.44 0.43 0.40 0.39 0.37 0.29 0.18 0.17 0.17 0.15 0.10 0.07

R(t − 3) 0.42 0.42 0.39 0.37 0.36 0.30 0.12 0.09 0.09 0.08 0.05 0.05

T(t − 3) 0.39 0.40 0.38 0.36 0.35 0.32 0.14 0.06 0.06 0.05 0.02 0.02

Q(t − 3) 0.38 0.39 0.37 0.35 0.34 016 0.08 0.01 0.01 0.01 0.01 0.01

R(t − 3) 0.36 0.35 0.33 0.32 0.31 0.15 0.07 0.01 0.01 0.01 0.01 0.01

T(t − 3) 0.35 0.34 0.32 0.30 0.29 0.17 0.05 0.01 0.01 0.01 0.01 0.01

Variance proportion (%) 67 23 4 3 2 0.45 0.22 0.10 0.10 0.07 0.03 0.03
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necessary to quantify the input and parameter uncertainty si-
multaneously. A soft computing model can be defined as fol-
lows (Mustafa et al. 2018):

SSL ¼ M IN ; θ
� �

þ e ð21Þ

where SSL is the SSL (output) matrix of the model (M), IN is
the input matrix of the model, e is the residual error and θ is the
model parameter. The error input model is used to quantify the
uncertainty of input data (Mustafa et al. 2018)

INi ¼ IN i � mi ð22Þ

where INij is the observed input data for the ith day and mi is
the respective input multiplier. The multipliers are assumed as
additional latent variables (ALVs). The ALVs are computed
along with model parameters. In this study, a uniform prior
probability distribution was used for each input parameter and
model parameter.

The inability of the standalone and hybrid ANN structures
is considered as another source of uncertainty. The Bayesian
model is widely used to account for the model structural un-
certainty. Traditionally, the residual errors in SSL modelling
are normally distributed with mean zero and constant standard
deviation. Thus, the likelihood equation can be defined as
follows (Mustafa et al. 2018):

L θjIN ; SSbL� �
¼ ∏N

t¼1

1ffiffiffiffiffiffi
2π

p
:σ

exp −
1

2σ2
ssblt−sslt� �2

	 

¼

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
	 
N

exp −
1

2σ2
∑
N

t¼1
ssblt−sslt� �2

	 

ð23Þ

where SSbL is the measured suspended sediment load, sslt is

the estimated suspended sediment load at time t, ssblt is the
measured SSL at time t, σ is the standard deviation and N is
the total number of time steps. In this article, the differential
evolution adaptive metropolis (DREAM) algorithm was used
as a sampler to sample the posterior distribution using likeli-
hood function. The DREAM algorithm is known as a multi-
chain Markov Chain Monte Carlo method (Vrugt 2016). The
DREAM algorithm is widely used to estimate the uncertainty
arising from the input parameter and model parameter (Vrugt
2016; Vrugt et al. 2009). A Markov chain is generated by the
DREAM algorithm. This chain is ergodic with the unique
stationary distribution. More explanations about the methods
are observed in Vrugt (2016).

Bayesian model averaging

To combine predictions from multiple predictive models, the
Bayesian model averaging (BMA) should be used (Mustafa
et al. 2020).

The uncertainty of each model’s prediction can be consid-
ered by the BMA. An average prediction along with an asso-
ciated prediction distribution is provided by the BMA
(Mustafa et al. 2018). The posterior distribution of the BMA
predictions can be computed as follows:

SSL j ¼ ∑
K

k¼1
μk Fjk þ e j

p SSL jjFjk
� � ¼ ∑

k

k¼1
p SSL jjFjk ;Nk
� �

p Nk jFjk
� � ð24Þ

Table 5 Outputs of the PCA
model for the selection of the
appropriate metrological inputs
for the Tamar station

Inputs PC
(1)

PC
(2)

PC
(3)

PC
(4)

PC
(5)

PC
(6)

PC
(7)

PC
(8)

PC
(9)

PC
(10)

PC
(11)

PC
(12)

Eigenvectors obtained through the application of PCA

Q(t − 1) 0.86 0.82 0.67 0.54 0.49 0.39 0.38 0.30 0.25 0.18 0.15 0.14

R(t − 1) 0.85 0.84 0.65 0.49 0.47 0.36 0.35 0.29 0.28 0.17 0.14 0.13

T(t − 1) 0.75 0.75 0.60 0.48 0.44 0.35 0.32 0.26 0.25 0.14 0.14 0.12

Q(t − 2) 0.73 0.72 0.54 0.46 0.45 0.32 0.30 0.25 0.23 0.12 0.11 0.11

R(t − 2) 0.67 0.56 0.50 0.45 0.43 0.29 0.27 0.24 0.22 0.19 0.10 0.10

T(t − 2) 0.65 0.45 0.45 0.42 0.39 0.27 0.25 0.23 0.21 0.18 0.09 0.09

Q(t − 3) 0.54 0.33 0.32 0.30 0.29 0.26 0.24 0.20 0.19 0.09 0.08 0.08

R(t − 3) 0.43 0.32 0.28 0.26 0.25 0.25 0.23 0.19 0.18 0.08 0.07 0.07

T(t − 3) 0.36 0.30 0.27 0.25 0.22 0.22 0.20 0.18 0.17 0.07 0.06 0.06

Q(t − 3) 0.35 0.29 0.25 0.24 0.21 0.21 0.19 0.17 0.15 0.06 0.05 0.05

R(t − 3) 0.32 0.27 0.24 0.23 0.20 0.20 0.17 0.16 0.14 0.05 0.04 0.04

T(t − 3) 0.29 0.26 0.23 0.22 0.19 0.19 0.15 0.15 0.13 0.02 0.02

Variance
propor-
tion (%)

68 22 5 2 2 0.45 0.22 0.10 0.10 0.07 0.03 0.03
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where SSLj is the weighted average prediction of SSL, Fjk is
the point prediction of each model for j (1, 2,…, n observa-
tions) and k (1, 2,…), K is the number of models, μk is the
weight vector of each model, p(SSLj| Fjk,Nk) is the posterior
predictive distortion of SSLj on Fjk under the regarded model
Nk and p(Nk| Fjk) is the posterior probability of the respective
model Nk. The BMA predictive mean and variance of SSL are
conditional to the discrete ensemble of the suggested models.

E SSL jjFjk
� � ¼ EN E SSL j

� �jFjk ;N
� �

¼ ∑
K

k¼1
E SSL jjFjk ;NK
� �

; p Nk jFjk
� � ð25Þ

Var SSL jjFjk
� � ¼ EN Var y jjF j;k ;N

� �h i
þ Var E yj

� �
jF j;k ;N

h i
¼ ∑

k

k¼1
Var SSL jjFjk ;Nk

� �
p NK jFjk
� �þ ∑

k

k¼1
E SSL jjF j;k ;Nk
� �

−E SSL jjFjk
� �� �2p NK jFjk

� � ð26Þ

where E(SSLj) ∣ Fjk, N is the expected value of SSL and
Var(yj| Fj, k, N) is the variance of SSLj on Fjk under the
regarded model Nk.

The BMA can provide the accurate estimations if the
widths and standard deviation are accurately estimated. The
log-likelihood function is used to estimate the weights and
standard deviations.

L μBMA;σBMAjF; SSLð Þ

¼ ∑
n

j¼1
log ∑

k

k¼1
μk

1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

q exp
−1
2

� �
σ−2
k SSL j−Fkj
� �2264

375 ð27Þ

In this study, the fully Bayesian approach using input un-
certainty multipliers is integrated with the Bayesian model
averaging as follows:

1- A number of predictive models (ANN-ALO, ANN-BA
and ANN-PSO) are suggested to estimate the SSL.

2- The uncertainty is computed using model parameters and
input data (Mustafa et al. 2020).

3- An error input model is defined using Eq. (6).
4- The hydrologically rational pristine domains are chosen

for the input data (Temperature, rainfall, and discharge)
and model parameters (weight values and bias connec-
tions) (Mustafa et al. 2018).

5- A likelihood function is considered such as section
‘Simultaneous parameter and input uncertainty estima-
tion’ (Eq. (23)).

6- The DREAM algorithm is used to compute input multi-
pliers and model parameters.

7- A pre-determined number of outputs are provided for
each model, using the parameter values found from level
2 to 6 (Mustafa et al. 2020).

8- The DREAM algorithm is used to compute the model
weights and variances of each ensemble member of as
described in section ‘Bayesian model averaging’.

9- The weights for all chosen ensemble members of each pre-
dictive model are summed to calculate the model weights.

10- Finally, multimodal forecasts are found by evaluating
predictive mean and variance using Eqs. (25) and (26),
respectively.

The following indices are used to evaluate the performance
of the soft computing models:

MAE ¼ 1

N
∑
N

i¼1
Si0−Sicj j ð28Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Si0ð Þ− Sicð Þð Þ2

s
ð29Þ

NSE ¼ 1−
∑
N

t¼1
Si0−Sicð Þ2

∑
N

t¼1
Sic−Sic

� �2
ð30Þ

p ¼ 1

N
count SSLjSSLL≤SSL≤SSLUð Þ � 100 ð31Þ

d ¼ dx
σx

dx ¼ 1

N
∑
N

l¼1
SSLU−SSLLð Þ

ð32Þ

where RMSE is the root-mean-square error, NSE is the Nash-
Sutcliff efficiency, MAE is the mean absolute error, N is the
data count, SSLL is the lower value of SSL, SSLU is the upper
value of SLL, p is the percentage of observed data bracketed
by the 95% prediction uncertainty (95PPU), σx is the standard
deviation and d is the average width of confidence interval.

38107Environ Sci Pollut Res  (2020) 27:38094–38116



Table 6 Sensitivity analysis of
the different algorithms Value of parameter Objective function value

PSO

Population size 100 1.15

200 1.10

300 1.16

400 1.22

Inertia coefficient 0.3 1.17

0.5 1.09

0.7 1.20

0.90 1.24

c1 1.7 1.16

1.8 1.12

1.9 1.17

2.0 1.19

c2 1.7 1.16

1.8 1.12

1.9 1.17

2.0 1.19

BA

Population size 50 1.02

100 0.999

150 1.12

200 1.15

Maximum frequency 3 1.19

5 1.17

7 0.999

9 1.09

Minimum frequency 1 1.29

2 1.05

3 0.994

4 1.09

Maximum loudness 0.30 1.19

0.50 1.12

0.70 0.993

0.90 1.06

Minimum loudness 0.10 1.19

0.20 1.17

0.30 0.997

0.40 1.02

ALO

Population size 20 0.994

40 0.810

60 0.829

80 0.915

Maximum number of iterations 50 0.926

100 0.819

150 0.821

200 0.822
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Results and discussion

Sensitivity analysis

The application of the optimization algorithms, into the
ANN model, requires the prior adjustment of a suitable

set of parameters. As in any optimization algorithm, the
BA, ALO and PSO are relatively sensitive to setup pa-
rameters. Hence, to get the most out of optimization
algorithms, it is necessary to fine-tune the parameters,
before applying them to the ANN model. While the ob-
jective function value is varied for a parameter of

Table 7 Evaluation parameters of studied models in the training and testing levels (Narmab River)

Model Training Testing

RMSE MAE NSE RMSE MAE NSE

ANN-ALO (5) 0.812 0.732 0.97 1.21 1.19 0.96

ANN-BA (5) 0.998 0.824 0.96 1.24 1.21 0.95

ANN-PSO (5) 1.09 0.895 0.94 1.29 1.27 0.93

ANN-ALO (4) 0.89 0.739 0.96 1.31 1.23 0.94

ANN-BA (4) 1.12 0.832 0.95 1.35 1.3 0.94

ANN-PSO (4) 1.23 0.911 0.93 1.42 1.4 0.92

ANN-ALO (3) 1.01 0.812 0.92 1.32 1.28 0.91

ANN-BA (3) 1.44 0.878 0.91 1.49 1.37 0.89

ANN-PSO (3) 1.67 0.924 0.89 1.51 1.45 0.87

ANN-ALO (2) 1.59 1.12 0.87 1.59 1.57 0.85

ANN-BA (2) 1.69 1.32 0.85 1.67 1.63 0.83

ANN-PSO (2) 1.73 1.43 0.83 1.73 1.69 0.82

ANN-ALO (1) 1.62 1.24 0.86 1.63 1.62 0.84

ANN-BA (1) 1.69 1.45 0.82 1.69 1.67 0.81

ANN-PSO (1) 1.73 1.62 0.8 1.76 1.73 0.78

Fig. 10 Coefficient of determination (R2) for all used models for the training and testing stages
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interest, by changing the value of that parameter, the
values of other parameters in each algorithm are fixed.
For this undertaking, we used RMSE as the objective
function. However, depending on problem complexity,
the value of the parameter of interest is altered for the
running of the algorithm. Table 6 shows the results of
sensitivity analysis for the optimization algorithms. It
should be noted that the best result of the BA algorithm,
i.e. minimum objective function value, occurs at a pop-
ulation size of 100, minimum frequency of 3, maximum
frequency of 7, maximum loudness of 0.7 and minimum
loudness of 0.3. The outputs of other algorithms are
illustrated in Table 6.

Statistical results for soft computing models for the
Narmab station

The outputs of the statistical parameters, for studied models in
the training level, are provided in Table 7. As portrayed in this
table, the periodicity significantly increased the accuracy of
each model. For the ANN-ALO model, the NSE increased
from 0.86 (for the first input combination) to 0.97 (for the fifth
input combination). The RMSE and MAE decreased from
1.62 to 0.812 and from 1.24 to 0.732, respectively. A compar-
ison of the ANN-ALO, ANN-BA and ANN-PSO models re-
vealed the superiority of the ANN-ALO (5) model over the
ANN-BA and ANN-PSO models. The ANN-PSO model was

Fig. 11 Uncertainty analysis for
the proposed SSL models in the
Narmab River
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also outperformed by the ANN-BA model. According to the
results attained, the ANN-ALO (5) model improved the accu-
racy of the ANN-BA (5) and ANN-PSO (5) models by ap-
proximately 18% and 26% for the RMSE, respectively. The
results also indicate that the ANN-BA (5) model increased the
accuracy of the ANN-PSO (5) model by 9.4% and 8.01% for
RMSE and MAE, respectively.

The results from investigations on the statistical parameters
for models studied in the testing level are provided in Table 7.
These results revealed that (a) the periodicity enhanced the
accuracy of the hybrid ANN models and (b) the highest
RMSE and MAE values were achieved by the ANN-PSO
(1) model. From Table 6, it can be surmised that generally,
the ANN-ALO (5) models are the most favourable and the
ANN-PSO (1) models the least favourable. Figure 10 shows
the bar chart for the soft computing models. In terms of the R2

index, the ANN-ALO (5) model, with the values of 0.95
(training level) and 0.92 (testing level), performed better than
the other models. It was also observed that the accuracy of the
ANN-BAmodel is superior to that of the ANN-PSOmodel. It
is noteworthy that the highest and lowest values of R2 were
attained by the ANN-ALO (5) and ANN-PSO (1) models,
respectively.

As mentioned earlier, one of the main aims of this under-
taking is to investigate the uncertainty of the different hybrid
ANN models, by way of the p and d factors. The lagged input
data (lagged SSL values) have the uncertainties due to the
error measurements. Thus, it is necessary to perform the un-
certainty analysis. The reduction in d parameter and the in-
crease in p parameter resulted in a more favourable uncertain-
ty for all the models. In the case of the ANN-ALO model, p
increased from 0.66 (the first input combination) to 0.94 (the
fifth input combination). The results indicate that the period-
icity significantly improved the accuracy of each model. As
can be observed in Fig. 11, the minimum and maximum
values of p are 0.66 and 0.94 for ANN-ALO (5) and ANN-

PSO (1), respectively, while the maximum and minimum
values of d are 0.39 and 0.14 for ANN-ALO (5) and ANN-
PSO (1), respectively. A comparison between the ANN-BA
and ANN-PSO models revealed that the ANN-BA model has
a higher value of p and a lower value of d.

Evaluation of ANN models using meteorological
inputs

Table 8 (training) shows the training results of statistical
models using meteorological input data. Comparison of
ANN-ALO, ANN-BA and ANN-PSO indicated that the
ANN-ALO model was better than the ANN-BA and ANN-
PSOmodels. The ANN-ALO increased the accuracy of ANN-
BA and ANN-PSO by approximately 2.4% and 5.4% for
RMSE in the Narmab River, respectively. From the MAE
point of view, ANN-ALO with the values of 1.14 ton,
1.10 ton, 1.10 ton and 1.06 ton had better accuracy in com-
parison with the ANN-BA and ANN-PSO in the Narmab
River, Tamar, Basir Abad and Salian stations. Table 8
(testing) indicates the testing results using meteorological in-
put data. The results revealed that the ANN-ALO was the
optimum model, as verified by a RMSE value of 1.25, MAE
of 1.16 ton and NSE of 1.93 in the Narmab River. Among the
hybrid ANN models, the hybrid ANN-ALO was seen to have
the highest value of NSE in the Narmab River, Tamar, Basir
Abad and Salian stations. The results also indicated that the
ANN-ALO and ANN-BA had the lowest MAE values in the
Narmab River, Tamar, Basir Abad and Salian stations.
According to Table 8, the accuracy of the ANN-PSO model
with the higher values of RMSE and MAE and lower values
of NSE is worse than that of the other models. Figure 12
shows the boxplot of ANN models in different stations. The
results indicated that the maximum and minimum shapes of
boxplots provided by the ANN-ALO followed the observed
values compared to those provided by the ANN-BA and

Table 8 Results of models with meteorological data

Model Station

Narmab River Tamar Basir Abad Salian

RMSE MAE NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE NSE

Training

ANN-ALO (3) 1.22 1.14 0.95 1.12 1.10 0.96 1.14 1.10 0.94 1.10 1.06 0.90

ANN-BA (3) 1.25 1.16 0.93 1.16 1.14 0.94 1.17 1.15 0.92 1.12 1.10 0.89

ANN-PSO (3) 1.29 1.19 0.90 1.18 1.15 0.91 1.19 1.17 0.90 1.15 1.21 0.87

Testing

ANN-ALO (3) 1.25 1.16 0.93 1.14 1.24 0.94 1.19 1.14 0.90 1.19 1.12 0.86

ANN-BA (3) 1.23 1.19 0.89 1.18 1.29 0.92 1.23 1.24 0.89 1.23 1.19 0.85

ANN-PSO (3) 1.37 1.25 0.86 1.23 1.33 0.86 1.29 1.26 0.86 1.25 1.29 0.84
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ANN-PSO models. It can be concluded that there is a signif-
icant difference between the ANN-PSO with the observed
data. Figure 13 indicates the uncertainty results using meteo-
rological inputs. In the case of the ANN-ALO model, the d
value decreased from 0.16 (ANN-PSO) to 0.12 (ANN-ALO),
from 0.19 (ANN-PSO) to 0.12 (ANN-ALO), from 0.25
(ANN-PSO) to 0.21 (ANN-ALO) and from 0.26 (ANN-

PSO) to 0.22 (ANN-ALO) in the Narmab River, Tamar,
Basir Abad and Salian stations, respectively. As observed in
Fig. 12, the maximum and minimum values of p are 0.91 and
0.89 in the Narmab River. A comparison between the ANN-
BA and ANN-PSO models revealed that the ANN-PSO mod-
el has a lower value of p and a higher value of d in different
stations.

Fig. 12 The boxplots for the a Narmab River, b Basir Abad, c Salian and d Tamar stations
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Fig. 12 continued.
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Conclusions

The modelling of different SSL input scenarios (including
previous sediment values) was performed to investigate
the effectiveness of the ANN-ALO model. The outputs
were compared with the ANN-PSO and ANN-BA models.
The meteorological inputs and lagged SSLs were used as
the inputs to the models. First, lagged SSLs were used to
estimate the SSL in the Narmab River station. Five input
combinations were used to estimate the lagged SSLs in
the Narmab River station. The results indicated that the
ANN-ALO (5) model improved the accuracy of the ANN-
BA (5) and ANN-PSO (5) models by approximately 18%
and 26% for the RMSE, respectively. Then, the meteoro-
logical inputs were used to estimate SSL in different sta-
tions. The principal component analysis was used to select
the best input combinations. The ANN-ALO model was
the optimum model as verified by a RMSE value of 1.22,

1.12, 1.14 and 1.10 for the training data set in the Narmab
River, Tamar, Basir Abad and Salian stations. The results
reflected that the ANN-PSO model was the worst model,
as verified by the RMSE value of 1.29 (Narmab River),
1.18 (Tamar), 1.19 (Basir Abad) and 1.15 (Salian) for the
training data set. The uncertainty results indicated that the
ANN-ALO model had the highest p value and the lowest
d value in different stations. The findings of the current
study indicate that the hybrid ANN models have a high
ability for predicting SSL. The next papers can integrate
the climate models with the hybrid soft computing models
to predict SSL for the future periods under climate change
condition. Additionally, the ALO can be used to develop
the other soft computing models such as ANFIS and SVM
model for predicting SSL.
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