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Abstract
Submerged macrophytes have been found to be promising in removing cadmium (Cd) from aquatic ecosystems; however, the
mechanism of Cd detoxification in these plants is still poorly understood. In the present study, Cd chemical forms and subcellular
distributing behaviors inMyriophyllum aquaticum and the physiological mechanism underlyingM. aquaticum in response to Cd
stress were explored. During the study, M. aquaticum was grown in a hydroponic system and was treated under different
concentrations of Cd (0, 0.01, 0.05, 0.25, and 1.25 mg/L) for 14 days. The differential centrifugation suggested that most Cd
was split in the soluble fraction (57.40–66.25%) and bound to the cell wall (24.92–38.57%). Furthermore, Cd inM. aquaticum
was primarily present in NaCl-extractable Cd (51.76–91.15% in leaves and 58.71–84.76% in stems), followed by acetic acid–
extractable Cd (5.17–22.42% in leaves and 9.54–16.56% in stems) and HCl-extractable Cd (0.80–12.23% in leaves and 3.56–
18.87% in stems). The malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations inM. aquaticumwere noticeably
increased under each Cd concentration. The activities of catalase (CAT), guaiacol peroxidase (POD), and superoxide dismutase
(SOD) in leaves were initially increased under relatively low concentrations of Cd but were decreased further with the increasing
concentrations of Cd. The ascorbate (AsA), glutathione (GSH), and nitric oxide (NO) concentrations in stems increased with
increasing Cd concentrations. Taken together, our results indicate that M. aquaticum can be used successfully for
phytoremediation of Cd-contaminated water, and the detoxification mechanisms in M. aquaticum include enzymatic and non-
enzymatic antioxidants, subcellular partitioning, and the formation of different chemical forms of Cd.
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Introduction

The contamination of aquatic ecosystems due to heavy metals
has been extensively highlighted in recent decades (Chen et al.
2019). In order to be specific, cadmium (Cd) refers to the most
phytotoxic element with no known biological functions in
various types of plants. The main sources of Cd contamination
are industrial development, mining, and application of sewage
sludge and phosphate fertilizer to the land (Shi et al. 2016).

Plants under the influence of Cd contamination display dam-
aged photosynthetic system, promoted senescence, and de-
fects related to mineral deprivation. The high levels of Cd
can be concentrated through the food chain in humans and
might cause adverse impacts on health.

The conventional techniques used to clean up pollut-
ed water are effective but expensive. Phytoremediation,
a plant-based green technology, is the most promising,
economical, effective, and friendly approach for remov-
ing metals from moderately polluted water bodies (Bello
et al. 2018). Nowadays, a wide range of wetland plant
species have been investigated for their effectiveness in
removing heavy metals (Rezania et al. 2016). Since sub-
merged macrophytes grow underwater, the chances of
exposure to heavy metals are higher compared with
the emergent plants; thus, they may have a relatively
higher potential to take up Cd (Xing et al. 2013).
Many types of submerged macrophy tes , e .g . ,
Vallisneria natans (Li et al. 2018), Elodea nuttallii
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(Beauvais-Fluck et al. 2019), and Microsorum pteropus
(Lan et al. 2019), have been tested for their ability to
accumulate Cd and promising results have been found.
This study also found promising results confirming that
large underwater plants may be used to remove Cd from
aquatic ecosystems.

Cadmium manifests its toxic effects on plants in numerous
ways, such as damage to genomic DNA, inhibition of dam-
aged DNA repair systems, degeneration of mitochondria and
chloroplasts, interaction with bioelements, stimulation of ox-
idative stress, and induction of cell death (Đukić-Ćosić et al.
2020). In order to protect plants from Cd toxicity, plants have
evolved numerous strategies to tolerate metals and initiate
detoxification mechanisms, including isolation in vacuoles
and/or deposition in cell walls or other subcellular parts (Lai
2015). Large amounts of Cd are found in the cell walls of
Phytolacca americana (Fu et al. 2011) and vacuoles of
Capsicum annuum (Xin and Huang 2014). Nevertheless, the
mechanism involved in Cd sequestration in tolerant plants has
not been elucidated (Zhou et al. 2016). Moreover, the biolog-
ically active state of Cd in plants is related to its chemical
form, which may affect its biological toxicity (Shi et al.
2017). Among the different forms of Cd, inorganic (harvested
with ethanol) and water-soluble (harvested with deionized
water) Cd exhibited the maximum activity, followed by insol-
uble Cd phosphates (harvested with acetic acid) and pectate-
and protein-bound Cd (harvested with NaCl), while Cd oxa-
late (harvested with HCl) and residues were the least active
(Xu et al. 2018). A Cd-resistant genotype of barley showed
more pectate- and protein-integrated Cd compared with a Cd-
sensitive genotype (Wu et al. 2005). Therefore, changing the
chemical morphology of heavy metal pollutants may be a
critical detoxifying mechanism (Zhao et al. 2015).

Though Cd does not belong to a redox-active metal com-
plex, it can induce oxidization stress to plants by forming
reactive oxygen species (ROS), including hydrogen peroxide
(H2O2), and superoxide anion (O�−

2 ). Many studies showed
that Cd hyperaccumulators are highly capable to cope with
ROS accumulation and oxidative stress caused by high Cd
in the environment (Boominathan and Doran 2003).
Solanum nigrum, a hyperaccumulator of Cd, showed lower
ROS accumulation and less cell structure disorders compared
with the non-hyperaccumulator, Solanum melongena, under
Cd stress (Sun et al. 2007). However, most aquatic macro-
phytes were found to be non-hyperaccumulator of Cd, and a
significant increase in ROS accumulation was observed in
Wolffia arrhizal (Piotrowska et al. 2010), Lemna minor, and
Lemna gibba (Varga et al. 2013). Many enzymatic and non-
enzymatic antioxidizing pathways are stimulated to overcome
the excess production of ROS in plant cells (Singh et al.
2010). The active states of antioxidant enzymes, e.g., guaiacol
peroxidase (POD), superoxide dismutase (SOD), and catalase
(CAT), increase in response to Cd stress under specific

conditions and subsequently decrease at higher levels of Cd
stress (Hediji et al. 2015). Thus, antioxidant enzymes in plants
are not efficient tomitigate to the toxic effects under severe Cd
stress. Non-enzymatic scavengers, including glutathione
(GSH) and ascorbate (AsA), scavenge ROS accumulated
overly as well (Dogan et al. 2009; Spengler et al. 2017). It
was recently evidenced that nitric oxide (NO), a vital signaling
molecule, is capable of regulating numerous physiological
activities (Akram et al. 2018). Numerous studies have been
conducted to examine the ameliorative effects exerted by NO
on Cd toxicity in plants such as tomato (Ahmad et al. 2018)
and wheat (Kaya et al. 2019). However, the effect of Cd on the
NO content in submerged macrophytes remains unclear.

Myriophyllum aquaticum (M. aquaticum) is a commonly
occurring aquatic angiosperm with a worldwide distribution
and rapid growth. This plant species can offer a large contact
area for phytoremediation as its stems can extend over 1 m in
length underwater. Due to its high potential to accumulate
pollutants, it has been used as an alternative method to accu-
mulate lead, zinc, and copper (Caillat et al. 2014;
Harguinteguy et al. 2015). However, its capacity to remove
and detoxify Cd remains unknown. It is very important to
identify the localization and assimilation of Cd in subcellular
fractions as well as its chemical forms to understand this
plant’s defense system in response to Cd stress.

The present study aimed (1) to characterize the chemical
forms of Cd and its subcellular distributing behaviors in
M. aquaticum, (2) to explore their participation in Cd tolerat-
ing process, and (3) to delve into the variations in non-
enzymatic antioxidant concentrations and antioxidant enzyme
activities inM. aquaticum under Cd stress. The results would
contribute to a better understanding of Cd phytoremediation
potential of M. aquaticum and the physiological mechanisms
that are associated with Cd accumulation and stress adaption
in submerged macrophytes.

Experimental materials and methods

Plant materials and Cd treatments

Myriophyllum aquaticum plants originating from uncontami-
nated freshwater bodies in Xiamen, China, were collected. For
experimental studies, we harvested plants that were of the
almost same height and weight, which were cleaned with dis-
tilled and flowing tap water. Using a glass aquarium supple-
mented with 1/10 Hoagland solution, the plants were kept for
2 weeks at a photosynthetic photon flux density of 114 μmol/
(m2 s) for a photoperiod of 14 h and a temperature of 25/20 °C
(day/night). After 2 weeks, fresh plant materials (8.0 ± 0.1 g)
were transferred to glass beakers containing different Cd con-
centrations (0, 0.01, 0.05, 0.25, and 1.25 mg/L), supplied as
CdCl2·2.5H2O (analytical reagent) in 1.6 L 1/10 Hoagland
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nutrient medium for 14 days. Subsequently, under the men-
tioned conditions, the beakers were set in a growth chamber.
After harvesting, the plants were separated into leaves and
stems and frozen in liquid nitrogen immediately. They were
frozen at appropriate conditions until further use. All experi-
ments were repeated thrice.

Subcellular distribution of Cd

Based on a method described byWeigel and Jäger (1980), the
plant cells from fresh leaf and stem tissues were separated into
three parts (soluble fractions, organelle, and cell wall). Using a
pestle and a chilled mortar and 20 mL pre-cold extraction
buffer (1.0 mM dithioerythritol, 250 mM sucrose, and
50 mM Tris-HCl (pH 7.5)), frozen plant samples (2.0 g) were
homogenized. The homogenate was transferred into 50-mL
centrifuge tubes and centrifuged for 15 min at 1250×g. The
precipitate was collected as the cell wall fraction, primarily
including cell wall debris and cell walls. The supernatant
was then centrifuged for 45 min at 20,800×g. The cell organ-
elle and soluble fractions were obtained as the precipitate and
the supernatant, respectively. All procedures were performed
at 4 °C. The samples with Cd obtained as three fractions were
analyzed after drying and wet digestion.

Extraction of different chemical forms

With a method proposed by Lai (2015), we extracted the six
chemical forms of Cd. The steps for Cd extraction by specific
solutions were as follows: (1) 80% ethanol for harvesting in-
organic Cd (FE), including aminophenol, chloride, and nitrate/
nitrite Cd; (2) deionized water (d-water) for harvesting water-
soluble Cd-organic acid complexes and Cd(H2PO4)2 (FW); (3)
1 M NaCl for harvesting protein- and pectate-combined Cd
(FNaCl); (4) 2% acetic acid (HAc) for harvesting insoluble Cd
phosphate (FHAc), covering Cd3(PO4)2 and CdHPO4; (5)
0.6 M HCl for harvesting Cd oxalate (FHCl); (6) the residual
(FR). Since the concentration of Cd in the residues was very
low, it could not be detected.

The frozen plant tissues were homogenized with an extract-
ed solution (w/v = 1/10) and then shaken at 25 °C for 22 h. The
homogenate was centrifuged at 5000×g for 10 min. The first
supernatant obtained was transferred into a beaker. The sedi-
ment was re-extracted twice with the same extracting solution
and then was shaken at 25 °C for 2 h. The three supernatants
were pooled and using the next solution in the solvent se-
quence, the sediment was subjected up to five extraction pro-
cesses. Each extraction solution underwent the same opera-
tional steps for the same duration as the first extraction solu-
tion. The pooled supernatant solution was then dried on an
electric plate at 70 °C.

Cadmium content analysis

Before the metal analysis was performed, all plant parts, in-
cluding the cell wall and cell organelle fractions, were wet
digested at 145 °C with an HNO3/HClO4 (2:1, v/v) oxidation
acid mixture and then diluted using ultrapure water. Every
sample of Cd concentration was measured thrice using induc-
tively coupled plasma mass spectrometry (ICP-MS, 7500cx,
Agilent, Santa Clara, CA, USA). In order to achieve quality
assurance, we used a certified reference material (bush twigs
and leaves, GBW07602 from the National Research Center
for Standard Materials in China) and a reagent blank. The
reference material was analyzed repeatedly, and then 0.137
± 0.05 mg Cd/kg dry weight (DW) was obtained, which was
consistent with the certified value 0.14 ± 0.06 mg Cd/kg DW.

Analysis of H2O2, malondialdehyde, and antioxidant
enzyme activities

The concentration of H2O2 was determined colorimetrically,
according to Jana and Choudhuri (1981). H2O2 was extracted
by homogenizing 50 mg of stem tissues or fresh leaves with
3 mL of phosphate buffer (50 mM, pH 6.5). For measuring the
H2O2 content, 3 mL of extraction solution was mixed with
1 mL of 0.1% titanium sulfate in 20% (v/v) H2SO4, and the
mixture was centrifuged at 6000×g for 15 min. The absor-
bance of the yellow supernatant was measured using a spec-
trophotometer at 410 nm.

The lipid peroxidation level in the leaf and stem tissues was
determined in terms of the malondialdehyde (MDA) (a prod-
uct of lipid peroxidation) concentration using an approach
described by Farooq et al. (2016). Of the plant sample,
0.25 g was homogenized in 5 mL of 0.1% trichloroacetic acid
(TCA). The homogenate was centrifuged at 10,000×g for
5 min; 4 mL of 20% TCA supplemented with 0.5% thiobar-
bituric acid was added to 1mL of the supernatant. Themixture
was heated at 95 °C for 30 min and then quickly cooled using
an ice bath. After the mixture was centrifuged at 10,000×g for
10 min, the absorbance of the supernatant was measured at
532 nm, and the value of the nonspecific absorption at 600 nm
was subtracted.

In 100 mM chilled potassium phosphate buffer (pH 7.0)
supplemented with 0.1 mM EDTA and 1% polyvinylpyrroli-
done (w/v), 0.20 g of the plant sample was homogenized at
4 °C. The homogenate was centrifuged at 15,000×g under
4 °C for 20 min, and the supernatant was used for determining
the CAT, POD, and SOD activities (Dominguez et al. 2010).

Following a method proposed by Beauchamp and
Fridovich (1971), the active state of SOD was ascertained.
The reaction mixture (3 mL) contained a suitable aliquot of
enzyme extract, 0.1 mM EDTA, 2 μM riboflavin, 75 μM
nitroblue tetrazolium, 13 mM methionine, and 40 mM phos-
phate buffer (pH 7.8). After shaking, the test tubes were

37735Environ Sci Pollut Res (2020) 27:37733–37744



placed at 30 cm below a 15W fluorescent light source, and the
absorbance was recorded at 560 nm.

The POD activity was determined as mentioned by Meng
et al. (2007). In total, 0.1 mL of supernatant was used for the
analysis. The activity was expressed as an increase in the
absorbance at 470 nm under the influence of guaiacol
oxidation.

The method proposed by Srivastava et al. (2006) was used
to determine CAT activity. A reaction mixture, in 3 mL,
contained a suitable aliquot of the enzyme, 20 mM H2O2,
and 50 mM sodium phosphate buffer (pH 7.0). A decline in
absorbance at 240 nm was taken as the CAT active state.

Determination of AsA, GSH, and NO contents

Using an approach proposed by Tanaka et al. (1985), reduced
ascorbic acid was determined. The frozen samples were
ground in liquid nitrogen and quickly homogenized in 5%
TCA in an ice bath. Then, the homogenate was centrifuged
at 12,000×g and 4 °C for 10 min. We subsequently mixed the
supernatant with 0.2 mL 0.3% (w/v) FeCl3, 0.4 mL 4% a,a′-
dipyridyl in 70% ethanol, 0.4 mL 44% ortho-phosphoric acid,
and 0.4 mL 10% TCA. After vortex mixing, the color was
developed in the reaction mixtures. The mixtures were incu-
bated for 60 min at 37 °C, and the absorbance of the superna-
tant was read at 525 nm.

The concentration of GSH was determined, according to
Anderson (1985). A total of 0.3 g of fresh plant sample was
homogenized in 2.0 mL of 5% sulfosalicylic acid in a cold
environment. The homogenate was centrifuged at 10,000×g
for 10 min. Then, 40 μL of 5′5′-dithiobis-2-nitrobenzoic acid
and 0.6 mL of phosphate buffer (100mM, pH 7.0) were added
to 0.5 mL of the supernatant. After 2 min, the absorbance was
read at 412 nm.

The concentration of NO in the plant tissue samples was
determined using a modified protocol (Zhou et al. 2005).
Using a mortar and pestle, plant samples (0.6 g) were ground
in 3 mL of 50 mM cool HAc buffer (pH 3.6, supplemented by
4% zinc diacetate). The homogenates were centrifuged at
10,000×g for 15 min, and then the supernatant was harvested.
The pellet was washedwith 1mL of extracting buffer and then
centrifuged according to the previous procedure. The two su-
pernatants were pooled, and 0.1 g of charcoal was added.
After vortexing, the sample was filtered. The mixture of
1 mL of filtrate and 1 mL of Griess reagent was incubated
for 30 min at room temperature, and the absorbance was read
at 540 nm.

Statistical analysis

Data are denoted as a mean ± standard deviation (SD). All
statistical analyses were performed using the SPSS (version
22.0) statistical software package (SPSS, Chicago, IL, USA).

Mean differences among the treatments were compared by an
analysis of variance (one-way ANOVA) followed by
Duncan’s multiple range test at a significance level of
P < 0.05. With the use of Pearson’s correlation analysis
(two-tailed), a correlation matrix was created for Cd concen-
trations against the physiology ofM. aquaticum. All data were
plotted using the Origin 8.5 statistical package.

Results

Cadmium accumulation and subcellular distribution

The overall Cd content and its subcellular distribution in plant
tissues showed variations when different Cd concentrations
were used in the culturing solution. The total Cd content in
stems and leaves increased significantly when Cd concentra-
tion was increased in the solution (Table 1). Furthermore, Cd
accumulation in leaf tissue was slightly higher than that in
stems. Most Cd was distributed in the soluble fraction
(57.40–66.25%), with low concentration in the cell wall frac-
tion (24.92–38.57%), and the organelle fraction accounted for
only 0.97–12.04% of the total. Cadmium ratio in the cell wall
fraction in the leaves increased with the increased amount of
Cd added to the solution, yet the ratio of the cell wall fraction
in stems decreased notably. Furthermore, Cd ratio in the sol-
uble fraction in the stems increased significantly with the in-
creasing Cd content in the solution.

Chemical forms

Cadmium bound to pectates and proteins (harvested with
NaCl) was found to be dominant in all treatments (Fig. 1a).
Furthermore, the concentrations of the different Cd chemical
forms in the plant tissues were increased in a concentration-
dependent manner. When Cd concentration in solutions in-
creased to 1.25 mg/L, Cd harvested using 1 M NaCl was
44.09-fold higher in the leaves and 51.09-fold higher in the
stems compared with that treated with 0.01 mg/L Cd. The
concentrations of Cd harvested using 2%HAc from the leaves
and stems of plants grown at 0.05, 0.25, and 1.25 mg/L Cd
were 1.36-, 2.70-, and 5.78-fold, and 2.22-, 13.72-, and 28.39-
fold higher compared with that exposed to 0.01 mg/L Cd,
respectively.

Figure 1b shows the ratios of different chemical forms of
Cd observed inM. aquaticum exposed to Cd at four levels of
concentrations. Cadmium proportion in the leaves harvested
with 2% HAc decreased considerably with the increased Cd
concentration in the treatment solution, while the ratio of Cd
harvested with 1 M NaCl was increased significantly. In the
stems, the proportion of Cd extracted using 1 M NaCl in-
creased significantly as Cd concentration in the treatment so-
lution increased from 0.01 to 1.25mg/L. The proportion of Cd
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extracted using 2% HAc increased considerably when the
plants were exposed to 0.01–0.25 mg/L Cd, and then de-
creased at higher Cd concentrations. As Cd concentration in-
creased in the treatment solutions, the percentage content of
Cd-organic acid complexes (harvested with d-H2O) and Cd
oxalate (harvested with HCl) tended to decrease in the leaves
and stems. The overall change in the percentage content of
inorganic Cd (harvested with ethanol) was small for all Cd
concentrations in the treatment solution (Fig. 1b).

Evaluation of oxidative stress and activities of
antioxidative enzymes

A dose-response effect was observed in the accumulation of
H2O2 in leaves and stems of M. aquaticum. Following Cd
application, there was a considerable increase in ROS in
M. aquaticum, with enhanced levels of H2O2 at all levels of
Cd concentrations (Table 2). When exposed to 1.25 mg/L
treatment, Cd toxicity caused a considerable increase in
H2O2 concentration in stems and leaves by 3.37- and 1.75-
fold, respectively, compared with the unstressed plants.

Furthermore, by determining the MDA concentration in
plant parts, the effect of Cd on lipid peroxidation was
assessed. The MDA concentration in stems and leaves in-
creased significantly at all levels of Cd concentration after
14 days of treatment, and the concentration was higher in
leaves compared with that in stems (Table 2). Compared with
the control group, 1.25 mg/L Cd (after 14 days) treatment
resulted in the maximum and gradual accumulation of
MDA, with a 5.43- and 41.05-fold increase in the stems and
leaves, respectively.

Table 2 shows the changes in the active state of antioxida-
tive enzymes, including POD, CAT, and SOD, in leaves and
stems, triggered on exposure to Cd concentration. In compar-
ison with the control group, SOD activity in leaves initially
increased but then declined with a further increase in Cd con-
centration. The SOD activity in leaves was highest at 0.05mg/
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Fig. 1 Different chemical forms of Cd (a) and its proportion (b) in leaves
and stems ofM. aquaticum. Values are means of three replicates (n = 3).
Proportion of Cd in fraction (%) = Cd concentration in fraction / (sum of
Cd concentrations in all fractions) × 100

Table 1 Cadmium concentrations and its subcellular distribution of Cd
in leaves and stems ofM. aquaticum. Data are means of three replicates ±
SD (standard deviation, n = 3). Different letters in the same row represent

statistically significant differences between treatments within the different
Cd concentrations (P < 0.05). F1, F2, and F3 refer to the cell wall, cell
organelle, and soluble fractions, respectively

Tissues Cd treatment (mg/L) Cd concentration (mg/kg DW) Relative Cd allocation (%)

F1 F2 F3 Total F1 F2 F3

Leaves 0.01 1.562 ± 0.239 d 0.336 ± 0.171 a 3.151 ± 0.136 d 5.049 ± 0.545 d 30.944 b 6.654 a 62.402 a
0.05 3.847 ± 0.650 c 0.522 ± 0.166 a 6.249 ± 0.278 c 10.618 ± 0.817 c 36.233 a 4.914 b 58.853 a
0.25 23.084 ± 2.119 b 0.780 ± 0.605 a 21.283 ± 0.467 b 45.147 ± 2.915 b 37.841 a 1.729 c 60.430 a
1.25 49.070 ± 1.655 a 1.184 ± 0.388 a 72.276 ± 1.746 a 122.530 ± 3.622 a 38.415 a 0.966 d 60.618 a

Stems 0.01 1.008 ± 0.200 c 0.105 ± 0.037 d 1.500 ± 0.246 c 2.612 ± 0.393 d 38.570 a 4.029 d 57.401 d
0.05 1.438 ± 0.226 c 0.638 ± 0.105 c 3.225 ± 0.307 c 5.301 ± 0.525 c 27.127 b 12.044 a 60.828 c
0.25 8.479 ± 0.260 b 3.519 ± 0.302 b 20.830 ± 1.412 b 32.828 ± 0.878 b 25.828 c 10.720 b 63.452 b
1.25 27.867 ± 1.823 a 9.874 ± 0.506 a 74.087 ± 2.399 a 111.828 ± 4.646 a 24.919 c 8.829 c 66.251 a
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L Cd, which was almost 1.11-fold higher than the control.
However, the SOD activity in stems declined with an increase
in Cd concentration. At the concentration of 1.25 mg/L Cd,
the activity of SOD in stems decreased by approximately
52.89%, which was the lowest compared with the control.

The activity of POD in the leaves initially increased but
then declined with the increasing Cd concentration. The activ-
ity of POD was at the highest level in leaves at the treatment
concentration of 0.05 mg/L Cd, which was approximately
14.71-fold higher than the control (Table 2). In the stems,
the POD activity increased significantly with an increase in
Cd concentration.

The CAT activity in leaves showed a significant increase
when Cd concentration was between 0.01 and 0.05 mg/L, but
then the activity declined with elevated Cd concentration
(Table 2). The highest level of CAT activity in the leaves
was approximately 7.67-fold higher than the control. In the
stems, the CAT activity increased significantly when Cd con-
centration increased in the range of 0.05 to 1.25 mg/L.

Effects of Cd stress on AsA, GSH, and NO contents

The concentration of the antioxidants, AsA and GSH, was
determined. As shown in Fig. 2a, the AsA concentration in
M. aquaticum plants showed a considerable increase with ex-
posure to Cd compared with the control. Furthermore, the
GSH concentration demonstrated a concentration-dependent
increase with Cd treatment (Fig. 2b). The GSH concentration
increased by 2.77 to 6.87% in the stems and by 2.04 to
13.99% in the leaves when Cd concentration was increased
from 0.01 to 1.25 mg/L in the treatment solutions.

The NO concentration in leaves initially increased but then
declined with the increasing Cd concentration in the treatment
solutions (Fig. 3). At 0.01 mg/L Cd concentration, the NO
concentration in the leaves of M. aquaticum attained its
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Fig. 2 Effects of Cd stress on AsA and GSH contents in plant tissues of
M. aquaticum (aAsA, bGSH). Data points and error bars represent mean
and SD (standard deviation, n = 3), respectively. Different letters within
the same pattern indicate statistically significant differences (P < 0.05)
according to Duncan’s multiple range tests

Table 2 Effects of Cd stress on H2O2, MDA contents, and SOD, POD,
and CAT activities inM. aquaticum. Data are means of three replicates ±
SD (standard deviation, n = 3). Different letters in the same row represent

statistically significant differences between treatments within the different
Cd concentrations (P < 0.05)

Tissues Cd treatment (mg/L) H2O2 (mmol/g FW) MDA (nmol/g FW) SOD (U/g FW) POD (U/g FW) CAT (U/g FW)

Leaves 0 2.497 ± 0.123 c 0.151 ± 0.012 d 293.085 ± 17.928 b 8.889 ± 0.399 d 4.065 ± 0.363 e

0.01 3.535 ± 0.324 b 0.554 ± 0.060 d 312.234 ± 25.928 ab 126.667 ± 8.298 a 7.227 ± 0.655 d

0.05 3.829 ± 0.373 ab 2.928 ± 0.180 c 324.468 ± 14.293 a 138.889 ± 11.924 a 31.165 ± 2.840 a

0.25 4.130 ± 0.383 ab 4.194 ± 0.356 b 129.255 ± 8.929 c 94.445 ± 7.823 b 14.905 ± 1.098 b

1.25 4.374 ± 0.342 a 6.173 ± 0.533 a 150.036 ± 4.398 c 50.012 ± 3.392 c 12.195 ± 1.002 c

Stems 0 0.726 ± 0.056 c 0.554 ± 0.034 d 184.043 ± 18.028 a 18.898 ± 1.293 d 4.968 ± 0.274 c

0.01 1.114 ± 0.078 b 1.472 ± 0.102 c 156.383 ± 1.375 b 25.556 ± 1.283 c 5.872 ± 0.287 c

0.05 1.154 ± 0.086 b 1.187 ± 0.098 c 112.766 ± 6.338 c 26.647 ± 1.938 c 7.678 ± 0.567 c

0.25 1.042 ± 0.043 b 2.662 ± 0.209 b 114.894 ± 10.203 c 34.454 ± 27.745 b 19.873 ± 1.086 b

1.25 2.443 ± 0.153 a 3.007 ± 0.258 a 86.702 ± 4.294 d 44.435 ± 3.284 a 94.850 ± 4.384 a
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highest level, an increase of approximately 75.34% was ob-
served compared with the control. The NO concentration in
stems increased with the increase in Cd concentration in the
treatment solutions. The 1.25 mg/L Cd treatment caused a
remarkable 10.26-fold increase in the NO concentration in
the stems.

Correlation coefficient

The correlation coefficient was calculated to determine the
relationship between Cd concentration and antioxidant poten-
tial ofM. aquaticum (Table 3). The NO and H2O2 concentra-
tions and the CAT activity in the stems displayed a significant
positive association with Cd concentration (P < 0.01). The
MDA concentration in leaves displayed a significant positive
association with the GSH and AsA concentrations (P < 0.05).
The MDA concentration in stems showed a significant posi-
tive correlation with the GSH concentration and POD activi-
ties (P < 0.01).

Discussion

Myriophyllum L. represents a genus of submerged aquatic
macrophytic plants. They can accumulate Cd ions, as ob-
served in several studies. In this study, the content of total
Cd in the leaf and stem of M. aquaticum exposed to
1.25 mg/L Cd could reach 122.530 and 111.828 mg/kg, re-
spectively. The ability to accumulate Cd ions was higher than
tha t of M. al terni f lorum (Ngayi la e t a l . 2007) ,
M. heterophyllum (Sivaci et al. 2008), M. triphyllum, and
M. spicatum (Sivaci et al. 2004) exposed to the same

concentrations of Cd ions. This indicated that M. aquaticum
has a great potential for phytoremediation of Cd in this genus.

The distribution of toxic metals in various metal-tolerant
plants suggests that the detoxifying process through the parti-
tion of the metals into plant subcellular components is a com-
mon mechanism of detoxification (Xin et al. 2018). Here, Cd
analysis at the subcellular tissue level suggested that Cd in
M. aquaticum was primarily stored in the soluble fraction
(57.40–66.25%). These results comply with those reported
previously in duckweeds (Su et al. 2017) and rice (Li et al.
2016). The vacuole of a cell comprises up to 90% of the total
cell volume (Pittman 2005). The organic acids (e.g., amino
acids), sulfur donor ligands (e.g., metallothioneins (MTs) and
phytochelatins (PCs)), and oxygen donor ligands (e.g., xalate,
citrate, malate, and carboxylates) can chelate metals in vacu-
oles, resulting in a decrease of free metal ion at the active
states of enzymes, thus decreasing toxicity (Bhatia et al.
2005). As a result, the vacuoles store the maximum of heavy
metals among the intracellular compartments of a submerged
macrophyte. As can be seen in Table 1, the content of Cd
present in the cell wall fraction was second to that present in
the soluble fraction. The cell wall is the first barrier to protect
the protoplast from metal toxicity. In this study, 30.94–
38.42% and 24.92–38.57% of Cd were stored in the cell wall
fraction in the leaves and stems, respectively (Table 1). This
indicated that the cell wall noticeably prevented Cd from en-
tering the cells of this submerged macrophyte. These results
are similar to the study by Xu et al. (2012) and Zhao et al.
(2015), which stated that the maximum fraction of the accu-
mulated Cdwas bound to the cell wall inPotamogeton crispus
and Porphyra yezoensis, respectively. The cell wall contains
carboxyl, hydroxyl, amino, and other functional groups of
polysaccharides and proteins that provide a large number of
binding sites to metal ions. Thus, cell walls can fix metal ions,
limit their transmembrane transport, and downregulate metal
ion concentration in protoplasts (Yang et al. 2018b).

The chemical forms of heavy metals are associated with
their biological functions, and the toxicity levels of different
forms vary depending on the solvent system bywhich they are
harvested. In terms of plants that contain high Cd concentra-
tion exhibiting no or little toxicity, Cd was present in a chem-
ical form that caused low or no phytotoxicity. The contents of
insoluble Cd phosphate (extracted by 2% HAc) and pectate-
and protein-integrated Cd (extracted by 1 M NaCl) indicate
the adaptability of plants to Cd stress (Zhao et al. 2015). In the
present study, most Cd was integrated with pectates and pro-
teins (extracted by 1 M NaCl) in stems and leaves (Fig. 1).
Similar results were reported previously in the studies on
Brassica napus (Mwamba et al. 2016) and Solanum nigrum
L (Wei et al. 2014). Accordingly, Cd is assumed to undergo a
chelating process by several particular polar materials (e.g.,
hydroxyl, carboxyl, PCs, and MTs) to form a nontoxic com-
plex (Lu et al. 2017). The second most abundant chemical
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form of Cd in M. aquaticum shoots was HAc-extractable Cd
(5.17–22.42% in leaves and 9.54–16.56% in stems), followed
by HCl-extractable Cd (0.80–12.23% in leaves and 3.56–
18.87% in stems). These results demonstrated that Cd linked
with undissolved phosphate and/or oxalate could be
accounted for the tolerance in the submerged macrophytes.
It can be assumed that the large percentages of NaCl-, HAc-,
and HCl-extractable Cd in shoots were responsible for the
adaptation of submerged macrophytes to Cd accumulation
and stress. This suggested that the compartmentation of Cd
into vacuoles and sequestration in the cell wall are likely to be
critical to detoxify Cd as well as tolerate metal stress.

Reactive oxygen species include commonly occurring free
radicals that probably cause oxidative stress. They can attack
nucleic acids, pigments, proteins, and lipids, thereby causing
enzyme inactivation, membrane damage, and lipid peroxida-
tion; accordingly, cell viability is affected (Dixit et al. 2001).
Cadmium cannot catalyze Fenton-type reactions that yield
ROS; however, it has been extensively evidenced that Cd
exposure results in the generation of ROS in numerous plants
(Bari et al. 2019; Berni et al. 2019). Here, it was demonstrated
that Cd uptake induced a strong antioxidative response in both
leaves and stems ofM. aquaticum, which was evident with the
presence of H2O2 stimulated by all stress treatments (Table 2).
These results have also been reported for many other plants
(Kaya et al. 2019; Naderi et al. 2018). Malondialdehyde is
produced by the per-oxidized membrane lipids; it accumulates

when plants are under stress. Here, MDA concentration in
M. aquaticum increased due to Cd treatments (Table 2), re-
vealing that Cd stress varied the structure and function of the
cell membranes and promoted reactive oxygen radicals
generating process in the submerged macrophyte. This
agrees with the results of Li et al. (2013) and Yang et al.
(2018a), who reported that Cd stress promotes the accumula-
tion of MDA in Pistia stratiotes and Salix matsudana,
respectively.

In order to resist the damage from ROS, the organisms
activate their cellular immune system to remove cellular
ROS through the secretion of antioxidant enzymes. The first
line of defense against the ROS is SOD, which converts su-
peroxide radicals to H2O2 and molecular oxygen (Li et al.
2019). Both CAT and POD also contribute to the decrease
in the H2O2 concentration in cells, by breaking H2O2 down
to H2O and oxygen (Irfan et al. 2014). Besides, with
chlorogenic acid as a substrate, H2O2 may be removed by
SOD (Takahama and Oniki 1997). In this study, the highest
level of POD, CAT, and SOD activities in leaves increased by
13.72-, 6.67-, and 0.11-fold, respectively, under Cd stress in
comparison with the control (Table 2). Existing research sug-
gested that the activity of antioxidative enzymes can be ele-
vated in Ceratophyllum demersum (Kováčik et al. 2017) and
Oryza sativa (Yu et al. 2013) by Cd stress. These antioxidant
enzymes contribute to the detoxification of Cd. The POD and
CAT activities in leaves initially increased and then decreased

Table 3 The correlation matrix for Cd concentration with the physiological characteristics of M. aquaticum treated for 14 days

Tissues Cd treatment MDA AsA GSH NO SOD POD CAT H2O2

Leaves Cd treatment 1

MDA 0.845 1

AsA 0.597 0.898* 1

GSH 0.690 0.906* 0.785 1

NO − 0.847 − 0.789 − 0.634 − 0.790 1

SOD − 0.686 − 0.790 − 0.893* − 0.858 0.725 1

POD − 0.314 0.019 0.089 − 0.193 0.579 0.276 1

CAT − 0.049 0.367 0.325 − 0.043 − 0.012 0.125 0.644 1

H2O2 0.640 0.877 0.832 0.772 − 0.402 − 0.629 0.456 0.471 1

Stems Cd treatment 1

MDA 0.786 1

AsA 0.870 0.929* 1

GSH 0.946* 0.959** 0.943* 1

NO 0.987** 0.695 0.825 0.612 1

SOD − 0.724 − 0.819 − 0.947* − 0.918 − 0.706 1

POD 0.907* 0.959** 0.982** 0.928* 0.855 − 0.892 1

CAT 0.999** 0.768 0.855 0.668 0.991** − 0.709 − 0.895* 1

H2O2 0.961** 0.741 0.848 0.679 0.974** − 0.768 0.889* 0.965** 1

*Correlation is significant at the 0.05 level (two-tailed)

**Correlation is significant at the 0.01 level (two-tailed)
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to a certain extent with the increasing Cd concentration in the
treatment solutions, whereas they increased continuously in
stems. This indicated some differences in the detoxification
mechanism between the different plant tissues. The active
state of antioxidant enzymes in metal-stressed plants is largely
unstable, which depends on plant species, metal ions, concen-
tration, and duration of stress, whereas these processes show
variations in the redox state of the stressed cells, as suggested
by Sharma and Dietz (2009).

Glutathione and ascorbic acid are antioxidants of low molecu-
lar weight and play critical roles in theGSH-AsA cycle, helping to
sustain the cellular redox status. According to previous studies,
AsA and GSH are effective oxidative stress defense systems
against Cd (Semida et al. 2018; Singh et al. 2018). Here, at a
Cd concentration between 0.01 and 1.25 mg/L in the growth
medium, the contents of GSH and AsA in M. aquaticum were
increased (Fig. 2). Our results agreed with those of previous stud-
ies on Ceratophyllum demersum (Kováčik et al. 2017) and
Vallisneria spiralis (Wang et al. 2009). According to these find-
ings,M. aquaticum is likely to promote GSH and AsA synthesis
to overcome the stress caused by oxidation, thus enhancing its
tolerating ability to Cd. In addition, the increase in the GSH con-
centration in all Cd-treated plants also reflected the biosynthesis of
PCs, with GSH being a PC precursor (Hall 2002). The PCs may
participate in Cd detoxification and tolerance due to their ability to
chelate heavy metals. The ascorbate levels in leaves decreased in
response to the exposure of 1.25mg/LCd; this indicated that ROS
are involved in the oxidation of ascorbic acid to dehydroascorbic
acid, leading to the decrease of the ascorbic acid content.

Nitric oxide, a multifunctional gaseous molecule, alleviates
the toxicity of heavy metals. Here, the NO concentrations in
stems were increased significantly with the increase in Cd con-
centration, which indicated that the NO concentration may be
critical for detoxifying Cd in submerged macrophytes. In
Typha angustifolia, alleviation of NO against Cd stress and im-
provement of plant growth and biomass yield have been ex-
plored (Zhao et al. 2016). The alleviation of exogenous NO
reduced arsenic toxicity inOryza sativa L. through the downreg-
ulation of ROS and As3+-reduced MDA content (Singh et al.
2016). These reports demonstrate that NO is involved in a variety
of adaptive mechanisms (e.g., overall plant growth to withstand
heavy metal stress, promotion of cell wall expansion, protection
of phospholipid bilayer, and cell wall relaxation) (Nabi et al.
2019). Other mechanisms of NO regulation include osmotic
pressure maintenance, which in turn maintains cytoplasmic vis-
cosity and protects chlorophyll pigments, chloroplast mem-
branes, and related components against the negative effects of
Cd on photosynthesis (Ahmad et al. 2018). Likewise, a possible
mechanism by which NO alleviates Cd stress may be by induc-
ing Cd-related domains containing metal chaperone genes
(Imran et al. 2016).

The results of Pearson’s correlation analysis (Table 3)
showed a significant positive correlation between MDA,

GSH, and AsA contents (P < 0.05) in both leaves and stems,
indicating that GSH and AsA played an irreplaceable role in
protectingM. aquaticum from oxidative stress. This result was
consistent with that of Xu et al. (2016), who found a signifi-
cant correlation between GSH, AsA, and MDA. Furthermore,
the POD activity in stems was significantly correlated with
MDA (R = 0.959, P < 0.01) indicating that POD has a major
role in the antioxidant defense systems in stems. The strong
positive correlations between H2O2 and antioxidant compo-
nents such as NO, POD, and CAT in stemsmay be due to their
synergetic role in scavenging H2O2 (Murtaza et al. 2019).
However, the lack of correlations between antioxidant com-
ponents and H2O2 levels in the leaf may be due to the dual role
of H2O2 in mediating the balance between antioxidant re-
sponse and oxidative stress (Qu et al. 2014). The correlation
between physiological response indexes of stem and leaf un-
der Cd stress was different. The higher correlation between
antioxidant enzymes and/or non-enzymatic detoxifying me-
tabolites in stems indicated that the detoxification mechanism
in the stem has better cooperative action (Hu et al. 2019).

Conclusion

In summary, the distribution of Cd at the subcellular level sug-
gested that most Cd existed in the soluble fraction and in the cell
wall. Besides this, NaCl-, HAc-, andHCl-extractable forms of Cd
were also the dominant ones in stems and leaves. These results
indicated that the incorporation into pectates and proteins, phos-
phates, and oxalates, and the physical sequestration in the cell wall
are two major strategies employed by M. aquaticum to tolerate
and detoxify Cd ions. Cadmium uptake induced strong oxidative
stress in both leaves and stems of M. aquaticum, as reflected by
the overproduction of H2O2 and MDA. Oxidation resistance en-
zyme and non-enzymatic antioxidants, such as GSH, AsA, and
NO, were critical in detoxification and accumulation of Cd. Our
results indicated that M. aquaticum has good adaptability to Cd
stress, showing its promising potential for Cd phytoremediation in
aquatic ecosystems, and further provide novel ideas of the cellular
mechanisms in resisting and detoxifying Cd in submerged
macrophytes.
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