
RESEARCH ARTICLE

Assessment of mining activities on tree species and diversity
in hilltop mining areas using Hyperion and Landsat data

Narayan Kayet1,2 & Khanindra Pathak1 & Abhisek Chakrabarty2 & Subodh Kumar1 & Chandra Prakash Singh3
&

Vemuri Muthayya Chowdary4

Received: 5 September 2019 /Accepted: 17 June 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The tree species and its diversity are two critical components to be monitored for sustainable management of forest as
well as biodiversity conservation. In the present study, we have classified the tree species and estimated its diversity
based on hyperspectral remote sensing data at a fine scale level in the Saranda forest. This area is situated near the
mining fields and has a dense forest cover around it. The forest surrounding the study area is exhibiting high-stress
condition as evidenced by the dying and dry plant material, consequently affecting tree species and its diversity. The
preprocessing of 242 Hyperion (hyperspectral) spectral wavebands resulted in 145 corrected spectral wavebands. The 21
spectral wavebands were selected through discrimination analysis (Walk’s Lambda test) for tree species analysis. The
SVM (support vector machine), SAM (spectral angle mapper), and MD (minimum distance) algorithms were applied for
tree species classification based on ground spectral data obtained from the spectroradiometer. We have identified six
local tree species in the study area at the spatial level. The result shows that Sal and Teak tree species are located in the
upper and lower hilly sides of two mines (Meghahatuburu and Kiriburu). We have also used hyperspectral narrow
banded vegetation indices (VIs) for species diversity estimation based on the field-measured Shannon diversity index.
The statistical result shows that NDVI705 (red edge normalized difference vegetation index) is having the best R2 (0.76)
and lowest RMSE (0.04) for species diversity estimation. That is why we have used NDVI705 for species diversity
estimation. The result shows that higher species diversity values are located in the upper and lower hilly sides of two
mines. The linear regression between Hyperion and field measured Shannon index shows the R2 (0.72) and RMSE
(0.15). This study will aid in effective geoenvironmental planning and management of forest in the hilltop mining areas.
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Introduction

The tree species and its diversity are the essential natural re-
sources. In the study region, mining-related activities have
shown a high potential for tree species growth and health
problem. The tree species and its diversity have several eco-
logical functions. Its disturbances directly affect the diversity,
distribution, and abundance of forest, e.g., the effect of ani-
mals in forest protected areas (Bruce et al. 2008), land-use
conversion (Fuller 2006), harvesting for fuelwood
(Madubansi and Shackleton 2006) and mining activities
(Obeng et al. 2019). Mining activities causes forest degrada-
tion, damage, and deterioration of biodiversity, as well as
forest ecology (Raizada and Samra 2000; Morris 2010;
Kayet et al. 2019a, b). Gibbs et al. (2016) have studied tree
species and diversity in the Amazon forest area. They showed
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that 9% of tree species is lost by mining and allied activities
between the years 2005 and 2015 in the Amazon forest.

However, hyperspectral remote sensing technology has
shown the potential to identify the dynamics of tree species
at spatial and regional scale level (Chambers et al. 2007; Plaza
et al. 2009; Shen and Cao 2017). Hyperspectral compact air-
borne image (CASI) sensor data had been used for tree crowns
and species identification (Bunting and Lucas 2006). They
had developed an algorithm to delineate tree crown and spe-
cies classification using ECognition expert, and ground spec-
tral data. The hyperspectral remote sensing technology has
provided higher accuracy to discriminate tree species by clas-
sifying it at a spatial scale level (ST.1). Kozoderov et al.
(2015) had used BCC (Beiman cutler classification) algorithm
in the R statistical program package for tree species classifi-
cation based on hyperspectral data. They had shown that BCC
method has better accuracy levels than other supervised clas-
sification methods (SVM and SAM). Dalponte et al. (2013)
had used EHCS (efficient hierarchical clustering statistical)
algorithm for identifying the Tamarisk tree species and their
suitable wavebands using airborne hyperspectral (4 m) data
combinedwith multispectral (0.5m) data. Alonzo et al. (2014)
had developed the ITC (individual tree crown) method based
on hyperspectral data for classification of tree species. They
had also used various threshold methods for full pixel tree
species classification and compared that with the ITC method.
The spectral behavior of tree species basically depends on
leaves reflectance, absorption, and transmission properties.
A spectral collection technique (SCT) is one of the significant
elements in the discrimination analysis of tree species and
identification (Adam et al. 2010; Delalieux et al. 2009). One
airborne (HyMap) and one space-borne (Hyperion)
hyperspectral satellite data (pixel resolution size of 8 and 30
m) based SMTs (Spectral measure techniques) algorithm had
been used for tree species identification (Ghiyamat et al.
2013).

Hyperspectral narrow-banded VI–based tree species diver-
sity estimation is a new task at a fine-scale level. Peng et al.
(2018) studied the assessment of tree species diversity and
mapping at regional scale level using hyperspectral narrow
banded 37 VIs indices and 1st order derivation value for each
wavelength from ground spectra. The combination of
hyperspectral and multispectral (world view) data were used
for species diversity mapping. The accuracy yielded by mul-
tispectral (70.5) has also been compared with hyperspectral
(79.2) data (Cho et al. 2012). Some researchers have shown
the relationship between spectral indices and plant diversity
(Griffin et al. 2009; Tuanmu and Jetz 2015; Dudley et al.
2015). They had used the hyperspectral narrow banded indi-
ces, field spectra, and forest survey data for analysis of species
diversity and had shown that it had higher accuracy for species
diversity mapping. Hyperspectral narrow banded VIs were
used for species diversity mapping with an error of 20% in

the grassland forest of Sweden and temperate forest (27%) of
Germany (Möckel et al. 2016; Leutner et al. 2012). They
compared narrow-banded–derived Shannon index and field
measured Shannon index. Assessment of species biodiversity
has been carried out using airborne UAV (unmanned aerial
vehicles) hyperspectral data in a subtropical forest (Getzin
et al. 2012). They used a statistical correlation between
narrow-banded VIs and 1st order derivation of each wave-
length for this analysis. Hyperspectral images (airborne and
spaceborne) had shown highest accuracy results for species
biodiversity in different forest area, including rain (Ghazoul
and Sheil 2010), tropical (Nagendra and Rocchini 2008) and
mixed (Schneider et al. 2017), conifer (Nagendra 2001) and
deciduous forest (Decocq et al. 2004). The airborne
hyperspectral and thermal-infrared satellite imagery were ap-
plied for the detection of species diversity and vegetation spe-
cies (Coates et al. 2015). They had used two statistical
methods (standard deviation and linear regression) for species
and diversity analysis at the regional scale level. The
hyperspectral UAV (Getzin et al. 2012), airborne (Lassau
and Hochuli 2005), and spaceborne (Nagendra and Rocchini
2008) data were used for estimation of forest biodiversity, and
it had offered a very high accuracy results than multispectral.

The iron ore belt of the Saranda forest started facing trees
species degradation due to mining activities for the last 25
years (FSI report). This resulted in the change in natural tree
patterns and species biodiversity over the years. However,
such changes are not yet well quantified, and its overall im-
pacts on the future of the forest tree species are still not de-
fined. Therefore, the effect of mining on tree species and spe-
cies diversity must be adequately evaluated.

The major subobjectives of this paper include finding the
suitable waveband for tree species classification using dis-
criminant analysis; identify the spectral separability of differ-
ent tree species using the J-M (Jeffries-Matusita) distance
method; compare the accuracy performance of SVM, SAM,
and MD algorithms for tree species classification; and com-
pare the accuracy of narrow (Hyperion) and broad (Landsat
OLI) band data for tree species classification. Mapping of
species diversity is performed using hyperspectral narrow
bandedVIs and comparedwith the Shannon index (H) to draw
the relationship between Hyperion and field derived Shannon
index. Species diversity and tree species mapping will help in
forest management, as well as in decision-making for forest
landscapes.

Study area and tree species information

Kiriburu and Meghataburu are two major mines contributing
to iron ore feed for Bokaro Steel Plant (SAIL) for the last four
decades (Fig. 1). The study area has a latitudinal stretch from
22° 00′ 45″ to 22° 1′ 36″ N and longitudinal stretch from 85°
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08′ 18.8″ to 85° 24.36′ 35″ E with mean elevation of 750 m
fromMSL. Saranda forest is characterized by hilly and steeply
sloping with homogeneous forest cover (Ahmad et al. 2018).
The soil of this region is mainly rocky, red, and black soil.
This area comprises of two main varieties of forest, i.e., trop-
ical moist deciduous and tropical dry deciduous and is also
famous for the largest Sal forest of Asia. Sal and Teak trees are
richly found in this region (FSI report 2015). The attributes of
tree species of the study area are shown in Table 1. During
summer, the temperature reaches to 43 °C. Yearly average
temperature ranges between 25 and 32 °C. The average annual
rainfall varies between 1200 and 1422 mm.

Material and methods

Data collection

The Hyperion (hyperspectral) and Landsat-8 OLI
(multispectral) sensors satellite data were used for tree

species identification and diversity mapping. Two satel-
lite data sets, dated 16 Dec 2016 (Hyperion), and 9
Dec 2016 (Landsat OLI) were obtained from USGS
(United States geological survey). Hyperion data were
available only for the abovementioned period that is
why we have used Landsat OLI of that period.
Hyperion sensor captures very narrow banded data
(Hyperion tutorial handbook). Field-based tree species
spectral data were acquired by the spectroradiometer in-
strument in the study area for marching with satellite
imagery spectra. The species phytosociological observa-
tion data were collected from the Chaibasa forest office,
Saranda forest, for tree species identification. For species
biodiversity analysis (Shannon index based), 18 plot data
were collected from the study area. GPS (global position-
ing system) has recorded the tree species and its diversity
locations (latitude and longitude) of the study area. The
secondary data were (base map, toposheet, mining plan,
and forest survey data) obtained from different concerned
state government offices.

Fig. 1 Location map of the study area
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Field survey and analysis

The leaf reflectance spectra of tree species were recorded by
field-based spectroradiometer during the time of field survey.
A total of twenty spectra corresponding to six different tree
species were recorded, and the mean spectra of each tree spe-
cies were used for analysis and classification. GPS has mea-
sured the longitude and latitude for each sample of tree species
(SF.1). We have measured in 10 × 10 m2 plots in the field for
Shannon index analysis. A total of 18 plots were recorded
during the field survey. The GPS position was acquired for
the center of each diversity plot with the help of high-precision
hand GPS. The species abundance cover, height, and habitat
information were also acquired during field survey. The field
survey photograph of tree species and its diversity are shown
in Fig. 2.

Acquisition and preprocessing of field spectra

The spectroradiometer recorded the tree reflection spectra and
their wavelength. This instrument recorded at spectral resolu-
tions of VNIR (300–1000 nm) for 1.4 nm, NIR (1000–1700
nm) for 2 nm, and SWIR (1700–2500 nm) for 4-nm interval
respectively. The different spectral wave ranges were
resampled by the FWHM (Full width at half maximum) algo-
rithm (Kayet et al., 2019). The spectra for different tree species
were collected with the help of fiber optic source (300 to 2500
nm) and 180° FOV (field of view). For the measurement of
white reference spectra, a standard reference panel (white) was
used. Species leaf reflectance was measured with the help of a
reflectance probe. The holder block of the reflectance probe
was kept at sample distance 0–3/4″ and 90° angle was set. The
raw field spectra of tree species in the study area are shown in
the supplementary file (SF.2).

Preprocessing of spectra consisted of temperature drift cor-
rection, water absorption, noise bands removal, and spectral
smoothing. The temperature drift errors were coming from
1001 to 1831 nm wavelength due to sensor detector changing
(Lenhard et al. 2005). We have used a splice correction algo-
rithm for temperature drift correction. The collected spectra
had shown error of water vapor and noise (2350 to 2500, 1790
to 1960, and 1350 to 1460 nmwavelength) due to atmospheric
components and instruments’ self-generation (Staenz et al.
2002).We have just removed two types of spectral errors from
wavelength bands. Some researchers have used linear and
nonlinear smoothing filter for spectral data smoothing.
Savitzky-Golay algorithm based filter smoothing yields high
accuracy (Savitzky and Golay 1964; Vaiphasa 2006). So, we
have used the Savitzky-Golay filter for spectral data smooth-
ing. The average spectra of tree species were calculated after
spectral smoothing. This spectral has been used for spectral
library development and applied for classification.

Preprocessing of satellite data

Pre-processing correction (geometric, radiometric, and ter-
rain) of Hyperion and Landsat 8-OLI data were done by image
processing software. The atmospheric correction was carried
out by the FLAASH (fast line-of-sight atmospheric analysis of
the hypercubes) model in image processing software (SF.3a
and b). The location of the study area in the hilly region in-
duces a shadow effect on the satellite imagery.We have used a
band ratio algorithm for shadow effect removal from satellite
images. The projection of two images atWGS (world geodetic
system) 84 and zone 450 north, on UTM (universal transverse
mercator coordinate system) projection system were
performed.

Table 1 Attributes of tree species
at study area S. no. Botanical name Common/local names FSI species code

1 Shorea robusta Sal 1096

2 Tectona grandis Sagwan, Teak 1164

3 Syzygium cumini Jamun, Jamoon, Piaman, Rajamun 1136

4 Madhuca latifolia Mohwa, Lappa, Mahudo 759

5 Grewia tiliaefolia Dhaman, Tada, Thadachiee, Chadichi 552

6 Gmelina arborea Siwana, Gumari, Sivan, Gambhar 539

7 Ficus racemosa Atti, Rumdi, Atthi 485

8 Ficus benghalensis Figs, Wad or bat 477

9 Emblica officinalis Amla, Aonla, Amlaki, Nellimara 410

10 Careya arborea Kumbhi 215

11 Butea monosperma Palas, Kakhar, Khakhara, Palasin 173

12 Albizzia odoratissima Siris, Pullivage, Nellivega, Hiharu 56

13 Aegle marmelos Bel, Billi, Bil, Belpatra 37

14 Acacia auriculiformis Akasmani, Sona jhuri 6
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Tree species discriminant analysis

For the band’s selection, we have used Hyperion wavebands
obtained from the discriminant analysis. This analysis found a
set of prediction equations based on independent variables
that have been used to classify individuals into groups
(Somers and Asner 2014). The discriminant analysis records
the lowest Wilks lambda (L) values. The value of L lies be-
tween 0 to 1, with the value 1 or close to 1 indicates that the
mean of the group is not different. Value of 0 or close to 0
indicates that the mean of the group is different. Green and
Caroll developed the L statistic in 1978 (Eq. 1).

L ¼ jSeffectj
jSeffectjþjSerrorj

ð1Þ

where, Seffect denotes a sum of squares matrix and Serror
denotes cross products matrix. The classification of tree spe-
cies were performed using selected spectral bands obtained
from the L test.

Spectral separability analysis of tree species

For spectral characteristics of tree species, six different wave-
length locations were selected for species spectral separability
analysis. Jeffries-Matusita distance method is a method that
was selected to estimate the spectral range for different species
(Murakami et al., 2001). The value obtained from J-Mmethod
varies between 0 and √2. The value lying close to 0 indicates
identical distribution whereas value close to √2 indicates dis-
similar distribution. The Eq. 2 calculates the J-M distance
method.
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where, a& b are two target spectral signatures under com-
parison, μ represents the average vector of spectral signature,
C represents the covariance matrix of spectral signature, T
represents the transposition role and |C| is the determinant of
C (Richards and Jia 2005). The selected end-members spectral
wavebands of two datasets (Hyperion and Landsat OLI) were
processed with J-M distancemethod for calculation of spectral
separability.

Data dimensionality and spectral similarity analysis

Atmospherically corrected Hyperion data were used in MNF
(minimum noise fraction) transformation for data dimension-
ality. MNF rotation transforms to determine the inherent di-
mensionality of image data, to segregate noise in the data, and
to reduce the computational requirements for subsequent pro-
cessing (Boardman 1993).We have analyzed noisy data in the
MNF tool of image processing software, and outcome bands
were used for the classification of tree species. The spectral
analysis is based on spectral matching or similarity tech-
niques. The satellite imagery–based derived end-member
spectra were compared with field mean spectra using spectral
similarity algorithms (Somers and Asner 2014).We have used
SFF (spectral feature fitting) algorithm for spectral similarity
analysis. A high spectral similarity score denotes the closest
match and exhibits maximum value.

Fig. 2 Spectroradiometry field
survey and laboratory analysis
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Tree species classification and accuracy assessment

The tree species located in Saranda forest are homogeneous,
so we have used the full pixel supervised classification
methods. Some researchers have used supervised classifica-
tion algorithms (SAM and MD) for full pixels classification
based on trained data (Petropoulos et al. 2013; Richards and
Jia 2006). In the present study, supervised classification
(SAM, SVM, and MD) algorithms have been used for full
pixels classification for Landsat OLI, and Hyperion data based
on training tree spectral data. The species classification accu-
racy matrixes were generated on the basis of ground locations
spectra data. Equation 3 computes the accuracy of kappa sta-
tistic (K).

K ¼
N ∑

r

i−1
X ii− ∑

r

i−1
xi þ xþið Þ

N 2− ∑
r

i−1
xi þ xþið Þ

ð3Þ

where r denotes the number of rows, xii denotes the number of
observation in the ith column and row. N indicates the total
observations. The xi + and x + i indicates the total number of
observation in the ith row and column. A comparison was
drawn between these algorithms on classified images based
on accuracy assessment for the selection of the best classifi-
cation algorithm.

Species diversity estimation based on narrow-banded
VIs

Species diversity basically means the occurrence of different
species of trees represented in a given community (Wang et al.
2003). Some researchers have used hyperspectral narrow
banded VIs correlated with field measured Shannon index
(H) values for plant diversity mapping at the regional scale
level (Peng et al. 2018; Dudley et al. 2015; Mapfumo et al.
2016). The H index is a statistical method that classifies the
species diversity by assuming that the sample represents all
species (Peng et al. 2018). H index is calculated by following
Eq. 3.

H ¼ − ∑
s

i¼1
piInpi ð4Þ

where p represents the ratio (n/N), “n” is the number of
individual species and total number of different species is
“N”. The ln is the natural log,Σ is the sum of the calculations,
and s denotes the different types of species. We have used 13
hyperspectral VIs (ST. 2) extracted from Hyperion data cor-
related with Shannon index (H) values for the estimation of
tree species diversity in the study area. The best correlated
(higher R2 and lower RMSE) vegetation index was selected
for this estimation.T
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Relationship between species diversity, distance from
mines, and concentration of foliar dust

Saranda forest has some of the largest iron ore deposits of India.
Mining activities are causing damage to tree species as well as
its diversity. In this study, we have shown the relationship be-
tween species diversity and distance from mines with leaf dust
concentration. We have calculated distance from two mines
(Kiriburu and Meghataburu) based on field survey points loca-
tion using GPS measurement tool. PCE instrument was used
for the collection of leaf dust at field location points (Kayet et al.
2019a, b). We have then correlated three parameters (outcome
species diversity values, distance from mines, and concentra-
tion of leaf dust values) for their relationship.

Results and discussion

Tree species discrimination

The tree species discrimination result is displayed in Table 2.
The value of Wilks’ lambda ranged between 0 and 0.0099.

The smaller value indicates that the group’s mean of the wave-
length bands are different and have high separability between
different tree species. From this analysis, 21 optimal
wavebands were obtained. From 21 bands, 07 bands fall in
the VIR region, 08 bands in the NIR region, and 06 bands in
the SWIR region. These wavebands were used for tree species
analysis and its classification.

Spectral separability of tree species

The J-M distance method–based spectral separability values
were derived from Hyperion and Landsat 8-OLI satellite im-
agery (Table 3). The values thus obtained by J-M-distance
method from Hyperion data ranged between 1.25 and 1.87,
which indicates that it has high spectral separability between
tree species. The value ranged between 1.107 and 1.392 indi-
cates that it has moderate to low spectral separability between
tree species. The spectral separability value of different tree
species derived from Hyperion data is higher than Landsat 8
OLI data.

Data dimensionality and similarity

After performing data dimensionality, the eigenvalues lay be-
tween 103.88 and 1.07 (ST.3). The first 34 MNF bands had
shown good result and exhibited better spectral information.
These bands were used for tree species classification. The
spectral similarity result (field spectra vs. Hyperion image
spectra) is shown in Table 4. The similarity scores indicated
that spectral similarity ranged between high to medium. The
spectral similarity score for Sal and Teak trees were found
highest than the other trees. Sal and Teak trees covers around
65% of the study area (FSI report 2015). The spectral varia-
tions of different tree species in the study area are shown in
Fig. 3.

Tree species classification and accuracy assessment

We have classified tree species of the study area into six dif-
ferent categories based on SVM, SAM, and MD algorithms
using Hyperion and Landsat 8 OLI (SF.4). The enlarged view
of the mines and its surrounding region classified by the SVM
algorithm on Hyperion data is shown in Fig. 4. Sal and Teak
trees covered most of the area. These trees were located at
higher altitudes (700 to 900 m) on the hilly side of the study
region. Other trees are dominant at lower altitude (300 to 400
m), northeast, and southeast parts of the study region.
Classification accuracy estimation based on ground species
spectra data shown that Hyperion image–based SVM algo-
rithm provided better accuracy results (overall accuracy =
85.16, kappa = 0.78), than SAM algorithm (overall accuracy
= 7828, kappa = 0.76) and MD algorithm (overall accuracy =
75.58, kappa = 0.73). Also, Landsat 8OLI image–based

Table 3 Jeffries–Matusita distance values for Hyperion (a) and Landsat
(b) images based on training sample values

Sal Teak Akasmani Mohwa Palash Bot

(a) Hyperion

Sal - 1.77 1.146 1.79 1.69 1.71

Teak 1.77 - 1.70 1.87 1.72 1.80

Akasmani 1.14 1.70 - 1.71 1.48 1.46

Mohwa 1.79 1.87 1.71 - 1.25 1.70

Palash 1.69 1.72 1.48 1.25 - 1.38

Bot 1.71 1.80 1.46 1.70 1.38 -

(b) Landsat

Sal - 1.34 1.10 1.37 1.39 1.33

Teak 1.34 - 1.24 1.32 1.37 1.31

Akasmani 1.10 1.24 - 1.33 1.39 1.32

Mohwa 1.37 1.32 1.33 - 1.29 1.37

Palash 1.39 1.37 1.39 1.29 - 1.31

Bot 1.33 1.31 1.32 1.37 1.31 -

Table 4 Spectral similarity values between Hyperion image and ground
reflectance spectra

S. no. Species botanical name Common/local names SAM score

1 Shorea robusta Sal 0.816

2 Tectona grandis Teak 0.784

3 Acacia auriculiformis Akasmani 0.711

4 Ficus benghalensis Bot or wad 0.683

5 Madhuca latifolia Mohwa 0.632

6 Butea monosperma Palash 0.697
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species classifications carried out by SVM algorithm; show an
overall accuracy of 68.71% and a Kappa statistic of 0.66. The
accuracy comparison (Hyperion-based SVM, SAM, MD, and
Landsat 8 OLI–based SVM) matrix is shown in Table 5.

Species diversity estimation and mapping

We have correlated 13 VIs with field measured Shannon in-
dex values. The regression analysis results (SSE,R2, Adj.R2,
and RMSE) is shown in Table 6. The NDVI705 had shown
best linear fitting (R2=0.76, RMSE = 0.04)) with Shannon
index values. Since, NDVI 705 correlated well with waned
chlorophyll content (Kumar et al. 2015), so we have used this
index for diversity estimation. The linear regression plot be-
tween narrow-banded VIs and species diversity is shown in
Fig. 5. The NDVI705-derived species diversity map is shown
in SF.5. Enlarged view of the species diversity map for the
mines and its surrounding region is shown in Fig. 6. The linear
regression between fields measured Shannon index, and
Hyperion derived Shannon index gave the R2 value of 0.72
and RMSE value of 0.15 (Fig. 7). The correlation between
Hyperion and field derived Shannon index had shown better
relationship (R2 0.68).

Relationship between species diversity, distance from
mines, and foliar dust concentration

For each sample point, values of species diversity, distance
from either mines (Kiriburu andMeghataburu), and foliar dust
concentration are shown in ST.4. Those values were used for

correlations analysis using three different correlation methods
(Spearman, Pearson, and Kendall). The correlation results
thus obtained by the abovementioned methods are shown in
Table 7, (for Meghahatuburu mine) and for Kiriburu mine in
ST.5. The correlations results thus obtained show that there
exists a good negative correlation between foliar dust concen-
tration, species diversity, and the distance frommines (Fig. 8).

Discussion

As per the result obtained in this study, we could infer
that, hyperspectral (Hyperion) data has more capability
in tree species mapping and diversity assessment when
coupled with field spectral data, than any other multi-
spectral data (Landsat). Some researchers studied on tree
species classification and diversity estimation based on
hyperspectral and multispectral data at a fine-scale level.
Dalponte et al. 2014 had studied on tree crown and
classification using airborne hyperspectral data in boreal
forest area. They had shown that hyperspectral data has
better accuracy for tree species classification than other
multispectral data. Shen and Cao (2017) worked on tree
species classification using hyperspectral and Lidar data
in subtropical forest area. They had used random forest
classification algorithm to differentiate five tree species
and provided a relatively higher accuracy (85.4%). This
study has displayed a stepwise discrimination test for
the identification of wavebands, which is significant
for tree species classification. As obtained from the tree
species discrimination analysis, 21 different spectral

Fig. 3 Visual comparison of
resampled field average
reflectance spectra for different
tree species at the study area
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wavebands were selected for tree species classification,
of which six belongs to the visual infrared region; eight
to the near-infrared, and seven to shortwave infrared
region (ST.6). Vyas et al. (2011) studied on tree species
discrimination analysis, and they found 22 wavebands,
of which seven falls in VIR, eight in NIR, and six
bands in the SWIR region. Peerbhay et al. (2013)

worked on tree species discrimination analysis in
Natal, South Africa. They found a total of 27
wavebands (8-VIR, 12-NIR, and 7-SWIR) from discrim-
ination analysis, and they used those bands for tree
species classification. In this work, the result obtained
from J-M distance method had shown that Hyperion
data–based species spectral separability value (1.25 to

Fig. 4 Spatial distribution of tree
species mapped by SVM
algorithm based on Hyperion data
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1.87) was higher than Landsat 8 OLI data (1.10 to
1.39). Puletti et al. (2016) had applied the J-M method
for spectral separability analysis of tree species. They
found that the spectral separability value obtained from
hyperspectral data (1.17–1.93) was higher than multi-
spectral data (1.20–1.67). Hao et al. (2014) had used
Landsat data for spectral separability analysis of tree

species based on the J-M distance method. They found
that the spectral separability value lay between 1.27 and
1.73 for different tree species. Some previous studies
have reported that the tree species classification per-
formed on hyperspectral data had shown better result
than multispectral data. This study has shown that tree
species classification based on hyperspectral data

Table 5: Accuracy assessment
results of (a) SVM on Hyperion
(b) MD on Hyperion, (c) SAM on
Hyperion, and (d) SVM on
Landsat

Sal Teak Akasmani Mohwa Palash Bot Total UA

(a)

Sal 11 0 2 0 0 1 14 88.68

Teak 3 9 0 0 5 0 17 85.53

Akasmani 0 0 5 5 0 0 10 78.22

Mohwa 0 0 2 6 0 0 8 83.19

Palash 0 2 0 0 7 0 9 75.47

Bot 0 0 0 0 0 11 11 76.18

Total 14 11 9 11 12 12 69

PA 89.53 83.76 81.29 82.11 84.23 83.95

Overall accuracy 85.16%, kappa statistics 0.78

(b)

Sal 10 0 1 0 0 1 12 78.55

Teak 1 11 0 0 1 1 14 80.78

Akasmani 0 0 8 2 0 3 13 79.11

Mohwa 0 0 2 7 0 0 9 65.83

Palash 0 2 0 0 9 0 11 81.45

Bot 0 0 0 3 0 8 11 73.27

Total 11 13 11 12 10 13 70

PA 87.19 88.53 84.27 83.95 78.76 85.61

Overall accuracy 75.58%, kappa statistics 0.73

(c)

Sal 11 0 0 0 0 0 11 81.12

Teak 2 9 0 0 1 0 12 74.73

Akasmani 0 0 9 0 0 1 10 79.22

Mohwa 0 1 1 7 0 0 9 83.64

Palash 0 0 0 0 8 0 8 75.67

Bot 0 0 0 4 0 10 14 87.48

Total 13 10 10 11 9 11 64

PA 87.43 85.92 84.28 76.38 78.84 80.47

Overall accuracy 79.55%, kappa statistics 0.75

(d)

Sal 12 0 0 0 0 1 13 79.53

Teak 0 8 0 1 1 0 10 73.48

Akasmani 0 0 11 1 0 1 13

Mohwa 1 0 0 6 0 0 7 71.79

Palash 0 1 0 0 8 0 9 62.73

Bot 0 0 0 4 1 9 14 78.15

Total 13 9 11 12 10 11 66

PA 80.44 75.18 78.59 68.15 74.72 75.27

Overall accuracy 68.71%, kappa statistics 0.66

42760 Environ Sci Pollut Res  (2020) 27:42750–42766



(85.16%) provided better classification accuracy than
multispectral data (68.71%,). Vyas and Krishnayya
(2014) had compared species classification accuracy
based on Hyperion (accuracy 85.25%) and Landsat
ETM data (accuracy 65.25%) in Western Himalaya re-
gion, India. Lim et al. (2019) studied on tree species
classification using Hyperion and Sentinel-2 satellite im-
agery in South Korea and China and compared the ac-
curacy level also (Hyperion-67% and Sentinel-2–51%).
In the study, we have used hyperspectral VIs data for
species diversity estimation based on Shannon index
values. NDVI705 has shown best correlated value (R2

= 0.72) with field-based Shannon index data as it has
good sensitivity to chlorophyll content, leaf pigment,
canopy structure, and canopy water content (Gitelson
et al. 2005; Croft et al. 2014). So we have used the
NDVI705 index for species diversity estimation. Other
vegetation indices were not matched perfectly with
field-based Shannon index due to low canopy structure,
canopy water content, and chlorophyll content in the
study area (Tuominen et al. 2009; Sims and Gamon
2002). Some researchers had shown that SD and CV
NDVI were best correlated with Shannon index values
for plant diversity estimation (Peng et al. 2018; Peng

Fig. 5 Regression between hyperspectral narrow-banded VIs and field measured Shannon index of 18 sampling plots

Table 6 Relationship between narrow-banded VIs and Shannon index–based species diversity

Narrow-banded VIs DVI NDVI RVI mNDVI705 TSAVI NDVI705 PVI SAVI NLI mSR705 VOG1 MSR TC greenness

SSE 0.56 0.07 0.08 0.305 0.37 0.35 0.32 0.34 0.39 0.108 0.43 0.13 0.13

R2 0.43 0.71 0.52 0.47 0.29 0.76 0.31 0.28 0.39 0.43 0.26 0.52 0.37

Adj R2 0.35 0.68 0.45 0.45 0.25 0.73 0.22 0.19 0.3 0.35 0.17 0.46 0.29

RMSE 0.19 0.07 0.07 0.14 0.15 0.04 0.14 0.15 0.16 0.08 0.16 0.09 0.09

SSE Sum squared error, R2 coefficient of determination, RMSE root mean square error
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et al. 2019). Onyia et al. (2018) studied plant diversity
in oil-polluted regions using NDVVI (normalized differ-
ence vegetation vigour index) on hyperspectral data.
They found that NDVVI was best correlated with
Shannon index values. In this study, we have correlated
Hyperion and field derived Shannon index values for
result validation. The correlation results show that R2

is 0.72, and RMSE is 0.15. These values are not
matched well due to noise content in the hyperspectral
data and forest canopy problem in the study area. Jha
et al. (2019) had performed correlation between
AVIRIS-NG (airborne visible / infrared imaging
spectrometer-next generation) and field measured
Shannon diversity index values and found that R2 was

Fig. 6 Species diversity mapped
by Shannon index based on
hyperspectral narrow-banded VIs
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0.86. Onyia et al. (2019) had correlated two species
diversity results (Hyperion and Shannon index diversity)
and obtained a R2 value of 0.67. In this study, the
correlation between species diversity, foliar dust concen-
tration, and distance from mines had shown a strong
negative relationship. Kayet et al. (2019a, b) showed a
better negative relationship between forest health, dis-
tance from mines , and fol iar dust deposi t ion.

Tuominen et al. (2009) had shown a clear negative re-
lationship between leaf reflectance and trees distance
from mines.

This study involved the tree species classification and di-
versity estimation. Some errors obtained in the study are
shown in regression analysis graph.Many reasons are contrib-
uting to the error in tree species classification and diversity
estimation. Hyperion data exhibits higher noise ratio and get

Fig. 7 Regression between
Hyperion imagery derived by
Shannon index and field
measured Shannon index

Table 7 Spearman, Pearson, and
Kendall correlation matrix
amongst species diversity, foliar
dust concentration and mines
distance to Meghahatuburu

Spearman Species diversity
(Shannon index)

Foliar dust
(gm/m2)

Distance (m) to
Meghahatuburu Mine

Species diversity (Shannon
index)

1.00 − 0.58 0.24

Foliar dust (gm/m2) − 0.58 1.00 − 0.67

Distance (m) to
Meghahatuburu Mine

0.24 − 0.67 1.00

Pearson Species diversity
(Shannon index)

Foliar dust
(gm/m2)

Distance (m) to
Meghahatuburu Mine

Species diversity (Shannon
index)

1.00 − 0.46 0.36

Foliar dust (gm/m2) − 0.46 1.00 − 0.59

Distance (m) to
Meghahatuburu Mine

0.366 − 0.59 1.00

Kendall Species diversity
(Shannon index)

Foliar dust
(gm/m2)

Distance(m) to
Meghahatuburu Mine

Species diversity (Shannon
index)

1.00 − 0.43 0.15

Foliar dust (gm/m2) − 0.43 1.00 − 0.50

Distance (m) to
Meghahatuburu Mine

0.15 − 0.50 1.0000
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affected by atmospheric components. It could have induced
some error to the study results (Shaw and Burke 2003). The
spatial resolution of the Hyperion image is 30 m, so the mixed
pixel problem arose for species classification and diversity
estimation (Lee and Lathrop 2005). The spectroradiometer
instrument collected some self-generated noise during field
spectra collection. It may have effect on the results
(Vaiphasa 2006). Due to the location of the study area on
the hills, the satellite imagery gets infected with shadow error
(Adler-Golden et al. 2005). Forest canopy can induce the
problem of image spectral segregation (Ustin et al. 2004).
The study area has a canopy density cover of about 30 to 40
%.

Conclusions

This work promotes the development of methods for tree spe-
cies mapping and species diversity estimation using
hyperspectral and field data. The species classification was
carried out by comparing three different classifiers algorithms
(SAM, SVM, and MD) of hilly terrain mining effected forest
region. Hyperion-based SVM produced better accuracy
(85.16% overall accuracy) followed by SAM (79.55% overall
accuracy) and MD (76.58% overall accuracy). The classifica-
tion accuracy is obtained by hyperspectral (Hyperion) data
over multispectral (Landsat OLI) data (68.71% overall accu-
racy). The tree species diversity carried out by hyperspectral
narrow-banded VIs which is correlated with field measured
Shannon index. The NDVI705 shows better fit for species
diversity estimation. Also, the good correlation result (R =
0.72) was observed between fields measured Shannon index
and Hyperion-derived Shannon index. The output maps and
statistics had shown that hyperspectral data has the good

capability to monitor the tree species and its diversity. The
study results also showed that, the effects of mining decreas-
ing the tree species and its diversity as well. The tree diversity
results showed a reduction in their species number and eco-
system. So, the monitoring of tree species and its diversity are
important for forest and its management. Our work mainly
focused on tree species classification, compared different clas-
sification algorithms, and identified the best classifier and
species diversity mapping at hilly terrain mining effected for-
est region.We believe that it can be applied to other forest near
mining effected regions. Future work will be exceptionally
good when Hyperspectral data sources combines with Lidar
and UAV data sources.

Acknowledgements The authors are thankful to Space Application
Centre (SAC) ISRO, Ahmedabad for their financial support and provid-
ing necessary data. The authors are also thankful to DFO of Saranda
forest, SAIL; Raw Material Division (RMD), Kolkata and Forest depart-
ment of Jharkhand for their financial support and providing necessary
data. The authors would like to thanks, Indian Institute of Technology,
Kharagpur and Vidyasagar University for their constant support and pro-
viding the wonderful platform for research.

References

Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral
remote sensing for identification and mapping of wetland vegeta-
tion: a review. Wetl Ecol Manag 18(3):281–296

Adler-Golden SM, Acharya PK, Berk A, Matthew MW, Gorodetzky D
(2005) Remote bathymetry of the littoral zone from AVIRIS,
LASH, and QuickBird imagery. IEEE Trans Geosci Remote Sens
43(2):337–347

Ahmad F, Uddin MM, Goparaju L (2018) An evaluation of vegetation
health and the socioeconomic dimension of the vulnerability of

Fig. 8 The relation amongst species diversity indices (Shannon index), distance from mines (Kiruburu and Meghataburu) and foliar dust concentration

42764 Environ Sci Pollut Res  (2020) 27:42750–42766



Jharkhand state of India in climate change scenarios and their likely
impact: a geospatial approach. Environ Socio-Econ Stud 6(4):39–47

Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species map-
ping using hyperspectral and lidar data fusion. Remote Sensing of
Environment 148:70–83

Boardman JW (1993) Automating spectral unmixing of AVIRIS data
using convex geometry concepts

Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for recharge-
able lithium batteries. Angew Chem Int Ed 47(16):2930–2946

Bunting P, Lucas R (2006) The delineation of tree crowns in Australian
mixed species forests using hyperspectral Compact Airborne
Spectrographic Imager (CASI) data. Remote Sens Environ 101(2):
230–248

Chambers JQ, Asner GP, Morton DC, Anderson LO, Saatchi SS,
Espírito-Santo FD et al (2007) Regional ecosystem structure and
function: ecological insights from remote sensing of tropical forests.
Trends Ecol Evol 22(8):414–423

Cho MA, Mathieu R, Asner GP, Naidoo L, van Aardt J, Ramoelo A,
Debba P,Wessels K, Main R, Smit IPJ, Erasmus B (2012) Mapping
tree species composition in South African savannas using an inte-
grated airborne spectral and LiDAR system. Remote Sens Environ
125:214–226

Coates AR, Dennison PE, Roberts DA, Roth KL (2015) Monitoring the
impacts of severe drought on southern California chaparral species
using hyperspectral and thermal infrared imagery. Remote Sens
7(11):14276–14291

Croft H, Chen JM, Zhang Y (2014) The applicability of empirical vege-
tation indices for determining leaf chlorophyll content over different
leaf and canopy structures. Ecol Complex 17:119–130

Dalponte M, Orka HO, Gobakken T, Gianelle D, Næsset E (2013) Tree
species classification in boreal forests with hyperspectral data. IEEE
Trans Geosci Remote Sens 51(5):2632–2645

Dalponte M, Ørka HO, Ene LT, Gobakken T, Næsset E (2014) Tree
crown delineation and tree species classification in boreal forests
using hyperspectral and ALS data. Remote Sens Environ 140:
306–317

Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger
ANNIE et al (2004) Plant diversity in a managed temperate decid-
uous forest: understorey response to two silvicultural systems. J
Appl Ecol 41(6):1065–1079

Delalieux S, Somers B, VerstraetenWW,VanAardt JAN, KeulemansW,
Coppin P (2009) Hyperspectral indices to diagnose leaf biotic stress
of apple plants, considering leaf phenology. Int J Remote Sens
30(8):1887–1912

Dudley KL, Dennison PE, Roth KL, Roberts DA, Coates AR (2015) A
multi-temporal spectral library approach for mapping vegetation
species across spatial and temporal phenological gradients.
Remote Sens Environ 167:121–134

Forest Survey of India (2015) Trees outside forest (urban) (tof-u) report
Fuller DO (2006) Tropical forest monitoring and remote sensing: a new

era of transparency in forest governance? Singap J Trop Geogr
27(1):15–29

Getzin S,WiegandK, Schöning I (2012) Assessing biodiversity in forests
using very high-resolution images and unmanned aerial vehicles.
Methods Ecol Evol 3(2):397–404

Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and
conservation (No. 577.34 G4)

Ghiyamat A, Shafri HZM,Mahdiraji GA, Shariff ARM,Mansor S (2013)
Hyperspectral discrimination of tree species with different classifi-
cations using single-and multiple-endmember. Int J Appl Earth Obs
Geoinf 23:177–191

Gibbs HK, Munger J, L'Roe J, Barreto P, Pereira R, Christie M, Amaral
T, Walker NF (2016) Did ranchers and slaughterhouses respond to
zero-deforestation agreements in the Brazilian Amazon? Conserv
Lett 9(1):32–42

Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005)
Remote estimation of canopy chlorophyll content in crops. Geophys
Res Lett 32(8). https://doi.org/10.1029/2005GL022688

Griffin JN, Jenkins SR, Gamfeldt L, Jones D, Hawkins SJ, Thompson RC
(2009) Spatial heterogeneity increases the importance of species
richness for an ecosystem process. Oikos 118(9):1335–1342

Hao P, Wang L, Niu Z, Aablikim A, Huang N, Xu S, Chen F (2014) The
potential of time series merged from Landsat-5 TM and HJ-1 CCD
for crop classification: a case study for Bole and Manas Counties in
Xinjiang, China. Remote Sens 6(8):7610–7631

Jha CS, Singhal J, Reddy CS, Rajashekar G, Maity S, Patnaik C et al
(2019) Characterization of species diversity and forest health using
AVIRIS-NG hyperspectral remote sensing data. Curr Sci 116(7):
00113891

Kayet N, Pathak K, Chakrabarty A, Kumar S, Chowdary VM, Singh CP
(2019a) Forest health assessment for geo-environmental planning
and management in hilltop mining areas using Hyperion and
Landsat data. Ecol Indic 106:105471

Kayet N, Pathak K, Chakrabarty A, Kumar S, Chowdary VM, Singh CP,
Basumatary S (2019b) Assessment of foliar dust using Hyperion
and Landsat satellite imagery for mine environmental monitoring
in an open cast iron ore mining areas. J Clean Prod 218:993–1006

Kozoderov V, Kondranin T, Dmitriev E, Kamentsev V (2015) Bayesian
classifier applications of airborne hyperspectral imagery processing
for forested areas. Adv Space Res 55(11):2657–2667

Kumar SS, Manoj P, Giridhar P (2015) Fourier transform infrared spec-
troscopy (FTIR) analysis, chlorophyll content and antioxidant prop-
erties of native and defatted foliage of green leafy vegetables. J Food
Sci Tech 52(12):8131–8139

Lassau SA, Hochuli DF (2005) Wasp community responses to habitat
complexity in Sydney sandstone forests. Austral Ecol 30(2):179–
187

Lee S, Lathrop RG (2005) Sub-pixel estimation of urban land cover
components with linear mixture model analysis and Landsat
Thematic Mapper imagery. Int J Remote Sens 26(22):4885–4905

Lenhard K SchaepmanME, Purves R, Gege P, Hüni A (2005) Improving
the calibration of airborne hyperspectral sensors for earth
observation

Leutner BF, Reineking B,Müller J, BachmannM,Beierkuhnlein C, Dech
S, Wegmann M (2012) Modelling forest α-diversity and floristic
composition—On the added value of LiDAR plus hyperspectral
remote sensing. Remote Sens 4(9):2818–2845

Lim J, Kim KM, Jin R (2019) Tree species classification using hyperion
and sentinel-2 data with machine learning in South Korea and
China. ISPRS International Journal of Geo-Information 8(3):150

Madubansi M, Shackleton CM (2006) Changing energy profiles and
consumption patterns following electrification in five rural villages,
South Africa. Energy Policy 34(18):4081–4092

Mapfumo RB, Murwira A, Masocha M, Andriani R (2016) The relation-
ship between satellite-derived indices and species diversity across
African savanna ecosystems. Int J Appl Earth Obs Geoinf 52:306–
317

Möckel T, Dalmayne J, Schmid BC, Prentice HC, Hall K (2016)
Airborne hyperspectral data predict fine-scale plant species diversity
in grazed dry grasslands. Remote Sensing 8(2):133

Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a
network structure and ecosystem functioning perspective. Philos
Trans Royal So B Biol Sci 365(1558):3709–3718

Nagendra H (2001) Using remote sensing to assess biodiversity. Int J
Remote Sens 22(12):2377–2400

Nagendra H, Rocchini D (2008) High resolution satellite imagery for
tropical biodiversity studies: the devil is in the detail. Biodivers
Conserv 17(14):3431–3442

Obeng EA, Oduro KA, Obiri BD, Abukari H, Guuroh RT, Djagbletey
GD, Appiah-Korang J, Appiah M (2019) Impact of illegal mining
activities on forest ecosystem services: local communities’ attitudes

42765Environ Sci Pollut Res  (2020) 27:42750–42766

https://doi.org/10.1029/2005GL022688


and willingness to participate in restoration activities in Ghana.
Heliyon 5(10):e02617

Onyia NN, Balzter H, Berrio JC (2018) Normalized difference vegetation
vigour index: a new remote sensing approach to biodiversity mon-
itoring in oil polluted regions. Remote Sens 10(6):897

Onyia NN, Balzter H, Berrio JC (2019) Spectral diversity metrics for
detecting oil pollution effects on biodiversity in the Niger Delta.
Remote Sens 11(22):2662

Peerbhay KY, Mutanga O, Ismail R (2013) Commercial tree species
discrimination using airborne AISA eagle hyperspectral imagery
and partial least squares discriminant analysis (PLS-DA) in
KwaZulu–Natal, South Africa. ISPRS J Photogramm Remote
Sens 79:19–28

Peng Y, Fan M, Song J, Cui T, Li R (2018) Assessment of plant species
diversity based on hyperspectral indices at a fine scale. Sci Rep 8(1):
4776

Peng Y et al (2019) Identification of the best hyperspectral indices in
estimating plant species richness in sandy grasslands. Remote Sens
11(5):588

Petropoulos GP, Vadrevu KP, Kalaitzidis C (2013) Spectral angle map-
per and object-based classification combined with hyperspectral re-
mote sensing imagery for obtaining land use/cover mapping in a
Mediterranean region. Geocarto International 28(2):114–129

Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-
Valls G et al (2009) Recent advances in techniques for hyperspectral
image processing. Remote Sens Environ 113:S110–S122

Puletti N, Camarretta N, Corona P (2016) Evaluating EO1-Hyperion
capability for mapping conifer and broadleaved forests. Eur J
Remote Sens 49(1):157–169

Raizada A, Samra JS (2000) Rehabilitation of an abandoned limestone
mine in the lower western Himalayas-impact assessment on vegeta-
tion development and floristic diversity. Indian Forester 126(8):
842–855

Richards JA, Richards JA (1999) Remote sensing digital image analysis
(vol. 3, pp. 10–38). Berlin: Springer

Richards JA, Jia X (2005) Remote-sensing digital image analysis.
Introduction/John A. Richards, Xiuping Jia.

Richards JA, Jia X (2006) Interpretation of hyperspectral image data.
Remote Sensing Digital Image Analysis: An Introduction:359–388

Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by
simplified least squares procedures. Anal Chem 36(8):1627–1639

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel
DS, Schaepman ME (2017) Mapping functional diversity from

remotely sensed morphological and physiological forest traits. Nat
Commun 8(1):1–12

Shaw GA, Burke HK (2003) Spectral imaging for remote sensing.
Lincoln Lab J 14(1):3–28

Shen X, Cao L (2017) Tree-species classification in subtropical forests
using airborne hyperspectral and LiDAR data. Remote Sens 9(11):
1180

Sims DA, Gamon JA (2002) Relationships between leaf pigment content
and spectral reflectance across a wide range of species, leaf struc-
tures and developmental stages. Remote Sens Environ 81(2-3):337–
354

Somers B, Asner GP (2014) Tree species mapping in tropical forests
using multi-temporal imaging spectroscopy: Wavelength adaptive
spectral mixture analysis. Int J Appl Earth Obs Geoinf 31:57–66

Staenz K, Secker J, Gao BC, Davis C, Nadeau C (2002) Radiative trans-
fer codes applied to hyperspectral data for the retrieval of surface
reflectance. ISPRS J Photogramm Remote Sens 57(3):194–203

Tuanmu MN, Jetz W (2015) A global, remote sensing-based characteri-
zation of terrestrial habitat heterogeneity for biodiversity and eco-
systemmodelling. Global Ecology and Biogeography 24(11):1329–
1339

Tuominen J, Lipping T, Kuosmanen V, Haapanen R (2009) Remote
sensing of forest health. Geosci Remote Sens:30–52

Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using
imaging spectroscopy to study ecosystem processes and properties.
AIBS Bull 54(6):523–534

Vaiphasa C (2006) Consideration of smoothing techniques for
hyperspectral remote sensing. ISPRS J Photogramm Remote Sens
60(2):91–99

Vyas D, Krishnayya NSR (2014) Estimating attributes of deciduous for-
est cover of a sanctuary in India utilizing Hyperion data and PLS
analysis. Int J Remote Sens 35(9):3197–3218

Vyas D, Krishnayya NSR, Manjunath KR, Ray SS, Panigrahy S (2011)
Evaluation of classifiers for processing Hyperion (EO-1) data of
tropical vegetation. Int J Appl Earth Obs Geoinf 13(2):228–235

Wang G, ZhouG, Yang L, Li Z (2003) Distribution, species diversity and
life-form spectra of plant communities along an altitudinal gradient
in the northern slopes of QilianshanMountains, Gansu, China. Plant
Ecol 165(2):169–181

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

42766 Environ Sci Pollut Res  (2020) 27:42750–42766


	Assessment of mining activities on tree species and diversity in hilltop mining areas using Hyperion and Landsat data
	Abstract
	Introduction
	Study area and tree species information
	Material and methods
	Data collection
	Field survey and analysis
	Acquisition and preprocessing of field spectra
	Preprocessing of satellite data
	Tree species discriminant analysis
	Spectral separability analysis of tree species
	Data dimensionality and spectral similarity analysis
	Tree species classification and accuracy assessment
	Species diversity estimation based on narrow-banded VIs
	Relationship between species diversity, distance from mines, and concentration of foliar dust

	Results and discussion
	Tree species discrimination
	Spectral separability of tree species
	Data dimensionality and similarity
	Tree species classification and accuracy assessment
	Species diversity estimation and mapping
	Relationship between species diversity, distance from mines, and foliar dust concentration
	Discussion

	Conclusions
	References


