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Abstract
The objective of the present study was to evaluate the water quality data in the Minas Gerais portion of the Doce River basin in
order to analyze the current monitoring network by identifying the main variables to be maintained in the network, their possible
sources of pollution, and the best sampling frequency. Multivariate statistical techniques (factor analysis/principal components
analysis, FA/PCA and cluster analysis, CA) complemented by the analysis of violation of the framing classes were used for this
purpose. Water quality variables common to 64 monitoring sites were analyzed for the base period from 2010 to 2017. The water
quality variables were analyzed considering the different monitoring campaigns: (a) partial campaigns; (b) total campaigns; and
(c) monthly campaigns. It was identified from the FA/PCA results, that, when the partial campaign data were analyzed, the
variables selected represent the high susceptibility that the basin presents to erosion and the release of domestic effluents in its
water bodies. When the data of total campaigns were evaluated, representative variables of the contamination by heavy metals
from industrial and mining activities were included. Therefore, the analysis of violation of the framing classes made possible to
identify five critical variables: thermotolerant coliforms, dissolved iron, total phosphorus, and total manganese, which reinforced
the results obtained in FA/PCA. Based on the results of the analyses, it was recommended to include variables associated with
heavy metal contamination in the partial campaigns, prioritizing the dissolved iron and total manganese, as well as total chloride
sampling only for the total campaigns. The evaluated data from the monthly campaigns, the CA showed that although the
quarterly monitoring frequency is satisfactory, the monthly monitoring is more appropriate for the monitoring of water quality
in the Minas Gerais portion of the Doce River basin.
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Introduction

The water quality of a water body can be influenced by several
factors, reasonwhy it presents great variability (Fritzsons et al.
2009; Singh et al. 2009; Soares et al. 2020). In natural envi-
ronments, water quality can be influenced by climatic factors,
weathering of rocks, and soil erosion. In anthropogenic basins,
agricultural expansion and accelerated population and indus-
trial growth are evident (Ajorlo et al. 2013; Dupas et al. 2015;
Muangthong and Shrestha 2015). According to the National
Water Agency (ANA 2013a), such factors cause changes in
the nutrients, sediments, toxins, heavy metals, among others,
causing serious damage to human health and the aquatic
ecosystem.

Knowing that water quality reflects the environmental con-
ditions of the river basin, it is becoming increasingly neces-
sary to diagnose and predict future impacts resulting from
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certain actions. A qualitative monitoring program is the first
step to establish a reliable and representative water quality
database (Simeonov et al. 2003; Shrestha and Kazama
2007), allowing the detection of spatial and temporal varia-
tions in the variables in addition to supporting the manage-
ment of water resources in the implementation ofmanagement
instruments, such as the granting of permits for the use of
water and charging and framing water bodies in classes of
use (ANA 2013a).

In the Minas Gerais portion of the Doce River basin, qual-
itative monitoring began in 1997 through theWaters of Minas
Project, under the responsibility of the Minas Gerais Water
Management Institute (IGAM). Water quality is one of the
main vulnerability aspects of the basin, since several determi-
nants in the occurrence of specific and diffuse contaminations
are observed, such as discharge of domestic wastewater with-
out proper treatment, inadequate disposal of solid waste, high
effluent generation, and inadequate land use (ECOPLAN-
LUME 2010a).

In the current monitoring network, the Minas Gerais por-
tion of the Doce River basin presents 65 stations in operation,
performing four annual campaigns with quarterly frequency
for most of the monitoring stations, being two complete and
two partial ones. In the complete campaigns, carried out every
6 months, 56 water quality variables are analyzed, of which 51
are common to the group of stations. In the partial campaigns,
carried out between the complete campaigns, 19 variables are
analyzed in common to the set of stations and to the four
monitoring campaigns. For the stations located in the main
channel of the Doce River, the campaigns have monthly fre-
quency (IGAM 2016).

In general, the monitoring campaigns analyze variables that
make possible to characterize the water quality and the degree
of contamination of the water bodies. However, the tempo-
spatial variability and lack of proper understanding of water
quality parameters due to the extensive database generated
make it difficult to control water pollution (Chowdhury and
Al-Zahrani 2014; Soares et al. 2020). Therefore, given the
large amount of information that the monitoring campaigns
have been generating and the lack of specific studies related to
this subject for the Doce River basin, it is necessary to use
statistical tools to analyze this database and identify the main
variables that explain the variability of water quality, the main
sources of pollution, and the best sampling frequency.

Among the methodologies available to interpret qualitative
data sets, multivariate statistical techniques such as principal
component analysis followed by factor analysis (FA/PCA)
and cluster analysis (CA) have been widely used in recent
years to support the management of water resources
(Tanrıverdi et al. 2010; Zhang et al. 2011; Ajorlo et al.
2013; Yu et al. 2013; Sabino et al. 2014; Lopes et al. 2014;
Chowdhury and Al-Zahrani 2014; Rocha and Costa 2015;
Mohamed et al. 2015; Finkler et al. 2015; Ji et al. 2016;

Rocha and Pereira 2016; Varekar et al. 2016; Zeinalzadeh
and Rezaei 2017; Herojeet et al. 2017; Le et al. 2017;
Calazans et al. 2018a, 2018b; Zhong et al. 2018). In water
quality studies, FA/PCA make use of the correlation structure
among multiple variables analyzed to produce a small number
of new independent variables that contain most of the infor-
mation in the original dataset (Olsen et al. 2012), allowing to
correlate water quality variables with their possible sources of
pollution and to select the most important ones for their char-
acterization. The CA allows to identify the best sampling fre-
quency, based on the similarity of the analyzed water quality
data.

In addition to the multivariate techniques, other analysis
can be used to complement such studies, for instance, the
calculation of the percentage of monitored samples that are
in disagreement with the standards established by law (Sabino
et al. 2014; Martins et al. 2017; Oliveira et al. 2017). It is
possible to understand that variables with a high degree of
framing class violation may be considered indicative of dete-
rioration of the water quality of the river basin.

In this context, from a data set containing physical, chem-
ical, and biological characteristics of water, statistical tech-
niques were employed with the objective of analyzing the
qualitative monitoring network in the Minas Gerais portion
of the Doce River basin, identifying the main variables to be
maintained in the monitoring network, the possible sources of
pollution, and the better sampling frequency, thus providing a
guidance to the management bodies for actions of planning
and management of water resources aiming to improve water
quality.

Materials and methods

Characterization of the study area

The study was executed in the Minas Gerais state portion of
the Doce River basin, which corresponds to 87% of the total
area of approximately 82,427 km2 (ANA 2013b). The Doce
River originates in the state of Minas Gerais, in the
Mantiqueira and Espinhaço Mountains, and its waters flows
approximately 850 km until it reaches the Atlantic Ocean, in
the city of Linhares, Espírito Santo state (ECOPLAN-LUME
2010a). The basin is part of the Southeast Atlantic River Basin
and it is located between the parallels 17° 30′ 00″ and 21° 30′
00″ S and the meridians 39° 30′ 00″ and 44° 00′ 00″ W.

In its entirety, the Doce River basin comprises 228 cities,
which their territories are totally or partially inserted in the
basin, 200 cities in Minas Gerais, and 28 in the state of
Espírito Santo (CBH-Doce 2016a). There are 209 city offices
located in the territory of the basin, with a resident population
of approximately 3.6 million (IBGE 2010). In the context of
water quality, these values bring consequences from the

35304 Environ Sci Pollut Res (2020) 27:35303–35318



precarious treatment of domestic sewage, one of the main
problems in the basin. The negative impact on water quality
is observed in some river parts of the basin, especially in the
Doce River tributaries, because in its main channel, this im-
pact is minimized by the increase in the river flow (ANA
2016).

The economic activity of the basin is very diversified, spe-
cially: agriculture (reforestation, traditional crops, coffee
beans, sugar cane, farming); the agribusiness (sugar and etha-
nol); mining (iron, gold, bauxite, precious stones, etc.); indus-
try (pulp, steel and dairy); trading and support services of
industrial complexes; and electricity generation (ECOPLAN-
LUME 2010a). The region has the largest steel mill complex
in Latin America, which is associated with mining and refor-
estation companies (CBH-Doce 2016a).

In the state of Minas Gerais, the Doce River basin is
subdivided into six Water Resources Management Units
(UGRHs), which correspond to UGRH1 Piranga, UGRH2
Piracicaba, UGRH3 Santo Antônio, UGRH4 Suaçuí,
UGRH5 Caratinga, and UGRH6 Manhuaçu (CBH-Doce
2016b). The UGRHs are characterized by physical, socio-cul-
tural, economic, and political aspects (IGAM 2016). In Fig. 1,
it is possible to observe the separation of the Doce River basin
into UGRHs in the state of Minas Gerais.

Within the economic and environmental context, the basin
was the target of a major environmental crime in Brazil. On
November 05, 2015, the Fundão tailings dam, operated by
SamarcoMineração SA collapsed. It was located in the district
of Bento Rodrigues, municipality of Mariana, state of Minas
Gerais. The dam, classified as Class III, with high environ-
mental damage potential, was destined to receive and store the
waste generated by the iron ore beneficiation activity (IGAM
2017a). The dam contained 56.4 million m3 of tailings, of
which 43 million m3 (80% of the total volume) were released
into the environment. This amount reached 668 km of rivers
and streams of the Doce River basin, in the states of Minas
Gerais and Espírito Santo (Carmo et al. 2017), resulting in
several impacts on water resources and their uses, such as
public supply, irrigation, industrial use, power generation
electrical, leisure and fishing, destruction of permanent pres-
ervation areas, and silting and morphological alterations of
water bodies (ANA 2016).

Database used

The water quality data used in the study came from the water
quality monitoring campaigns carried out by the “Waters of
Minas Project”, where the water quality analyses are carried

Fig. 1 Geographic location of the Doce River basin and the separation into each UGRH
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out by a laboratory accredited by the National Institute of
Metrology, Quality, and Technology (INMETRO), which
regularly participates in analytical quality control assessments
and follows standardized methods for water and sewage anal-
ysis (APHA,AWWA,WEF 2012). Themonitoring results are
available in the IGAM website (IGAM 2018).

For the analysis, it was chosen to use only the variables
common to the set of stations, removing initially only the
variable “air temperature.” Total of 50 variables (Table 1).

Although the campaigns have been carried out since
1997 and currently the network has 65 monitoring sta-
tions, the data used in the study are those from the data
collections conducted in the period from 2010 to 2017 in
64 stations. Such action was taken due to the following
factors: (i) there is no complete set of data that includes
the majority of monitoring stations available in the pre-
2010 period; (ii) multivariate analysis does not allow
missing values in the dataset; and (iii) the station code
RD011, located at UGRH1 Piranga, was recently imple-
mented in 2016, thus providing a small database that
made it impossible to use it in the analysis.

In order to carry out the analysis, the whole database with
the 50 water quality variables was divided into three data sets:
(i) partial campaigns, where the data of the 64 stations and of
the 18 quality variables were analyzed, monitored, since the
“air temperature” was removed from the analyses; (ii) total
campaigns, where the data of the 64 stations and of the 50
water quality variables monitored were analyzed in common
to the set of stations; and (iii) monthly campaigns, where the
data of the 12 stations located in the riverbed of the Doce
River and the 18 variables of water quality that are monitored
monthly were analyzed. Those variables are monitored in the
partial campaigns.

It is noteworthy that, due to the data base used, the results
found were partially affected by the collapse of the Fundão
tailings dam in Mariana in 2015, since the IGAM historical
series include variables sensitive to the impacts resulting from
the accident, such as turbidity, solids, total manganese, and
dissolved iron. It is also worth noting that of the 64 IGAM
monitoring stations evaluated, only 13 were affected by the
collapse, among which the RD011 station, corresponded to
approximately 20% of the stations evaluated.

Table 1 Total of 50 water quality
variables used in the study Variables

Total alkalinity (mg L−1) Dissolved iron (mg L−1)

Dissolved aluminum (mg L−1) Total phosphorus (mg L−1)

Total arsenic (mg L−1) Total magnesium (mg L−1)

Total barium (mg L−1) Total manganese (mg L−1)

Total boron (mg L−1) Total mercury (μg L−1)

Total cadmium (mg L−1) Total nickel (mg L−1)

Total calcium (mg L−1) Nitrate (mg L−1)

Total lead (mg L−1) Nitrite (mg L−1)

Free cyanide (mg L−1) Total ammoniacal nitrogen (mg L−1)

Total chloride (mg L−1) Organic nitrogen (mg L−1)

Chlorophyll a (μg L−1) Oils and greases (mg L−1)

Dissolved copper (mg L−1) Dissolved oxygen (DO) (mg L−1)

Total coliforms (MPN 100 mL−1) pH

Electrical conductivity (μmho cm−1) Dissolved potassium (mg L−1)

True color (mg L−1) Total selenium (mg L−1)

Total chromium (mg L−1) Dissolved sodium (mg L−1)

Biochemical oxygen demand (BOD) (mg L−1) Total dissolved solids (TDS) (mg L−1)

Chemical oxygen demand (COD) (mg L−1) Total suspended solids (TSS) (mg L−1)

Calcium hardness (mg L−1) Total solids (mg L−1)

Magnesium hardness (mg L−1) Surfactants (mg L−1)

Total hardness (mg L−1) Total sulfate (mg L−1)

Thermotolerant coliforms (MPN 100 mL−1) Sulfide (mg L−1)

Fecal streptococci (MPN 100 mL−1) Water temperature (°C)

Total phenols (mg L−1) Turbidity (NTU)

Pheophytin a (μg L−1) Total zinc (mg L−1)
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Analysis methods used

The identification and selection of the determining variables
of the water quality variability of the Doce River was based on
the application of two analyses: principal component analysis
followed by factor analysis (FA/PCA) and the analysis of
violation of the limits established by the current class of fram-
ing. The analysis of the best sampling frequency was per-
formed using cluster analysis (CA). The statistical software
XLSTAT® was used to perform all the analyses.

Factor analysis/principal component analysis

Factor analysis/principal component analysis (FA/PCA) was
used to select the most significant water quality variables in
the interpretation of the data set analyzed. Since FA/PCA does
not allow missing values in the data set, the percentage of
missing data for each water quality variable was calculated,
parameters with more than 10% of missing data were
disregarded (Calazans et al. 2018a). For the other missing
data, it was considered the mean value of the variable (Olsen
et al. 2012).

The FA/PCA was held in two rounds. The first one used
only the water quality variables monitored in the partial cam-
paigns, since they have a quarterly frequency and, conse-
quently, a better data representativeness. The second one
was performed using the water quality variables monitored
in the complete campaigns, which, although they are biannual,
they include a greater number of variables.

The Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity
tests were first performed to confirm the adequacy of FA/PCA
to the water quality data. TheKMO test verifies the correlation
measure between the independent variables. The value of the
test varies from 0 to 1, whereas values below 0.5 indicate that
the application of FA/PCA is inappropriate. The Bartlett’s test
of sphericity evaluates whether the correlation matrix is an
identity matrix, which would indicate that there is no correla-
tion between the data and that the factorial model is inappro-
priate (Muangthong and Shrestha 2015; Jung et al. 2016). FA/
PCA was performed by decomposing the correlation matrix
into its eigenvalues and eigenvectors. The Spearman’s corre-
lation (Spearman R coefficient) was used due to considering
the non-normal distribution of data from the water quality
variables (Sabino et al. 2014; Winter et al. 2016), checked
by application of the normal Shapiro-Wilk test at a signifi-
cance level of 5%.

In the FA/PCA, PCA provides information on the most
meaningful parameters, which describes a whole data set
affording data reduction with minimum loss of original infor-
mation (Helena et al. 2000; Shrestha and Kazama 2007). The
principal component (PC) can be expressed as:

zij ¼ ai1x1 j þ ai2x2 j þ ai3x3 j þ…þ aimxmj ð1Þ

where “z” is the component score, “a” is the component load-
ing, “x” the measured value of variable, “i” is the component
number, “j” the sample number, and “m” the total number of
variables.

FA follows PCA. The main purpose of FA is to reduce the
contribution of less significant variables to simplify evenmore
of the data structure coming from PCA. This purpose can be
achieved by rotating the axis defined by PCA, according to
well established rules, and constructing new variables, also
called factors (F). PCs were subjected to varimax rotation
generating Fs, which is often used in water quality studies
(Zhang et al. 2011; Guedes et al. 2012; Ajorlo et al. 2013;
Rocha et al. 2014; Mohamed et al. 2015; Barakat et al.
2016; Villas-Boas et al. 2017). The final effect of rotating
the factorial matrix is to redistribute the variance of the first
factors to the latter, with the objective of achieving a simpler
and theoretically more significant factorial pattern (Hair Jr.
et al. 2009). The FA can be expressed as:

zij ¼ af 1 f 1i þ af 2 f 2i þ af 3 f 3i þ…þ afm f mi þ efi ð2Þ

where “z” is the measured variable, “a” is the factor loading,
“f” is the factor score, “e” the residual term accounting for
errors or other source of variation, “i” the sample number,
and “m” the total number of factors.

In FA/PCA, the factors are extracted in the order of the
most explanatory to the least explanatory, and the number of
factors is always equal to the number of variables. However,
only those with an eigenvalue greater than 1 were considered,
so any factor explains a higher variance in comparison with
that one presented by a simple variable (Hair Jr. et al. 2009).
On the selection of variables to characterize the factors, it was
adopted the classification of values of the factor loading pro-
posed by Liu et al. (2003): strong (> 0.75), moderate (< 0.75
and > 0.50), and weak (< 0.50 and > 0.30). It was decided to
select the factors that presented factorial load ≥ 0.7, a value
widely used by other authors (Chowdhury and Al-Zahrani
2014; Rocha and Pereira 2016; Shrestha and Kazama 2007).

Framing class violation analysis

In addition to the FA/PCA, the percentage of framing class
violation was also calculated for the water quality variables
that have concentration limits established by the COPAM/
CERH-MG Normative Resolution No. 01/2008 (Minas
Gerais 2008), considering the water body framing in the loca-
tion of the monitoring stations. In the Minas Gerais portion of
the Doce River basin, only the Piracicaba River Basin has a
framing approved by the State Council for Water Resources
(CERH-MG), so the Class 2 framing was adopted for the other
water bodies as approved by CNRH Resolution n° 91/2008.

In the selection of variables to be prioritized, it was used a
percentage of violation of the framing class equal to or greater
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than 20%. According to the Integrated Water Resources Plan
of the Doce River basin (PIRH-Doce), the variables that are
above this percentage are indicative of deterioration of water
quality, being essential to maintain them in the monitoring
program (ECOPLAN-LUME 2010a).

In the analysis, it was chosen to use all the variables mon-
itored, and only one previous analysis was performed to filter
those that have their limits established in the legislation, since
this is the only necessary requirement for the application of the
method.

Cluster analysis

Cluster analysis is a group of multivariate techniques whose
primary purpose is to assemble objects based on the charac-
teristics they possess (Shrestha and Kazama 2007). In this
study, cluster analysis (CA) was used to evaluate data from
the monthly campaigns conducted only in the Doce River
riverbed, aiming to gather the 12 months of the year into
groups (clusters) according to the similarities of the water
quality variables, so that the months within a group are similar
to each other but different from other groups. In the analysis,
the hierarchical grouping was applied through theWard meth-
od in the normalized data set, using the Euclidean distance as a
measure of dissimilarity (bond length), as also used in several
other studies (Zhang et al. 2011; Ajorlo et al. 2013;
Muangthong and Shrestha 2015). With the result of the CA,
it was possible to verify in which months the water quality
presents a greater similarity, and therefore, to evaluate the
monthly frequency sampling adopted by the IGAM and to
compare it with the quarterly frequency adopted for the partial
campaigns.

Results and discussion

Analysis of water quality through FA/PCA

In the evaluation of data suitability to the FA/PCA, the exis-
tence of significant correlations between the variables for both
datasets (p value < 0.05) was verified with the Bartlett’s sphe-
ricity test. Regarding to the KMO test, the value found was
0.74 when the data of the partial campaigns were evaluated
and 0.85 when the data of the complete campaigns were eval-
uated, demonstrating correlation of the variables. Due to the
results obtained in both tests, it was verified the adequacy of
the FA/PCA application to the data set.

When extracting the factors of water quality variables from
the partial campaigns, 18 factors were found, six of them with
an eigenvalue greater than one, explaining 71% of the total
variability of the data. Fig. 2 shows the eigenvalues in de-
scending order and the cumulative variance among the obtain-
ed factors.

Table 2 shows the non-rotational factorial weight matrix
for the water quality variables of the partial campaigns. The
modulus values of factor loading ≥ 0.7 suggest which are the
most significant variables in each factor.

Based on the factor weight matrix (Table 2), it can be
observed that only factors F1 and F6 presented factor loading
greater than or equal to 0.7, while the others presented load-
ings close to this value, as well as similar values in more than
one factor, such as the total chloride and electrical conductiv-
ity variables, thus hindering the analysis of the results. In this
way, it was reasonable to rotate the factors, since the process
maximizes their variance without affecting the proportion of
the total variance explained by the set (Hair Jr. et al. 2009).

Table 3 shows the contribution of each component after the
redistribution of the total variance among the factors by ap-
plying the varimax algorithm, without changing the total var-
iance explained. Considering weights greater than or equal to
0.7 as indicative factors of strong loading among water quality
parameters, 12 variables were selected.

Table 3 shows that the rotation of the factors provided
significant improvements in the results, since parameters that
did not present a high factor loading in some of the factors in
the non-rotated matrix (Table 2), started to show some after
the varimax rotation. Another positive aspect of the rotation
was the better distribution of the factor loading between the
factors, and therefore, each variable had a greater numerical
value in only one factor, facilitating the interpretation of the
result and the identification of possible sources of pollution in
each of them. Improvements from the rotation process have
also been observed by other studies on water quality (Guedes
et al. 2012; Lopes et al. 2014; Rocha and Pereira 2016; Villas-
Boas et al. 2017).

The first factor (F1) was responsible for 20% of the total
variance of the data.When analyzing the factor loadings of the
variables, it can be interpreted that the high values of total
suspended solids (TSS), total solids, and turbidity represent
the high susceptibility that the basin presents to erosion.
According to the PIRH-Doce, the characteristics of soils and
relief lead the Doce River basin to a condition of fragility in
terms of susceptibility to erosion, which is divided into four
levels: very strong; strong; moderate; and low or zero, of
which 58% of the total area is classified as strong and 30%
as moderate (ECOPLAN-LUME 2010a). Also, according to
the PIRH-Doce, the most problematic areas in the Doce River
basin are the high stream of the Piracicaba River and the
Suaçuí Grande River basin.

As for the Piracicaba River basin, it is observed that the
elevated portions of the unit produce the largest amount of
sediment with values varying between 100,000 and
200,000 kg km−2 year−1. From the confluence of the
Piracicaba River with the Doce River, the production de-
creases to 50,000 kg km−2 year−1. Among the aggravating
factors of high sediment generation rates are the torrential
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rains, susceptible soils, and the land use in the basin, which
has about 60% of anthropogenic areas (ECOPLAN-LUME
2010b). Regarding to the Suaçuí River basin, the values also
vary between 100,000 and 200,000 kg km−2 year−1. The ex-
tensive areas of the basin occupied by animal husbandry and
mining (ECOPLAN-LUME 2010c) collaborate with the ero-
sive process.

The F2 was responsible for 16% of the total variability of
the data, inferring about the inorganic material dissolved in the
water through the variables total chloride and electrical con-
ductivity. According to Barakat et al. (2016), these variables
may reflect the natural conditions of the basin through the
weathering of rocks and consequent surface runoff. In

addition to their natural origin, total chloride levels may also
be related to releases of industrial and domestic effluents
(Ramesh kumar and Anbazhagan 2018; Rocha and Pereira
2016). F2 also showed that the pH and TDS, although not
selected, presented moderate factor loading, since the electri-
cal conductivity is positively correlated with the dissolved
solids (R = 0.73), a result that corroborates with several other
studies presented in the literature (Zhang et al. 2011;
Frančišković-Bilinski et al. 2013; Muangthong and Shrestha
2015; Barakat et al. 2016; Pavlidis et al. 2018).

The F3, accounting for 14% of the total variability of the
data, is represented by total ammoniacal nitrogen and BOD,
indicating that the water bodies of the basin suffer variation

Table 2 Matrix of non-rotational
factor weight of water quality
variables analyzed in partial
campaigns

Variables F1 F2 F3 F4 F5 F6

Total chloride 0.50 0.53 0.39 0.07 0.07 0.04

Chlorophyll a 0.10 0.04 0.17 0.69 − 0.28 0.27

Total coliforms 0.39 0.05 − 0.45 0.47 0.30 − 0.14
Electrical conductivity 0.56 0.62 0.33 − 0.04 0.17 0.04

BOD 0.53 0.36 − 0.44 − 0.09 − 0.08 0.10

COD 0.76 − 0.14 − 0.04 − 0.06 − 0.08 0.05

Thermotolerant coliforms 0.46 0.13 − 0.54 0.41 0.22 − 0.10
Pheophytin a 0.07 − 0.06 0.00 0.12 − 0.04 − 0.86

Total phosphorus 0.72 − 0.01 − 0.21 − 0.13 − 0.01 0.06

Nitrate 0.18 0.19 0.24 − 0.29 0.61 − 0.13
Total ammoniacal nitrogen 0.46 0.34 − 0.48 − 0.20 − 0.12 0.15

Dissolved oxygen − 0.44 − 0.30 0.39 0.31 0.39 0.16

pH 0.17 0.38 0.56 0.14 − 0.01 − 0.01
TDS 0.76 0.14 0.38 0.03 0.07 0.03

TSS 0.66 − 0.69 0.15 0.00 − 0.01 0.00

Total solids 0.71 − 0.64 0.18 0.00 0.00 0.01

Water temperature 0.21 0.31 0.36 0.04 − 0.53 − 0.26
Turbidity 0.61 − 0.67 0.16 − 0.09 − 0.04 0.01

Eigenvalue 4.72 2.67 2.14 1.16 1.08 1.00

Variance explained 0.26 0.15 0.12 0.06 0.06 0.06

Cumulative variance 0.26 0.41 0.53 0.59 0.65 0.71

Highlighted values in italics refer to factor loadings equal or greater, in modulus, than 0.7

Fig. 2 Eigenvalues and
percentage of the cumulative
variance of the factors when
analyzing the water quality
variables of the partial campaigns
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due to contamination by organic fertilizers from agricultural
areas and by the discharge of untreated or partially treated
domestic effluents. It can be observed in Table 3 that the
variables total ammoniacal nitrogen and BOD presented a
positive factor loading, while dissolved oxygen presented
negative factor loading. In other words, F3 also shows the
inverse relationship between dissolved oxygen and other var-
iables, since BOD is related to the amount of oxygen required
to degrade organic matter (Obade and Moore 2018). F4 is
basically explained by total coliforms and thermotolerant co-
liforms, again indicating the precariousness of domestic sew-
age treatment and its release in the basin’s water bodies.

According to the Water Resources Action Plan of the
Piracicaba River basin (PARH-Piracicaba), coliform contam-
ination in UGHR2 Piracicaba is above the standards in almost
all the stations in the basin, demonstrating that the discharge of
domestic sewage is a constant problem (ECOPLAN-LUME
2010b). As stated by the Water Resources Action Plan of the
Caratinga River basin (PARH-Caratinga), in UGHR5
Caratinga, it is clear the condition of domestic effluents over-
load in surface waters reproduced in the non-conforming re-
sults in relation to the class 2 limit for thermotolerant coli-
forms (61%), total phosphorus (32%), BOD (13%), and dis-
solved oxygen (11%), as well as the detection of small viola-
tions of total ammoniacal nitrogen in isolated monitoring sta-
tions (ECOPLAN-LUME 2010d).

The fifth (F5) and the sixth (F6) factors are represented by
chlorophyll a and pheophytin a, respectively. These variables
refer to the primary productivity in the water bodies, being
indicative of the physiological state of the phytoplankton
and the degree of eutrophication of the aquatic environment
(Giovanardi et al. 2018; Sun et al. 2018), again results from
the overload of sanitary sewage without treatment and diffuse
pollution from agricultural areas.

For the second round of FA/PCA, where the water quality
variables monitored in the complete campaigns were consid-
ered, it was necessary to remove the total boron, dissolved
copper, oils and grease, and total selenium from the calcula-
tion of the missing data percentage. The total cadmium vari-
able was also removed because all values were equal to the
minimum detection limit of the test used in the laboratory
analysis (0.0005 mg L−1), resulting in a standard deviation
of zero. However, the variables calcium hardness and magne-
sium hardness were removed from the analysis because they
essentially had the same attributes as the total calcium and
total magnesium variables, respectively, and this was ob-
served due to the high correlation between the variables (~
1.0). Therefore, 43 out of 50water quality variables monitored
in the complete campaigns were analyzed. Figure 3 shows the
eigenvalues in descending order and the cumulative variance
among the 43 factors obtained for the 43 variables analyzed in
the total campaigns.

Table 3 Rotated factor weight
matrix of water quality variables
analyzed in partial campaigns

Variables F1 F2 F3 F4 F5 F6

Total chloride 0.04 0.81 0.18 0.07 − 0.02 − 0.02
Chlorophyll a 0.04 0.25 − 0.19 0.22 0.71 − 0.13
Total coliforms 0.10 0.01 0.15 0.81 0.03 0.09

Electrical conductivity 0.02 0.85 0.28 0.10 − 0.16 − 0.05
BOD 0.05 0.15 0.71 0.30 − 0.01 − 0.10
COD 0.62 0.21 0.39 0.15 0.02 − 0.01
Thermotolerant coliforms 0.09 0.02 0.32 0.79 0.06 0.05

Pheophytin a 0.05 − 0.02 − 0.06 0.16 − 0.09 0.86

Total phosphorus 0.48 0.16 0.52 0.22 − 0.08 − 0.05
Nitrate 0.03 0.37 − 0.10 0.08 − 0.66 − 0.03
Total ammoniacal nitrogen 0.01 0.07 0.75 0.20 − 0.04 − 0.14
Dissolved oxygen − 0.04 − 0.04 − 0.81 0.03 − 0.02 − 0.22
pH − 0.05 0.68 − 0.14 − 0.12 0.09 0.06

TDS 0.50 0.68 0.17 0.10 − 0.03 0.00

TSS 0.96 − 0.02 − 0.02 0.07 0.02 0.03

Total solids 0.97 0.05 0.00 0.07 0.01 0.03

Water temperature 0.00 0.45 0.19 − 0.31 0.34 0.41

Turbidity 0.92 − 0.04 0.00 − 0.03 − 0.01 0.02

Eigenvalue 3.61 2.82 2.52 1.70 1.11 1.02

Variance explained 0.20 0.16 0.14 0.09 0.06 0.06

Cumulative variance 0.20 0.36 0.50 0.59 0.65 0.71

Highlighted values in italics refer to factor loadings equal or greater, in modulus, than 0.7

35310 Environ Sci Pollut Res (2020) 27:35303–35318



Considering the factors with an eigenvalue greater than
one, the 43 variables analyzed were reduced to 12 uncorrelat-
ed factors, which together explain 76% of the total variance of
the data (Fig. 3). In Table 4, the matrix of factor weights after
the varimax rotation is presented. Considering weights equal
to or greater than 0.7 as indicative factors of a strong factor
loading, 29 variables of water quality were selected.

As can be seen in Table 4, the FA/PCA results for the total
campaigns reinforce those obtained in the partial campaigns.
However, because more variables were analyzed in the total
campaigns, the selection of new variables considered as rep-
resentative of the water quality variability in the Minas Gerais
portion of the Doce River basin was conducted and, conse-
quently, the identification of additional sources of pollution in
the basin that were not considered in the analysis using data
from the partial campaigns.

F1, which previously represented the high susceptibility of
the basin to erosion, now also has representative variables of
heavy metal pollution: total barium, total lead, total chromi-
um, total manganese, and total nickel. Several studies have
shown the relationship between heavy metals and solids, dem-
onstrating that only a small number of them remain in the
liquid mass and most of them are deposited in the sediments
(Thuong et al. 2013; Malvandi 2017; Zhuang et al. 2018).
Thus, sediments in the aquatic environment may play an im-
portant role in the deposition and transmission of heavy
metals, justifying the fact that both have high factor loadings
in F1. In the Doce River basin, heavy metals are associated
with regional geology; however, their concentration in surface
waters is enhanced by the releasing of domestic effluents, by
the use of agrochemicals and by mining and metallurgy. They
are all dominant economic activities in the Doce River basin
(ECOPLAN-LUME 2010a).

A study on the water quality of the Doce River after the
collapse of the iron ore tailings dam in the municipality of
Mariana reinforces the strong correlation found among the

variables in F1. According to ANA (2016), when analyzing
only the monitoring stations affected by the collapse of the
dam, a strong correlation between the turbidity and the con-
centration of total suspended solids, total solids, and total
manganese was verified, since these variables presented in-
crease in the same order of magnitude. The same study
showed that variables such as total lead, total chromium, total
arsenic, and total mercury also had the highest maximums
above acceptable limits, according to the current legislation,
after the occurrence of the dam collapse. However, although
they were also linked to mining, total arsenic and total mercu-
ry only showed high factor loadings in F9 and F11,
respectively.

Although the disaster discharged 34 million m3 of iron ore
tailings in the waters of the Doce River basin, the dissolved
iron variable presented a low correlation with the other vari-
ables and, consequently, a low factor loading in all 12 selected
factors. In their study, ANA (2016) also found that, despite
increasing the concentration after the dam collapse, the dis-
solved iron showed a different dynamic than the other ana-
lyzed variables. Thus, this fact may justify the low factor
loading and the non-selection of the iron dissolved by FA/
PCA in the present work.

The F2 continued to represent the natural conditions of the
basin through the weathering of rocks and the consequent
surface runoff; however, in this second analysis, we can note
the addition of other variables associated with the same
causes: total alkalinity, total calcium, total hardness, total
magnesium, dissolved potassium, and dissolved sodium.
Although the dissolved aluminum only presents a high factor
loading in F4, it is also influenced by the natural conditions of
the basin, since the soil of the region has in its chemical com-
position large concentrations of aluminum (ECOPLAN-
LUME 2010a).

For the other factors, it can be stated that they represent
basically the contamination by organic fertilizers originating

Fig. 3 Eigenvalues and percentage of the cumulative variance of the factors when analyzed the water quality variables monitored in the total campaigns
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Table 4 Rotated factor weight matrix of water quality variables monitored in total campaigns

Variables F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Total alkalinity 0.01 0.94 0.08 0.03 0.02 − 0.04 0.02 0.04 0.02 − 0.02 − 0.03 0.04

Dissolved aluminum 0.20 0.07 − 0.06 0.81 0.09 0.06 − 0.03 − 0.01 − 0.08 0.00 − 0.05 − 0.04
Total arsenic 0.11 0.09 − 0.02 − 0.07 0.03 0.17 0.10 0.08 0.75 − 0.02 0.05 − 0.04
Total barium 0.83 0.25 − 0.01 0.22 0.11 − 0.11 0.06 0.03 0.04 0.04 − 0.22 0.05

Total calcium 0.07 0.88 0.08 − 0.09 0.12 − 0.02 − 0.03 0.01 0.16 0.02 − 0.03 0.00

Total lead 0.96 − 0.01 0.04 0.05 0.00 0.02 − 0.01 0.01 0.01 − 0.01 0.02 0.02

Free cyanide − 0.03 0.00 0.04 0.02 − 0.04 − 0.21 − 0.80 0.01 0.05 0.40 − 0.01 0.02

Total chloride − 0.01 0.70 0.13 0.26 0.03 0.20 0.01 0.12 − 0.22 0.16 0.10 0.03

Chlorophyll a 0.02 0.07 − 0.07 0.00 0.07 0.01 − 0.02 0.10 − 0.09 0.83 0.00 − 0.01
Total coliforms 0.04 0.06 0.03 0.03 0.82 − 0.03 0.07 0.07 0.08 − 0.03 0.07 0.01

Electrical conductivity − 0.01 0.91 0.22 0.01 0.04 0.27 0.00 0.03 0.04 0.03 0.02 0.01

True color 0.44 0.04 0.04 0.60 0.00 − 0.14 − 0.39 0.20 0.02 0.09 0.08 0.11

Total chromium 0.91 0.02 0.02 − 0.06 − 0.05 0.01 − 0.03 − 0.01 − 0.02 − 0.04 − 0.20 − 0.01
BOD 0.00 0.16 0.87 − 0.02 0.17 0.06 − 0.06 0.00 − 0.07 0.03 0.00 − 0.08
COD 0.58 0.18 0.30 0.46 0.13 0.04 0.08 0.08 − 0.06 0.00 0.15 0.01

Total hardness 0.11 0.94 0.06 − 0.03 0.07 − 0.07 0.01 0.00 0.16 − 0.04 − 0.03 0.00

Thermotolerant coliforms 0.00 0.06 0.24 − 0.04 0.81 0.02 0.02 0.00 0.04 0.10 − 0.03 − 0.02
Fecal streptococci 0.15 0.02 0.19 0.15 0.74 0.01 − 0.01 − 0.05 − 0.05 − 0.01 − 0.04 0.01

Total phenols 0.01 0.04 0.08 0.03 0.03 − 0.09 0.81 − 0.01 0.12 0.09 − 0.04 0.07

Pheophytin a 0.07 0.02 0.00 − 0.10 − 0.05 − 0.01 − 0.03 0.04 − 0.08 − 0.02 − 0.05 0.84

Dissolved iron 0.09 0.05 0.28 0.60 − 0.02 − 0.23 0.16 0.12 0.07 − 0.10 − 0.16 − 0.11
Total phosphorus 0.39 0.11 0.59 0.20 0.10 0.11 0.10 0.04 0.20 0.09 0.28 0.02

Total magnesium 0.13 0.84 0.02 0.03 0.00 − 0.11 0.05 − 0.01 0.14 − 0.09 − 0.03 0.00

Total manganese 0.83 0.05 0.06 − 0.02 0.05 0.04 0.02 0.03 0.32 − 0.01 0.27 0.00

Total mercury 0.28 0.02 − 0.01 − 0.08 0.01 − 0.05 − 0.01 0.03 0.01 − 0.05 0.74 − 0.05
Total nickel 0.93 0.03 − 0.01 0.11 0.03 0.00 − 0.02 − 0.01 − 0.01 − 0.02 − 0.19 0.01

Nitrate − 0.02 0.16 0.00 − 0.08 − 0.06 0.80 0.08 0.03 0.04 − 0.12 − 0.04 0.05

Nitrite 0.08 0.16 0.08 0.06 0.05 0.65 − 0.13 − 0.10 0.47 0.03 − 0.08 0.05

Total ammoniacal nitrogen 0.01 0.13 0.51 0.04 0.20 − 0.03 − 0.04 − 0.06 0.09 − 0.06 − 0.09 0.18

Organic nitrogen 0.11 0.05 0.12 0.35 0.19 0.19 0.25 0.01 0.13 0.06 0.08 0.46

Dissolved oxygen − 0.05 − 0.12 − 0.52 − 0.15 − 0.20 0.07 0.23 − 0.56 − 0.20 0.22 0.04 − 0.11
pH in loco − 0.03 0.44 − 0.07 − 0.25 − 0.11 0.30 0.10 0.35 − 0.23 − 0.03 0.06 − 0.14
Dissolved potassium 0.09 0.72 0.10 0.41 0.01 0.15 0.06 0.21 − 0.24 0.03 0.12 0.03

Dissolved sodium − 0.06 0.80 0.09 0.01 − 0.04 0.44 − 0.01 0.03 − 0.01 0.12 0.02 − 0.01
TDS 0.45 0.61 0.08 0.45 0.11 0.11 − 0.01 0.07 − 0.04 0.05 0.03 0.05

TSS 0.93 0.02 0.01 0.11 0.07 0.00 0.01 0.01 0.01 0.00 0.22 0.03

Total solids 0.92 0.07 0.01 0.14 0.08 0.01 0.01 0.02 0.00 0.01 0.21 0.03

Surfactants 0.02 0.14 0.89 0.06 0.07 0.04 0.18 − 0.03 − 0.10 − 0.08 0.02 − 0.04
Total sulfate 0.04 0.16 0.08 0.04 0.12 0.47 0.38 − 0.04 0.38 − 0.09 0.03 − 0.11
Sulfide − 0.06 − 0.02 − 0.04 − 0.01 − 0.05 − 0.39 − 0.36 − 0.15 0.18 0.61 − 0.10 0.01

Water temperature − 0.02 0.19 − 0.08 0.15 − 0.01 − 0.03 − 0.04 0.87 0.05 0.10 0.08 0.08

Turbidity 0.84 − 0.01 0.06 0.09 0.00 0.03 0.01 0.02 0.04 0.01 0.35 0.06

Total zinc 0.34 − 0.04 0.01 0.00 0.01 0.06 0.15 0.40 − 0.08 0.03 − 0.32 − 0.15
Eigenvalue 7.65 6.64 2.88 2.48 2.17 2.13 2.01 1.54 1.49 1.41 1.27 1.08

Variance explained 0.18 0.15 0.07 0.06 0.05 0.05 0.05 0.04 0.03 0.03 0.03 0.03

Cumulative variance 0.18 0.33 0.40 0.46 0.51 0.56 0.60 0.64 0.67 0.71 0.74 0.76

Highlighted values in italics refer to equal or greater factorial loads, in modulus, than 0.7
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from agricultural areas and the discharge of untreated or par-
tially treated domestic effluents in the water bodies of the
basin. The following variables were selected: BOD, surface
active substances, total coliforms, thermotolerant coliforms,
fecal streptococci, nitrate, total phenols, water temperature,
chlorophyll a, and pheophytin a.

Comparing the first and second rounds of the FA/PCA, it is
observed that the difference is basically in the variability of the
water quality explained by the heavy metals: total arsenic,
barium, chromium, lead, manganese, mercury, and nickel.
For these variables, several studies emphasize the importance
of monitoring due to their bioaccumulative capacity, since
they cause disturbances in the metabolic processes and dam-
age to the biological system of living beings (Lozano et al.
2010; Riguetti et al. 2015; Zapata et al. 2017). Therefore, the
importance of the second round of FA/PCAwith the data from
the total campaigns was demonstrated, as well as the need to
include some of these variables in the partial campaigns.

Analysis of violations of the limits established by the
COPAM/CERH-MG Normative Resolution No. 01/2008

With the result of the analysis of violation of the framing class,
it was possible to identify the variables that most represented
deterioration of water quality (20% of violations or more) in
the Minas Gerais portion of the Doce River basin in each
UGRHs (Table 5).

As can be seen in Table 5, only the variables thermotolerant
coliforms, dissolved iron, total phosphorus, and total manga-
nese presented values of violation of the framing class higher
than 20% among the UGRHs, being the maintenance of the
UGRHs in the monitoring program a priority, as well as the
variables indicated by the FA/PCA. Thermotolerant coliforms
and total manganese were also pointed out in the second round
of the FA/PCA, meaning that, in addition to presenting a high
rate of violation of the framing class, they are also part of the
main variables responsible for the variability of water quality
in the Minas Gerais portion of the Doce River basin.

The high rates of violation of thermotolerant coliforms and
total phosphorus variables characterize the release of untreated
domestic effluent as the main source of pollution that affects
the quality of the water of the Doce River basin, a result that
has also been found in several other studies in Brazilian basins
(Souza and Gastaldini 2014; Oliveira et al. 2017, 2018; Costa
et al. 2017; Vargas et al. 2018; Fraga et al. 2019; Soares et al.
2020).

In a study on water quality in the Xopotó River basin, sub-
basin of the Doce River, it was found that the microbiological
quality of the water is deteriorating (Drumond et al. 2018). In
addition to presenting high concentrations of thermotolerant
coliforms, a variety of bacterial genotypes were found that
represent a potential risk of diarrheagenic diseases, emphasiz-
ing the poor condition of the microbiological quality of the

water bodies of the basin, mainly due to the absence of sewage
treatment plants (Drumond et al. 2018). According to ANA
(2017), only 31 of the 200 municipalities in the Minas Gerais
portion of the Doce River basin have some percentage of
sewage treatment, and many of the effluent treatment plants
are unable to remove microorganisms since they do not have a
tertiary treatment processes. Despite the inadequacy of the
effluent collection and treatment system, the surface water
presented low levels of DO and BOD violation in all
UGRHs, which can be explained by the auto depuration pro-
cess, which re-establishes DO levels, but does not reduce the
coliforms levels (Andrade et al. 2018).

The high percentage of class violation of dissolved iron and
total manganese variables reflects the impacts of mining and
releasing of steel removals. The largest steel complex in Latin
America is located in the Doce River basin. The extraction of
iron ore comprises the main mineral exploration activity, with
approximately 20% of mining concessions in Minas Gerais.
This entire industrial complex is responsible for most of
Brazil’s iron ore and steel exports (ECOPLAN-LUME
2010a). Total manganese is also related to mining; this metal
is widely utilized in siderurgy (iron production in the
manufacturing of metal alloys and batteries), textile industries
(fabric paints), and other chemical industries (varnishes, fire-
works, and fertilizers) (CETESB 2016).

Previous studies have shown that these variables already
presented problems related to violation of the framing class.
When evaluating the IGAM data from 1997 to 2008 using
fewer stations, it was found that the variables thermotolerant
coliforms and total manganese had the highest violation rates
in all the UGRHs. For the dissolved iron variable, it was ver-
ified that the variable exceeded the established limit of 20% in
the UGRHs 1, 2, 4, and 5. For the total phosphorus, this limit
was exceeded only in the UGRHs 1 and 5 (ECOPLAN-
LUME 2010a).

It is worth mentioning that the high violation of the total
manganese and dissolved iron variables is also associated
with their concentration peaks caused by the dam collapse
in Mariana in 2015. For these variables, these peaks
exceeded significantly the values of the historical series
of data prior to the event (IGAM 2017b). It is worth
pointing out that, despite the trend of return of the analyzed
variables to the previous conditions, the disturbances im-
posed on the affected ecosystems left a significant damage
in the Doce River. Much of the leaked material after the
dam collapse is still deposited in the water bodies, which
still potentially compromises various water uses. In addi-
tion, the large volume of tailings accumulated in the water
bodies affects the balance of aquatic ecosystems,
compromising fauna, flora, and ecological processes, such
as auto depuration (ANA 2016). In addition to the total
manganese and dissolved iron, the variables turbidity and
total solids also presented peaks that exceeded the
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maximum values of the historical series of data before the
dam collapse.

Even though it presented violation values of less than 20%,
the dissolved aluminum proved to be an important variable
and, although it is associated to the regional geology, its trans-
port to the surface waters is potentialized by the dominant
economic activities in the basin. Violations of other heavy
metals such as total arsenic, total lead, dissolved copper, total
chromium, total mercury, and total nickel were also observed.
On the other hand, variables that did not present violations

were observed: total boron, total cadmium, total chloride, ni-
trite, total selenium, total sulfate, and sulfide.

In order to prioritize the most impacting variables in the
basin and reduce the costs associated with monitoring, the
variables that did not present a percentage of violation may
have a biannual sampling frequency, which would result in
the analysis of the total chloride only in the complete cam-
paigns. Although the total chloride had a high factor loading
in F2 in the first round of the FA/PCA, this change would not
pose major problems, since the electrical conductivity was

Table 5 Percentage of violation of the framing class in the Doce River basin considering the variables with limits established by the COPAM/CERH-
MG Normative Resolution No. 01/2008

Variables Percentage of violation (%)

UGRH1 UGRH2 UGRH3 UGRH4 UGRH5 UGRH6 Doce River basin

Thermotolerant coliforms 65.33 79.72 42.52 56.74 77.20 46.77 63.12

Total manganese 39.25 51.36 5.61 23.91 49.77 13.59 32.90

Total phosphorus 35.55 39.31 16.36 24.10 37.01 21.61 30.38

Dissolved iron 26.40 22.99 33.65 24.75 36.03 25.57 27.34

Dissolved aluminum 14.07 12.23 17.09 16.25 14.71 16.99 15.05

Free cyanide 14.12 14.65 14.05 14.08 16.84 14.76 14.70

Turbidity 16.23 13.33 3.27 10.44 12.99 8.39 11.86

Total suspended solids 15.57 10.57 3.27 7.78 13.64 4.52 10.19

True color 5.51 3.59 8.26 14.49 11.51 5.33 7.75

Total lead 3.84 1.93 1.81 3.44 3.74 1.75 2.85

Total arsenic 9.41 0.00 0.00 0.00 0.00 0.00 2.58

Total phenols 2.04 2.86 3.23 2.43 3.25 0.00 2.29

pH 1.64 1.84 7.94 2.09 0.32 0.65 2.04

DO 0.33 0.46 0.00 0.19 9.74 0.00 1.46

BOD 0.00 1.15 0.47 0.19 6.49 0.65 1.21

Chlorophyll a 0.50 0.00 0.00 1.54 1.63 1.95 0.92

Total chromium 0.26 0.30 0.00 2.03 0.68 1.37 0.73

Zinc 0.27 0.30 2.88 1.41 0.50 0.00 0.72

Total mercury 0.51 0.00 0.00 1.22 1.36 0.68 0.61

Dissolved copper 0.50 0.46 0.93 0.38 0.32 1.29 0.58

Surfactants 0.00 0.00 0.00 0.48 3.91 0.00 0.51

Total nickel 0.00 0.28 0.00 1.03 0.49 0.49 0.38

Total ammoniacal nitrogen 0.00 0.00 0.00 0.00 2.60 0.00 0.33

TDS 0.00 0.00 0.00 0.19 0.00 0.00 0.04

Nitrate 0.00 0.00 0.00 0.00 0.32 0.00 0.04

Total boron 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total cadmium 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total chloride 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nitrite 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total selenium 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total sulfate 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sulfide 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Values highlighted in italics correspond to percentages greater than 20%
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also selected in the same factor and both represented the same
pollution group.

Monitoring frequency analysis through CA

In the analysis of the frequency of the monthly moni-
toring performed only using data from the stations
installed in the Doce River riverbed, the CA gathered
the 12 months of the year into four groups, as it can be
seen on the dendrogram in Fig. 4.

When analyzing the dendrogram (Fig. 4), you can see
the influence of seasonality in the formed clusters.
Clusters 1 (January and December) and 2 (April,
February, and March) correspond to the rainy season,
and clusters 3 (September and October) and 4 (July,
May, June, August, and November) correspond to the
dry season. Because they are performed quarterly, this
result has a similarity with the months in which the
partial campaigns are carried out, demonstrating that
for the Doce River basin, the quarterly frequency can
be satisfactory. On the other hand, greater Euclidean
distances are observed between the months of the rainy
season (groups 1 and 2), showing that for this period,
the water quality does not present as much similarity,
which emphasizes the importance of adopting a monthly
sampling frequency. Similar results were also found by
Calazans et al. (2018b) when evaluating the water qual-
ity monitoring network in the Velhas River basin, also
located in the state of Minas Gerais.

Due to the high cost of monitoring campaigns, the
monthly frequency can only be maintained in the river-
bed of the Doce River. However, it is also recommend-
ed for the monthly frequency to perform the suggested
changes for the variables monitored in the partial cam-
paigns. Thus, the monthly and partial campaigns would

monitor the most representative variables of the water
quality in the Minas Gerais portion of the Doce River
basin.

Conclusions

A total of 14 out of 50 variables were identified as priority
variables in the monitoring network: chlorophyll a, total coli-
forms, electrical conductivity, BOD, thermotolerant coli-
forms, pheophytin a, dissolved iron, total phosphorus, total
manganese, total ammoniacal nitrogen, DO, total suspended
solids, total solids, and turbidity. Contamination in the Doce
River basin is due to a series of factors, including natural
processes and anthropic activities, such as the high suscepti-
bility of the basin to erosion; contamination by heavy metals,
which are associated with the economic activities and the soils
of the region; and the release of untreated or partially treated
domestic effluents in the water bodies of the basin.

The high values of framing class violation for
thermotolerant coliforms and total phosphorus indicate inap-
propriate sanitary conditions in the Doce River basin. The
percentages of violation of total manganese and dissolved iron
were also significant, potentialized by the economic activities
of the basin.

Based on the analyses, it is recommended to include the
dissolved iron and total manganese variables in the partial
campaigns and the total chloride sampling only in the com-
plete campaigns. This change would make the partial cam-
paigns represent all sources of pollution in the Doce River
basin.

The cluster analysis showed that the water quality variation
of the Doce River is determined in part by the seasonality,
reiterating the importance of monthly frequency monitoring
in the stations of the Doce River basin.

Fig. 4 Dendrogram resulting from CA, showing the grouping of the 12 months of the year
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