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Abstract

Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces
stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only
the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity
production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers
the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic
half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid
electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both
sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main
aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the
electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity
production efficiencies.
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Introduction

Following an increasing awareness of the effects of fossil fuels
on global warming, new and alternative energy-producing
technologies have been intensively researched. Another im-
portant concept in modern society is the circular economy,
which has changed the perception of residues and effluents,
now regarded as valuable resources (Goglio et al. 2019;
Manzano-Agugliaro et al. 2013). Both principles have in-
duced the development of microbial fuel cells (MFC) aiming
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at producing electricity from the anaerobic oxidation of organ-
ic matter (Pandey et al. 2016). A large-scale utilization of
MFCs is still beyond reach, but energy recovery during waste-
water treatment is most likely to happen in the near future
(Logan 2009).

An MFC layout comprises two electrically connected
chambers. In the anodic half-cell, a biologically mediated ox-
idation reaction produces electrons, which are externally
transferred to the cathodic half-cell where they are used in
either a chemical or biological semi-reaction of reduction.
An MFC also contains a proton- or cation-exchange mem-
brane and an external resistance (Logan et al. 2006). The
growing interest in such technology does not only derive from
its potential to produce electricity but also as a more
environmentally-friendly technology than anaerobic digestion
or any other common effluent treatment process (Pandey et al.
2016).

In addition to organic matter, industrial wastewaters may
also contain a series of inorganic pollutants, such as sulphate
ions, which need to be removed during effluent treatment.
Sulphate-bearing effluents have been produced by several in-
dustries, such as electroplating, pulp and paper, pigments,
rubber, explosives, fertilizers, and mining-metallurgy (Lens
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etal. 1998; Sarti et al. 2008). Despite its low toxicity, sulphate
levels in wastewaters are regulated and a maximum contami-
nant level-between 250 and 500 mg L' is set by several
countries. Sometimes the content of sulphate is regulated
through a limit on total dissolved solids (TDS) (Nascimento
1998). Among the alternatives to remove sulphate from
wastewaters, biotechnological processes applying
sulphate-reducing bacteria (SRB) have been extensively
investigated (Bertolino et al. 2012; Bertolino et al.
2015; Hu et al. 2020; Kaksonen et al. 2006; Kaksonen
and Puhakka 2007; Luo et al. 2020). These microorgan-
isms utilize sulphate as final electron acceptors resulting
in the production of sulphide ions (Liamleam and
Annachhatre 2007). Recently, it has been reported that
sulphate-reducing bacteria (SRB) are electroactive bacte-
ria (EAB), i.e. SRB are able to transfer electrons direct-
ly to an electrode rather than to a redox couple, which
is an important mechanism in MFC (Kang et al. 2014,
Zhou et al. 2013). This justifies the interest in coupling
sulphate reduction and electricity production in these
devices.

The first studies addressing sulphate reduction in the con-
text of MFCs speculated the electroactive nature of SRB in-
oculated in the anodic half-cell (Agostino and Rosenbaum
2018; Hu et al. 2019; Liang et al. 2013a; Zheng et al. 2014).
However, another application has also been proposed for the
role of SRB. In this latter mechanism, the bacteria accept
electrons directly from cathodes to convert carbon dioxide
into organic substances (Agostino and Rosenbaum 2018;
Luo et al. 2020). Therefore, electro-autotrophic SRB may also
function as biocathodes in the production of sulphide ions,
and this electrochemical device is known as microbial elec-
trolysis cells (MEC) (Gacitua et al. 2018; Luo et al. 2014a).
Despite the several studies investigating the SRB role in
MEC, the current work focuses only on anodic half-cells in-
oculated with SRB, which play an indisputable role on the
generation of electricity (Hu et al. 2019). Specifically, the
syntrophic interactions of the microbial consortium, the
electron-transfer pathways in the anodic hall-cell, the oxida-
tion of the carbon source, sulphate reduction, and the produc-
tion of electricity in MFC will be revised.

Microbial fuel cells

Usually, heterogenic bacteria produce energy-rich com-
pounds, such as ATP (used to carry out biological work) via
the oxidation of nutrient molecules. The electrons produced
during cellular metabolism are transferred to a chemical ac-
ceptor such as O,, NO;~, and SO, 2 during cellular respiration
(Nelson and Cox 2012; Tortora et al. 2010). Some bacteria in
particular can utilize ferric iron as the final electron acceptor,
which is found in nature mostly as an insoluble compound.
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Therefore, it was proposed that ferric iron reduction occurred
outside the cell (Lovley 2006). Based on the observation of
this phenomenon, the direct electron transfer to solid elec-
trodes by microorganisms was hypothesized. Accordingly, a
technology could be devised by which bacteria would transfer
electrons from an electron donor to an artificial solid device,
producing electricity (Madigan et al. 2015). These microor-
ganisms are classified as either exoelectrogenic or
electroactive (Logan 2009).

Electroactive microorganisms have been identified in a
wide variety of ecosystems, such as soil, sediment, seawater,
and freshwater and also in samples collected from several
environments having a diverse microbial community (sewage,
activated sludge, industrial and domestic effluents) (Logan
2009). Specifically, these bacterial strains belong to the genera
Geobacter sp., Rhodoferax sp., Shewanella sp., Pseudomonas
sp., Arcobacter sp., Clostridium sp., Ochrobactrum sp., and
Desulfovibrio sp. (Mathuriya 2014; Santoro et al. 2017). Such
microorganisms can be technologically applied in a bio-
electrochemical reactor, in which electrons are transported to
(and from) a solid material (electrode), such as a MFC (Zhou
et al. 2013). Such devices can therefore be applied to oxidize
reduced species in liquid effluents and produce electricity si-
multaneously (Friedman et al. 2013). The main argument
supporting the development of such technology is to improve
sustainability (reducing treatment costs and energy consump-
tion) of effluent treatment operations, particularly those con-
taining moderate to high organic loadings (Santoro et al.
2017).

In a typical MFC (Fig. 1), the anodic and cathodic cham-
bers are separated by an ion exchange membrane. In the an-
odic chamber, the microbial cells in the biofilm oxidize a
substrate to produce (i) protons (HY), (ii) oxidized species,
such as CO,, and (iii) electrons, which are then transferred
to the solid electrode. In addition, as the proton concentration
increases in the anodic chamber, they are transferred to the
cathodic compartment through the membrane. The electrons
in the anode are shuttled to the negative electrode (cathode)
wherein species such as oxygen, protons, ferricyanide ions,
and hydrogen peroxide are reduced (He et al. 2017).

Some advantages of applying MFC in wastewater treat-
ment are as follows (He et al. 2017; Mathuriya 2014;
Santoro et al. 2017): (i) direct conversion of chemical energy
in wastewaters into electricity; (ii) smaller production of bio-
mass, even when compared with conventional anaerobic pro-
cesses; (iii) aeration is eliminated; and (iv) it can be potentially
used in places short of electricity supply. In addition, COD
removal in MFC may attain values over 80% (Logan 2009;
Santoro et al. 2017).

Extensive studies have been carried out in lab-scale in or-
der to improve the energy efficiency of MFCs so that a large-
scale use in wastewater treatment becomes feasible, in the
treatment of both domestic (Lovley 2008; Tice and Kim
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Fig. 1 Schematic representation
of a typical two-chamber micro-
bial fuel cell
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2014) and industrial wastewaters, in particular those contain-
ing toxic metals (Luo et al. 2014b; Tao et al. 2014), azo dyes
(Khan et al. 2015), residues produced by the oil industry
(Jiang et al. 2013; Li et al. 2015), acid mine drainage
(Cheng et al. 2007; Hai et al. 2016), phenol and compounds
(Feng et al. 2015), and pyridine-related products (Mathuriya
2014). Its potential incorporation to existing industrial opera-
tions will require the following: (i) improvement in energetic
efficiency, (ii) relative stability in energy production, and also
(iii) a reduction in capital expenditure (Pant et al. 2011).

With respect to the electricity production and also the
columbic efficiency (the fraction of electrons produced
during oxidation, which effectively are transferred to the
cathode thus producing electricity) of MFC, the microbial
community plays a key role, requiring the presence of a
biofilm containing exoelectrogenic species. Nevertheless,
during the conversion of the organic matter, there is com-
petition between these electroactive bacteria and methan-
ogenic archaea (which are not electroactive) for the organ-
ic substrate, which results in a considerable reduction in
electricity production and also in the columbic efficiency
(Isosaari and Sillanpdd 2017).

The presence of sulphide ions reduces methanogenesis in
MEFC because H,S can inhibit the growth of methanogenic
archaea, justifying the inoculation of the latter with SRB
(Chou et al. 2014; Chou et al. 2013; Isosaari and Sillanpéa
2017; Liang et al. 2013a; Sangcharoen et al. 2015; Su et al.
2012; Weng and Lee 2015; Zhao et al. 2009). Moreover, as
stated, SRB are capable of transferring electrons directly to the
anode (Liang et al. 2013b; Zhao et al. 2009; Zhou et al. 2013).
A second hypothesis is that there is a synergic pathway
involving SRB and SOB (sulphide-oxidizing bacteria),
whereby SOB oxidizes the sulphide produced by SRB

Membrane Cathodic chamber

Microorganisms

to elemental sulphur, transferring electrons directly to
the anode material (Chou et al. 2014; Chou et al. 2013;
Weng and Lee 2015; Zhao et al. 2009). Nevertheless,
this latter mechanism requires sulphide diffusion (and
its oxidation) in the anode, implying that the direct elec-
tron transport mechanism plays a key role in electricity
production (Murugan et al. 2018). Such mechanism will
be detailed in the following paragraphs.

When applied in electrochemical system aiming at effluent
treatment, the participation of other microbial species is man-
datory to ensure a diverse microbial community, which is
required to produce the syntrophic interactions required to
degrade complex organic substrates and to generate electrical
energy (Kokko et al. 2016). These interactions are discussed
next.

Microbiology and biochemistry
of bioelectricity generation

It has been extensively demonstrated that several microbial
interactions are present in anaerobic reactors (Bertolino et al.
2012; Bertolino et al. 2015; Chernicharo 1997; Hu et al. 2020;
Kaksonen et al. 2006; Kaksonen and Puhakka 2007). This
consortium of microorganisms is responsible for the high ef-
ficiency of wastewater treatment by anaerobic processes
aiming at oxidizing organic matter. In this treatment, macro-
molecules are first hydrolysed by hydrolytic microorganisms
producing soluble species, which will be consumed by other
bacteria. Fermentation will occur through the action of
acidogenic bacteria on the low molecular weight (LMW) spe-
cies produced. The presence of acetogenic bacteria is also
important to maintain the H, pressure in non-inhibitory
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concentrations. Usually, these fermentation products are con-
sumed by methanogenic archaea, but SRB can play the same
role when sulphate is present (Muyzer and Stams 2008).

The oxidation reactions of the LMW species and also hy-
drogen gas are represented by Egs. (1), (2), (3), (4), (5), and
(6). The electrons produced are used in the reduction of either
oxygen (aerobic conditions) or other species such as NO;
SO42', CO,, and Fe*t (anaerobic respiration), and in electro-
chemical systems, the electron transfer is mediated by two
solid electrodes (Dong and Stams 1995; Kokko et al. 2016;
Logan 2009; Lovley 2006; Madigan et al. 2015). In both an-
aerobic reactors and MFC, the degradation of these interme-
diary compounds reduces the Gibbs-free energy of the entire
anaerobic organic matter oxidation process (Kokko et al.
2016).

CH3;COOH + 4 H,0=2 HCO; + 10 H" + 8¢~ 1

(1)
C,Hs0COOH + 6 H,0=3 HCO; + ISH™ +12¢°  (2)
C3H,COOH + 10 H,0=4 HCO;™ + 24 H™ +20e”  (3)
C,HsCOOH + 7 H,0=3 HCO;™ + 17H" + 14e” (4)
CsH 206 + 12 Hy0=26 HCO; ™ + 30 H + 24e” (5)
Hy=2 HY + 2e¢” (6)

SRB and other EAB can only oxidize low molecular
weight substrates such as hydrogen gas, acetate, lactate,
ethanol, and glycose, which are converted to H" and elec-
trons (Das and Mangwani 2010), whereas they lack the
ability to degrade more complex molecules (Lovley
2006). However, the biochemical reactions occurring in
the anodic cell in an MFC are similar to those observed
in anaerobic reactors, as demonstrated by Kumar et al.
(2017b), through molecular biology techniques. These au-
thors found in the anode chamber of an MFC hydrolytic
bacteria such as Aminobacterium sp. and fermentative mi-
croorganisms such as Clostridium sp., which convert
monomers to organic acids according to Egs. (7) and (8).
The authors also detected SRB, such as Desulfovibrio sp.
whose metabolism is represented by Egs. (9), (10), (11),
(12), (13), and (14), and also other exoelectrogenic bacte-
ria, such as Aeromonas taiwanensis which use acetate as in
Eq. (15). In addition, this study still found SOB, such as
Tetrathiobacter kashmirensis and Desulfovibrio
sulfodismutans, which oxidize sulphides to elemental sul-
phur (Eqgs. (16), (17), and (18)). Furthermore,
methanogenesis and denitrification processes compete
with electricity generation, and these biochemical reactions
should be inhibited so that a significant production of elec-
tricity is achieved (Das and Mangwani 2010; Kokko et al.
2018; Kumar et al. 2017a; Madigan et al. 2015). A general
overview of the microbial interactions and metabolic prod-
ucts in an MFC is summarized in Fig. 2.
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AE°
V)
3 CH;CH(OH)COO™ = CH;COO™ +2 058 (7
CH;CH,COO™ + HCO; +H*
CH;CH,COO™ +3 H,0 = CH;COO +HCO; +H*+3 —0.79 (8)
H,
CH;CO0 +S04 2= 2 HCO; +HS™ 049 (9
CH;CH,COO +0.75 SO, 2 = 039  (10)
CH;COO +HCO; +0.75 HS™ +0.25 H*
CH;CH,CH,COO +0.5 SO, 2= 2 CH;COO +0.5 029 (11)
HS +0.5 H

CH;CH(OH)COO™ +0.5 SO, > > 083 (12
CH;COO +HCO; +0.5HS +0.5 H*
4H,+SO0, 2+H" > HS +4 H,0 1.57  (13)
SO, 2+4 HCOO +H" = HS +4 HCO;~ 152 (14)
CH;CO0 +2 Hy0 =2 CO, (o +7 H + 8¢~ 030 (15)
H,S = S°+2 H" +2¢ -0.17 (16)
S28%42¢ 045  (17)
HS = S%+2¢ +H" 0.06 (18)

Therefore, the profile of the microbial species found in the
anodic half-cell will be defined by parameters such as (i) com-
position of the effluent, (ii) electrode material, and (iii) oper-
ating conditions (Kokko et al. 2018).

Although the main biochemical reactions occurring in
the anodic chamber are understood, the syntrophic and
competitive interactions between different microbial
strains should be investigated further on. In addition,
new ways of inhibiting the metabolic pathways compet-
ing with the production of electricity are yet to be dis-
covered (Bratkova et al. 2019).

Some authors report that in the anodic chamber of an
MFC, sulphate ions may compete with the anode as the
final electron acceptor during the metabolism of SRB
(Habermann and Pommer 1991; Kokko et al. 2016).
However, these microorganisms can still contribute to
the generation of electricity by transferring electrons via
the oxidation of organic matter to the electrode to the
detriment of sulphate (Hu et al. 2019; Kang et al.
2014; Loukanov et al. 2019; Miran et al. 2018).
Moreover, in terms of electricity production, sulphate
reduction does not represent the main role of SRB in
the anodic half-cell. Uppermost is the SRB role in (i)
the oxidation of the organic substrate and (ii) contribu-
tion to biofilm formation as exopolysaccharides and fil-
amentous proteins are excreted by them, in addition to
the several electron transfer pathways already proposed
for this group of microorganisms (Bratkova et al. 2019;
Kokko et al. 2018; Lee et al. 2012; Zhao et al. 2008).
Understanding the mechanisms related to electron trans-
fer by SRB to anodes will improve electricity production
in MFC and also expand its applications (Murugan et al.
2018).
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Fig. 2 Microbial consortium in
the anodic chamber of a microbial
fuel cell. 1, hydrolytic bacteria; 2,
fermentative bacteria; 3,
syntrophic bacteria; 4,
exoelectrogens; 5, sulphate-
reducing bacteria (SRB); 6,
sulphide-oxidizing bacteria
(SOB); 7, methanogens; 8, deni-
trifies. Circle indicates reactions
that precede electricity produc-
tion; diamond indicates electricity
production reactions; square indi-
cates reactions that compete with
electricity production (This figure
was devised based on references
Madigan et al. 2015; Kumar et al.
2017b)
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Electron transfer pathways by SRB

Most studies investigating the role of SRB in MFC pro-
posed somewhat simplified mechanisms for the electron
transfer to anodes (Murugan et al. 2018). According to
these mechanisms, SRB are generally able to transfer
electrons throughout four possible pathways (Blazquez
et al. 2019; Kumar et al. 2017b; Miran et al. 2018;
Zhou et al. 2013), which are (i) syntrophic interaction
with SOB; (ii) via either the outer membrane or periplas-
mic cytochromes when there is direct contact of the cell
with the electrode; (iii) synthesis of nanowires, i.e.
electron-conducting pilli produced by bacteria attached
to the electrode surface; and (iv) nanoparticles of metal
sulphides, such as FeS, transfer electrons via the external
membrane of the microbial cells (Chou et al. 2013; Hu
et al. 2019; Kang et al. 2014; Lee et al. 2012; Logan
2009; Miran et al. 2017; Murugan et al. 2018;
Sangcharoen et al. 2015; Santoro et al. 2017; Zhao et al.
2008). Figure 3 describes schematically electron transfers
to the anode in an SRB-containing MFC.

The first pathway proposed for to the production of elec-
tricity in MFCs was the autotrophic oxidation (by SOB) of the
sulphide produced during sulphate reduction (Blazquez et al.
2019; Chou et al. 2013; Kang et al. 2014; Kumar et al. 2017b;
Lee etal. 2012; Sangcharoen et al. 2015; Zhao et al. 2008). An
alternative pathway is abiotic sulphide oxidation to elemental
sulphur (Sangcharoen et al. 2015).

The direct transfer of electrons to an extracellular solid
acceptor (electrode) by SRB is reported in several studies
(Eaktasang et al. 2016; Eaktasang et al. 2013; Hu et al.
2019; Loukanov et al. 2019; Miran et al. 2017; Miran
et al. 2018). Eaktasang et al. (2016) revealed evidences
of electrically conductive nanoscale filaments produced
by SRB in MFC using scanning electron microscopy

(SEM) and atomic force microscopy (AFM) techniques.
Loukanov et al. (2019) reported the formation of nano-
wires in the solid electrode using SEM-EDS techniques,
and Hu et al. (2019) determined the conductive properties
of these nanostructures by AFM. In addition, Kang et al.
(2014) demonstrated that Desulfovibrio desulfuricans is
able to transfer electrons to the anode directly via cyto-
chrome C-type proteins. This was accomplished by pro-
ducing and isolating this recombinant protein and by
using the latter to effectively produce electricity in an
MFC. Fourier-transform infrared spectroscopy (FTIR)
analyses have proved that the microorganisms bind to
the anode surface via hydrogen and peptide bonds. The
latter are bonds between amino groups belonging to the
cytochrome C, located on the outer membrane of the mi-
croorganism, with carboxylic groups present on the
carbon-anode surface (Kang et al. 2014). Therefore, the
direct transfer of electrons from the periplasmatic region
to the extracellular solid acceptor is enabled.

More recently, it was proposed that other conductive me-
tabolites such as iron sulphides (shown in Fig. 3 as Me,S,)
also mediate the transfer of electrons to the anode (Hu et al.
2018; Murugan et al. 2018). Specifically, Murugan et al.
(2018) proposed that the presence of iron in the growth medi-
um doubled the values of the anodic current in electrochemi-
cal studies, which was justified by the contribution of iron
sulphides to the formation of cell aggregates on the electrode
surface. In addition, FeS nanoparticles on the cell surface en-
abled electron transfers through the bacteria outer membrane
to the extracellular medium, which is a more effective and
faster pathway than the diffusion of sulphide ions and their
oxidation on the anode surface (Murugan et al. 2018). It must
be emphasized that sulphides are semi-conductors and may
contribute to transfer of charges in the system (Eaktasang
et al. 2013).
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Fig. 3 Schematic representation
of electron transfer in microbial
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In addition to these studies discussing the electroactive fea-
tures of SRB, several studies covering sulphate removal asso-
ciated to electricity generation in MFC have been published
(Bratkova et al. 2019; Chou et al. 2013; Cooney et al. 1996;
Habermann and Pommer 1991; Kang et al. 2014; Kumar et al.
2017a; Kumar et al. 2019; Lee et al. 2012; Lee et al. 2014;
Liang et al. 2013b; Miran et al. 2017; Niyom et al. 2018;
Sangcharoen et al. 2015; Zhao et al. 2008). Some of these
works are revised next.

Sulphate reduction in microbial fuel cells

The first reports of the use of SRB in MFCs appeared in the
1990s (Habermann and Pommer 1991; Lee et al. 2012).
However, sulphate removal was a controversial hypothesis
because it would compete with the anode surface for the elec-
trons available in the anodic half-cell. A decade later, a new
theory proposed that the sulphide produced during sulphate
reduction was oxidized to elemental sulphur in the anode
(Rabaey et al. 2006). As a consequence of this second theory,
the number of papers addressing sulphate reduction in the
anodic half-cell started to increase, as listed in Table 1.

It can be seen in Table 1 that the current density values are
low. Habermann and Pommer (1991) stated that low currents
and an unstable production of energy would limit the applica-
tion of this technology in an industrial scale. However, the main
advantage of the use of MFCs would be a significant COD
removal associated with the production of electricity, which
was proposed for the first time by these authors, who reported
75% COD removal from treating a landfill leachate in an MFC.

Habermann and Pommer (1991) also verified sulphate re-
duction to sulphide by SRB in the anodic chamber, but, ac-
cording to the authors, the species must have been re-oxidized
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to sulphate, justifying the low sulphate removal observed
when glucose was used as an energy source. However, this
hypothesis is unlikely because elemental sulphur oxidation to
sulphate is kinetically slow in the absence of sulphur-
oxidation bacteria. The highest current density, as compared
with other studies, could have been related to the electrode
impregnation with Ni, Co, and Fe (Cooney et al. 1996) or
even due to the long acclimatization periods, as these experi-
ments took over 5 years to conclude.

A comparison of the power output values of these studies is
challenging, due to the different MFC configurations and the
differences in operating conditions. Logan (2012) states that a
complete description of the layout and operating conditions of
the different MFCs is required to properly assess their
performance.

Carbonaceous materials are the main types of electrodes,
which include carbon felts, cloths, sheets, and bars. Such low-
cost materials are biocompatible, good electrical conductors,
corrosion resistant, besides having a high surface area
(Santoro et al. 2017). Current density values ranged from
0.002 to 0.09 mA cm ~ in studies using activated carbon as
the anode (Table 1). On the other hand, Cooney et al. (1996)
and Zhao et al. (2008) reported significantly higher current
densities (1.7 mA cm 2and 1.3 mA cm_z), respectively, when
platinum impregnated cathodes and lactate (carbon source)
were selected. Thus, the electrode material is the key compo-
nent in the production of electricity in MFCs using
electroactive SRB. Therefore, low-cost and recyclable alter-
natives must be investigated for this parameter in order to
devise a feasible technology (Goglio et al. 2019).

In all the studies listed in Table 1, sulphate and COD re-
movals were greater than 60% irrespective of the carbon
source, suggesting therefore that this is not a limiting factor
in MFC inoculated with SRB. Nevertheless, it must be added
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Table 1  Review of studies with microbial fuel cell for removal of COD and SO{2
Carbon source MEFC type SO, 2 DQO removal Current density Reference
removal (mA cmﬁz)
Glucose Single chamber; cation exclusion membrane (CEM); 8.3% Without 32 (Habermann and
graphite electrodes and metal impregnated anode mention Pommer
1991)
Lactate Single chamber; proton exclusion membrane (Nafion®); 75% Without 1.7 (Cooney et al.
activated carbon anode mention 1996)
Lactate Single chamber; Nafion®; carbon electrodes; cathode with  99% Without 1.3 (Zhao et al.
Pt mention 2008)
Lactate Double chamber; CEM (CMI-7000); carbon electrodes® 84% 24% 0.07 (Lee et al. 2012)
Lactate Double chamber; Nafion®; carbon electrodes® 61% 94% 0.03 (Chou et al.
2013)
Ethanol Electrochemical system of three electrodes (single chamber, 87% 76% 0.05 (Liang et al.
without membrane); cloth activated carbon electrodes 2013b)
Lactate Double chamber; Nafion®; carbon electrodes® 99% Without 0.02 (Lee et al. 2014)
mention
Lactate Double chamber; Nafion®; graphite electrodes® Not evaluate ~ 98% 0.02 (Kang et al.
2014)
Lactate Single chamber; Nafion®; carbon anode and Ag screen 18% 57% 0.02 (Sangcharoen
cathode etal. 2015)
Landfill leachate  Double chamber; Nafion®; graphite electrodes® Without 100% 0,02 (Kumar et al.
+ Lactate mention 2017b)
Glucose Single chamber; Nafion®; carbon electrodes, cathode with  43% 56% 0.003 (Niyom et al.
Pt 2018)
Lactate Double chamber; Nafion®; graphite electrodes and cathode Without Without 0.002 (Kumar et al.
with microalgae mention mention 2019)
Lactate; glucose  Single chamber; (CMI-7000); graphite bar electrodes 93% (lactate); 78% (lactate); 0.09 (lactate);  (Bratkova et al.
90% (glu- 68% (glu- <0.01 (glu- 2019)
cose) cose) cose)
Lactate + Double chamber; Nafion®; graphite electrodes® >95% >85% 0.06 (Miran et al.
simulated 2018)

textile effluent

& Catholyte: ferricyanide + phosphate buffer
® Catholyte: KMnO, + phosphate buffer
¢ Catholyte: phosphate buffer

that both the pH and COD/SO, 2 ratio are key parameters in
the performance of both sulphate and COD removals in an-
aerobic reactors (Bertolino et al. 2012; Bertolino et al. 2015;
Isosaari and Sillanpdi 2017; Kaksonen and Puhakka 2007).
Theoretically, a COD/SO{2 ratio of 0.67 would enable SRB
growth and, consequently, sulphate removal (Isosaari and
Sillanpda 2017). However, quite a few studies have proposed
that COD/SO, 2 ratios around 2 are required if the sulphate
reduction is to improve (Bertolino et al. 2012; Bertolino et al.
2015; Bratkova et al. 2019; Miran et al. 2018). Working with
COD/SO, ? ratios below 2 may justify the results presented in
Table 1, in which the sulphate removal yields were low
(Niyom et al. 2018; Sangcharoen et al. 2015). Similar finding
was observed when the COD removal was also low (Lee et al.
2012; Niyom et al. 2018; Sangcharoen et al. 2015). On the
other hand, a correlation between sulphate and COD removal

with electricity production was not established so far, and this
is one of the challenges to be faced by the scientific
community.

An important parameter in sulphate reduction in MFC is
pH because it defines the concentration of H,S in the reac-
tor, which inhibits sulphate reduction and bacterial growth.
The maximum sulphide S*~ or H,S concentration tolerated
by SRB was proposed to be 230 mg L™ at pH 7 (Cooney
et al. 1996). Liang et al. (2013b) determined the effect of
pH on the performance of a MFC inoculated with SRB and
reported the best results when the pH was in the 6.5-8.5
range.

The configuration of the MFC, single or double chamber,
could not be related to either the production of energy or to
sulphate removal, similarly to what was observed with car-
bonic substrate.
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Recently, studies in which a MFC is used for sulphate
reduction associated to other technological important process
are being published (Eaktasang et al. 2013; Kumar et al. 2019;
Miran et al. 2018; Zhao et al. 2008). For instance, Miran et al.
(2018) reported significant sulphate removal in a MFC
treating azo compounds. Another promising application is to
associate sulphate reduction in the anode to algae growth in
the cathode, as Kumar et al. (2019) observed that increasing
the lipid content in the cathodic half-cell improved the pro-
duction of electricity. This is an interesting proposition be-
cause the algal biomass can be converted subsequently to
biodiesel. Furthermore, an advantage of bio-electrochemical
systems over conventional biological sulphate removal
methods is the oxidation of sulphide ions to elemental sulphur
because the accumulation of sulphide in conventional systems
inhibits SRB growth, in addition to causing corrosion and
malodour issues (Eaktasang et al. 2013; Zhao et al. 2008).

New studies should be focused on the selection of the most
appropriate electrode material, and on the COD/SO, > ratio so
that the maximum COD and SO, 2 removals and also energy
production are achieved.

Conclusions and perspectives

The pathways of electron transfer to a solid electrode by SRB
are well established. These microorganisms transfer electrons
directly to the anode surface either by using cytochrome C-
type periplasmic proteins or by producing conducting nano-
wires. In addition, electron transfer may also occur via active
metabolites such as FeS. Sulphide oxidation by SOB is also
widely regarded as an electricity producing pathway in these
systems. In any case, a microbial consortium is essential for
sulphate and COD removal, as in any anaerobic system, and
also for electricity production.

Regarding the operating conditions: electrode type and
COD/SOy ? ratio are the main parameters controlling sulphate
reduction and the simultaneous production of electricity. The
success of the technology will be achieved when these param-
eters were optimized

Summarizing, the development of the MFC technology
requires a multidisciplinary approach to find alternatives
sources of electrical energy. It symbolizes the confluence of
chemical, physical, and life sciences and is a meeting point for
basic and applied research.
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