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Biochemical responses of a freshwater fish Cirrhinus mrigala
exposed to tris(2-chloroethyl) phosphate (TCEP)
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Abstract
Freshwater fish Cirrhinus mrigala were exposed to tris(2-chloroethyl) phosphate (TCEP) with three different concentrations
(0.04, 0.2, and 1 mg/L) for a period of 21 days. During the study period, thyroid-stimulating hormone (TSH), triiodothyronine
(T3), and thyroxine (T4) levels were significantly (p < 0.05) inhibited. The superoxide dismutase (SOD), catalase (CAT),
glutathione S-transferase (GST), and lipid peroxidation (LPO) levels were increased significantly (p < 0.05) in gills, liver, and
kidney tissues, whereas glutathione (GSH) and glutathione peroxidase (GPx) (except liver tissue) activities were inhibited when
compared to the control group. Likewise, exposure to TCEP significantly (p < 0.05) altered the biochemical (glucose and protein)
and electrolyte (sodium, potassium, and chloride) levels of fish. Light microscopic studies exhibited series of histopathological
anomalies in the gills, liver, and kidney tissues. The present study reveals that TCEP at tested concentrations causes adverse
effects on fish and the studied biomarkers could be used for monitoring the ecotoxicity of organophosphate esters (OPEs).
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Introduction

Flame retardants (FRs) are organic chemicals that are used
extensively in many polymer-based industrial and house-hold
goods to prevent the chances of explosion or to avoid damage
of materials during fire accident. The usage of FRs is increasing
every year (Mags- Novel; News and Events 2015). The major
concern is that FRs do not bind with the polymers; hence, the
possibility of leaching into their environment is higher. FRs
have been detected in environment including human body

fluids up to micrograms or even more; unfortunately, these
chemicals have potential to cause toxicological impacts on liv-
ing organism even at low level (Morgan et al. 2019). Different
groups of FRs such as bromine, chlorine, phosphorus, nitrogen,
boron, and metallic hydroxide-based organic compounds have
been utilized so far. Some of the FRs are listed as persistent
organic pollutants and banned for using further (Sugeng et al.
2017; Hao et al. 2018; Hou et al. 2019). Organophosphate
flame retardants (OPFRs) with logKow ranges from 1.44 to
9.49 and logKoc from 2.21 to 6.87 have been used as substitute
for toxic FRs and additives in combustible products up to 15%
(Cristale et al. 2016; Wolschke et al. 2018; Chokwe and
Okonkwo 2019). During manufacturing, these OPFRs might
leach and reach the environment. The persistence nature of
their chlorine atoms in the environment could be a contributor
for the formation of various hazardous polychlorinated com-
pounds such as dibenzo-p-dioxins, dibenzofurans, and dioxin-
like polychlorinated biphenyls, hexa- and penta-chloroben-
zene, and penta-chlorophenol (Matsukami et al. 2014).

Among OPFRs, tris(2-chloroethyl) phosphate (TCEP) is a
high production volume chemical, which is extensively used
in many polymeric materials such as adhesives, polyvinyl chlo-
ride, textiles, baby products, plastics, electric and electronic
products, and building materials up to 30% (Liu et al. 2016;
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Wolschke et al. 2016). Chemically, TCEP are classified as semi-
volatile organic compounds that are used as an alternative for
toxic polybrominated diphenyl ethers (PBDEs) (Wu et al. 2017;
Chen et al. 2018). The global market demand for these com-
pounds has been increased from 5 lakhs tones (in 2011) to 7
lakhs tones (in 2015) and the demand was expected to rise by
15% every year (van der Veen and de Boer 2012; Wang et al.
2015; Li et al. 2016). Like other FRs, their chemical nature
(volatilization, leaching, and abrasion properties) increases mi-
gration capacity to reach their surrounding environment
(Bollmann et al. 2012; Wei et al. 2015). As an evidence, the
presence of TCEP in dust (330,000 ng/g), human excreta (2.1
ng/L), and breast milk (2.1 ng/g to 8.2 ng/g) was reported world-
wide (Sundkvist et al. 2010; Ding et al. 2015; Zhang et al. 2017;
Zhang et al. 2018). TCEP have low removal efficiency and thus,
they are predominant contaminant among the chlorinated ali-
phatic esters in the aquatic ecosystem. Mean concentration of
TCEP in the wastewater treatment plant in Germanywas ranged
up to 370 ng/L (Reemtsma et al. 2008). Highest concentration of
TCEP (87.4 mg/L) was recorded in raw water from a Japanese
sea-based wastewater disposal site (as mentioned in Du et al.
2019). TCEP have also been detected in various water bodies.
OPFR concentration in water ranged 9.6 to 1549 ng/L, among
them, TCEP accounted for > 69% with a maximum concentra-
tion (268 ng/L) and the most contaminant of Xiaoling River,
China (Wang et al. 2015). TCEP have been detected up to 130
ng/L in River Ruhrare, Germany (Andresen et al. 2004), ranged
up to 130 ng/L in river water of Austria (Martínez-Carballo et al.
2007), and quantified up to 61 ng/L in lake water of Germany
(Regnery and Püttmann 2010). TCEP persist and tend to move
between the environments; thus, it can reach the aquatic organ-
isms (Liu et al. 2016). TCEP occurrence has been reported in
biological sample collected from the Pearl River Delta region,
China (Ma et al. 2013), in fishes from Great Lakes basin, USA
(Guo et al. 2017), and in the collected samples such as crab, blue
mussel, burbot liver, and cod liver from the regions of
Norwegian Arctic (Evens et al. 2009).

TCEP exposure could cause various acute and chronic
toxicological effects on organisms, such as reproductive
system and fertility abnormalities in fishes (Liu et al.
2012; Ta et al. 2014; Arukwe et al. 2018), tumors in the
liver and kidney of rodent (Matthews et al. 1993; Zhang
et al. 2017), increases carcinogenic activity, and provokes
thalamus neuronal necrosis in the mammalian models
(mice and rat) (Moser et al. 2015; Xu et al. 2017). There
are also reports on steroidogenic pathways in juvenile
salmon (Arukwe et al. 2016; Arukwe et al. 2018), DNA
damage, changes in acetylcholinesterase (AChE) activity,
alteration in gene expression and oxidative stress in earth-
worms (Yang et al. 2018a), and genotoxic effects on
zebrafish (Wu et al. 2017) under TCEP treatments. Thus,
TCEP was categorized as emerging contaminants in the
environment (EC 2009; ECH 2009; Liu et al. 2017).

The freshwater system plays a major role in the growth of
many aquatic organisms and is known to be an ultimate sink
for most of the chemicals. Aquatic organism can act as bio-
logical markers to assess the health status of the aquatic envi-
ronment. Among aquatic organism, fish are used widely in
toxicological study because they are highly sensitive to slight
environmental alterations. Toxicity of waterborne chemicals
could be assessed by using fish bioassay. The long-term toxic
effects of waterborne chemicals on fish models could help in
establishing standard criteria for risk assessment and safety for
aquatic environment (Zhong et al. 2018). Assessment of alter-
ations on morphological and physiological biomarkers of fish
reflects the harmful effects of environmental pollutants on
aquatic organisms (Austin 1998). Thus, fish biomarkers col-
lectively provide an insight into the overall health status of the
aquatic organisms and act as an indicator of the environmental
pollution status.

In fish, growth, maturation (Walpita et al. 2009), osmoreg-
ulation (Peter 2011), smoltification (Björnsson et al. 2011),
and larval metamorphosis (Taillebois et al. 2011) are con-
trolled by the thyroid metabolism. Ecological contaminations
also affect the thyroid system and directly block THs (thyroid
hormone) synthesis, TH-blood transport, and TH metabolism
(Boas et al. 2006). Hormonal assay is a valid technique in the
field of toxicology; the hormonal activity is used as an early
warning signal (Folmar 1993; Hontela et al. 1993). Moreover,
responses of thyroid hormones have been used in toxicologi-
cal research to understand the growth and metabolism of fish
under stress conditions. Previous study indicates that aquatic
pollutants alter the level of thyroid hormones, which results in
impairment of development and function of thyroid hormones
(He et al. 2012; Katuli et al. 2014; Shirdel et al. 2016). FR
once reaches the digestive system, it readily enters the circu-
latory system and accumulates at tissues and acts as potential
thyroid hormone disruptors (Zhang et al. 2016; Curran et al.
2017). Generally, organophosphorus esters (OPEs) cause dis-
turbances in thyroid hormone signaling and endocrine disrup-
tion action on organisms (Kojima et al. 2013; Greaves and
Letcher 2017). However, disruptions in thyroid function by
TCEP exposure on fish are not reported.

During metabolic reaction, body produces free radicals
that could cause harmful effects. The body itself generates
antioxidant to balance the free radicals. Thus, antioxidant
enzyme activities are considered an important tool in tox-
icity studies as their levels reflect the toxicity, concentra-
tion, and exposure duration (Pamanji et al. 2016).
Numerous studies explain that the antioxidant enzymes
such as superoxide dismutase (SOD), catalase (CAT), and
glutathione (GSH)-dependent enzymes (e.g., glutathione
S-transferases (GST), glutathione reductase (GR), glutathi-
one peroxidase (GSH-Px), and lipid peroxidation (LPO))
are considered as a valuable biomarker to evaluate
chemical-related stress in fishes. Their imbalance will
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result in tissue damage and alteration in normal homeosta-
sis in an organism (Poopal et al. 2017; Sahu et al. 2018).

Histopathology is an important tool for studying the effects
of waterborne chemicals in major organs such as gill, liver,
and kidney that are responsible for respiration, metabolism,
and excretion in fishes, respectively (Nagarjuna and Mohan
2017; Ramesh et al. 2018). Histological anomalies are indica-
tor for the loss of function (Fanta et al. 2003) and act as a
signal of health status of an organism (Hinton and Lauren
1990).

The plasma biomarkers (e.g., glucose, proteins) are
widely studied to understand the effects of xenobiotic
exposures on organisms. Plasma biomarkers give the
relevant data in determining the extent of cell, tissues,
and organ damages and provide an early warning signal
to animals in concern (Canli and Canli 2015). In addi-
tion to the above biomarkers, the measure of ionic
levels such as potassium (K+), chloride (Cl−), and sodi-
um (Na+) in the blood of aquatic organisms also aids in
monitoring the polluted aquatic ecosystem (Mayer et al.
1992; Sathya et al. 2012; Hemalatha et al. 2016).

Previous literatures report the occurrence, accumulation,
and distribution of TCEP in various aquatic organisms (Hou
et al. 2017; Arukwe et al. 2018). However, reports on toxico-
logical responses such as primary stress indicator (hormones),
oxidative stress, pathological structures, blood biomarkers
(glucose and protein), and electrolyte levels with respect to
FRs especially on TCEP exposures on freshwater fish are
limited. Therefore, this study was undertaken to examine the
responses of various biomarkers in a freshwater fishCirrhinus
mrigala exposed (chronic) to different concentrations (0.04,
0.2, and 1 mg/L) of TCEP. The findings of the present study
might provide better knowledge on TCEP toxicity on aquatic
organisms and contribute to a greater understanding of overall
organophosphorus flame retardant toxicity.

Materials and methods

All the laboratory analyses and fish maintenance were per-
formed by following the guidelines provided by Committee
for the Purpose of Control and Supervision of Experiments on
Animals (CPCSEA).

Fish

Freshwater fish (C. mrigala) with an average length 7.0 ±
0.1 cm and weight 12 ± 0.1 g were obtained from Aliyar fish
farm, Pollachi, Tamil Nadu, India, and housed at Toxicology
Lab, Department of Zoology, Bharathiar University,
Coimbatore, Tamil Nadu, India. The fingerlings were adapted
to laboratory conditions for 2 weeks in a tank containing
dechlorinated tap water with temperature 26 ± 0.1 °C, pH

7.2, dissolved oxygen 6.6 ± 0.02 mg/L, and 12:12-h photope-
riods and used as main stock. During the acclimatization pe-
riods, rice bran and groundnut oil cakes were fed (once in a
day) in the form of dough. The water in the tank was renewed
every 24 h to make sure the tank is free from fecal matter and
enough oxygen is supplied to fish.

Test chemical

Tris(2-chloroethyl) phosphate was obtained from Sigma-
Aldrich (purity 97%, CAS no. 115-96-8). Stock solution
was prepared by dissolving 1 g/L of tris(2-chloroethyl) phos-
phate in Milli-Q water. Fresh stock solutions were used.

Experimental design

For toxicity study, healthy fingerlings were collected
randomly from the main stock and kept in a separate
rectangular glass aquarium (120 × 80 × 40 cm) and
used as test stock. The fish in test stock were not fed
for 24 h prior to the commencement of experiment. For
the study, three different concentrations of TCEP (treat-
ment-I, 0.04; treatment-II, 0.2; treatment-III, 1 mg/L)
were selected based on the previous literature (Arukwe
et al. 2016). A 0.04 mg/L of TCEP was mixed in a
glass aquarium containing 90 L of water and 40 fish.
Similar setup was made for 0.2 and 1 mg/L concentra-
tions of TCEP and a common control (without adding
TCEP) were maintained. During the exposure periods,
fingerlings were fed ad libitum. Debris (uneaten feed
and fecal matters) was removed and water in the aquar-
ium was renewed daily by removing three-fourth of the
water. Three replicates were maintained for control and
TCEP-treated groups with similar setup.

Sampling frequency and collection of blood and
tissue samples

Samplings were done at every 7 days until 21 days. At the
end of every stipulated period, 30 fish were euthanized
respectively from each group, and blood was collected
by cardiac puncture, then centrifuged at 10,000 rpm for
10 min and the plasma was used for the hormonal assay
(thyroid-stimulating hormone [TSH], triiodothyronine
[T3], and thyroxine [T4]), electrolytes (Na+, K+, and
Cl−), and biochemical (glucose and protein) parameters.
Simultaneously, tissues such as gills, liver, and kidney
were homogenized (Teflon-coated mechanical tissue
homogenizer) with phosphate buffer (pH 7.4) in ice cold
conditions, then centrifuged at 5000 rpm for 20 min and
the supernatant was used for the analysis of antioxidant
enzyme activity. A portion of the collected tissues were
fixed in Blouin’s fluid for histopathological studies.
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Thyroid hormone assay

TSH, T3, and T4 levels in control and TCEP-treated finger-
lings were measured by following the manual provided by the
TOSOH commercial ELISA kits (product code: 8025-300D)
(Hoseini et al. 2014). The optical density (OD) of the samples
was measured by using an automatic ELISA plate analyzer
(Avecina Touch Plate Reader, Iran) at 450 nm and expressed
as nanograms per milliliter (ng/mL).

Antioxidants assay (gills, liver, and kidney)

SOD activity in gills, liver, and kidney of the fish was
determined by the method of Marklund and Marklund (1974)
and the activity was expressed as U/mg protein. CAT activity
was assayed following the method of Aebi (1984) and the ac-
tivity was expressed as μmol H2O2 utilized/min/mg protein.
GST activity was determined by the method of Habig et al.
(1974) and the enzyme activity was expressed as μmol GSH-
cDNB conjugate formed/min/mg protein. GPx activity was
measured by following the method described in Rotruck et al.
(1973) and the enzyme activity was expressed as μmol GSH
oxidized/min/mg protein. The reduced glutathione levels were
determined using the modified method of Ellman (1959) and
expressed as micrograms of GSH formed/min/mg protein. LPO
was estimated through thiobarbituric acid (TBA) assay follow-
ing the method of Devasagayam and Tarachand (1987) using
malondialdehyde (MDA) in the samples. LPO level was
expressed as moles of MDA formed/mg protein. All the assays
were carried out using UV-visible spectrophotometer (Jasco,
V-530).

Glucose and protein assay

Glucose level in control and TCEP-treated fingerlings was
estimated using the O-toluidine method of Cooper and Mc
Daniel (1970) and their OD measured against the blank at
630 nm within 30 min using a UV spectrophotometer and
expressed as mg/100 mL. Plasma protein was estimated fol-
lowing the method of Lowry et al. (1951). The OD was read
after 15 min at 720 nm using a UV spectrophotometer. A
standard was also prepared, and the protein level was
expressed as micrograms per milliliter.

Electrolytes assay

Na+, K+, and Cl− levels were estimated using standard kit
manufactured from Coral Clinical systems and supplied by
Tulip Diagnostics (P) Limited, Goa, India. Sodium was esti-
mated using the method ofMaruna (1958) and Trinder (1951).
Potassium was estimated following the method of Terri and
Sesin (1958) and Sunderman and Sunderman (1959).
Chloride was estimated by the modified method of Schales

and Schales (1941) and Schoenfeld and Lewellen (1964). The
levels of Na+, K+, and Cl− in plasma of the fish were expressed
as millimoles per liter.

Histopathological analysis

Dissected tissues (gills, liver, and kidney) were fixed in
Blouin’s fluid for 2 days, dehydrated with graded ethanol,
infiltrated using xylene, embedded in paraffin wax, then sec-
tioned and mounted on clean glass slides, and ended with
hematoxylin and eosin staining. The tissues were examined
using light microscope with image analysis system connected
to a computer.

Statistical analysis

The results of the study are interpreted as mean ± S.E. The
significance of the samples between control and TCEP treat-
ments was evaluated by one-way ANOVA (analysis of vari-
ance) followed by Duncan multiple range test (DMRT).
Different alphabets represent significance levels at p < 0.05.

Results

When fingerlings exposed to TCEP at different concentra-
tions, behavior changes such as fast swimming, movement
around the wall of the tank, and inability to feed were ob-
served and finally settled at the bottom. In the control group,
no such behavior changes were noticed. No alteration in the
schooling behavior was observed (direct observation). Thus, it
reveals that fingerlings used in our study are healthy.

Effects of TCEP on thyroid hormones

Plasma thyroid hormone levels in the fish exposed to TCEP
concentrations were illustrated in Fig. 1a–c (TSH (a), T4 (b),
T3 (c)). When compared to the control group, TSH, T4, and
T3 levels were found to be decreased significantly (p < 0.05)
in fish exposed to TCEP treatments. Among the treatment
groups, thyroid hormone was declined higher at treatment III
(1 mg/L). In 0.04 and 0.2 mg/L, the changes in TSH, T4, and
T3 levels were found to be decreased with less significance
than the control group. A steady decline was noticed in the
thyroid hormone levels; among the thyroid hormones, a
higher decline was observed in T3.

Effects of TCEP on gills, liver, and kidney antioxidant
parameters

SOD (Fig. 2a–c) and CAT (Fig. 3a–c) activity in gills, liver,
and kidney tissues was found to be increased significantly (p <
0.05). A steady increase in the SOD and CAT activity was
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observed in TCEP treatment-III group. Among the studied
tissues, SOD and CAT activity was found higher in liver tis-
sue at the end TCEP (treatment-III) exposure periods. The
activity of GPx (Fig. 4a–c) in gills and kidney tissues was
declined gradually, whereas in the liver tissue, the activity
was found to be increased constantly when compared to the
control group. The alterations were statically significant (p <
0.05). GSH activity in studied tissues were inhibited signifi-
cantly (p < 0.05) in all the TCEP treatments (Fig. 5a–c).
Among the tissues, liver tissue was affected higher. The
GST activity (Fig. 6a–c) and LPO level (Fig. 7a–c) were ele-
vated significantly (p < 0.05) throughout the TCEP exposure
periods, showing a gradual increase towards the end of the
study periods in the treatment-III group. Overall, a
concentration-based effect was noticed in TCEP treatment
groups on antioxidant parameters.

Effects of TCEP on biochemical parameters

Glucose and protein levels in plasma of fish exposed to TCEP
treatments were significantly (p < 0.05) altered during the

study period. TCEP toxicity resulted in hyperglycemic condi-
tion in C. mrigala (Fig. 8a). Among the TCEP treatments,
higher level of plasma glucose was measured in treatment
III. Protein level in plasma of TCEP-treated fish was found
to be declined significantly (p < 0.05) throughout the study
period when compared to the control group (Fig. 8b). The
biochemical parameters also reveal that TCEP has duration
and concentration-dependent effects on fish.

Effects of TCEP on plasma electrolytes

Plasma electrolyte levels of fish exposed to different
concentrations of TCEP were illustrated in Fig. 9 (a,
Na+; b, K+; c, Cl−). TCEP could influence the electro-
lyte levels in plasma, and the alterations were found
statistically significant (p < 0.05). In higher concentra-
tion (1 mg/L), maximum decrease in plasma Na+ and
Cl− was observed when compared to the control group,
whereas plasma K+ level in TCEP-exposed fish was
found to be increased. Maximum alterations in plasma
electrolytes were noticed in TCEP treatment-III group.
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Fig. 1 Plasma TSH (a), T4 (b), and T3 (c) level ofCirrhinus mrigala under long-term exposure periods. TCEP treatment I (0.04 mg/L), treatment II (0.2
mg/L), and treatment III (1 mg/L). Different letters on the bars indicate significant difference at p < 0.05
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In this study, TCEP induced a concentration-based ef-
fect on electrolyte levels.

Histopathology examination

No visible structural abnormalities (gills, liver, and kidney
tissues) were examined in the control group (Figs. 10a, 11a,
and 12a). TCEP exposure caused epithelial lifting, hyperpla-
sia, degeneration of cells in primary lamellae, lamellar fusion,
mucus accumulation, and vacuolation in fish gills tissue (Fig.
10b–d). In liver tissue, pyknotic nuclei, fat deposition, necro-
sis, increased sinusoids vessels, congestion, and vacuolation
were noticed in TCEP treatment groups (Fig. 11b–d). TCEP
toxicity also caused hypertrophy in epithelial cells of renal
tubules, shrinkage of glomeruli, expansion of Bowman’s cap-
sule, and tubular degeneration in kidney tissues (Fig. 12b–d).
TCEP toxic effects on gills, liver, and kidney tissue morphol-
ogy were in the series of treatment I < treatment II < treatment
III. More structural anomalies related to TCEP toxicity were
examined in gills and liver tissues than in kidney tissue
(Tables 1, 2, and 3). TCEP caused concentration-based struc-
tural alterations in selected tissues of C. mrigala.

Discussion

Due to the higher and frequent utilization of TCEP, it occurs
ubiquitously in the water bodies. The reported concentration
of TCEP in the water system (including wastewater system)
ranges several tens of micrograms per liter and a few
thousands of nanograms per liter. Arukwe et al. (2016) report-
ed that TCEP have potential to cause toxic effects on fish at
mg/L levels (0.04, 0.2, and 1 mg/L). TCEP could also cause
alterations on steroidogenesis or estrogen metabolism in
H295R cells at different dose (0.001–10 mg/L) (as
mentioned in Du et al. 2019). The data on effects of TCEP
on aquatic organism are lacking (Fisk et al. 2003; Cristale
et al. 2013). Thus, toxicological profiles of TCEP on aquatic
organisms are much warranted (Jin et al. 2013). Therefore, to
increase the availability of eco-toxicity data of TCEP, we se-
lected different concentrations (0.04, 0.2, and 1 mg/L) and
examined the potential responses of hormonal, antioxidants,
biochemical, electrolyte, and histological effects on fish.

The change in the level of thyroid hormones indicates the
primary stress responses of the organism exposed to toxicants.
In the present study, TCEP have potential to reduce the TSH,
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Fig. 2 SOD activity in the gills (a), liver (b), and kidney (c) tissues ofCirrhinus mrigala under long-term exposure periods. TCEP treatment I (0.04 mg/
L), treatment II (0.2 mg/L), and treatment III (1 mg/L). Different letters on the bars indicate significant difference at p < 0.05
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T3, and T4 levels in the plasma of the fish. Generally, thyroid
hormone homoeostasis is maintained through TSH and nega-
tive feedback mechanism. The secretion and release of TSH
stimulated in the hypothalamus, and TSH stimulates T4 secre-
tion in the thyroid. T4 converted to form T3 a biologically
active form (Sabir et al. 2019). Generally, the level of T4 is
higher than that of T3 in the blood. The thyroid hormone
levels were declined steadily as exposure period increases.
This indicates that TSH synthesis was inhibited under long-
term TCEP exposure either interfering directly on the struc-
tural changes in the thyroid gland, or target on the metabolism,
or due to binding with protein molecules in the thyroid hor-
mone. Inhibition in the TSH synthesis could reduce the pro-
duction, conversion, and release of T4 and T3 in the plasma.
Decrease in TSH levels in the blood could be a result of neg-
ative regulation at thyroidal axis or disturbance in the synthe-
sis and release of hormone from the thyrotrope cells of pitui-
tary (Raibeemol and Chitra 2020). The activity of UDP-
glucuronosyl transferase that are responsible for
glucuronidation and clearance of thyroid hormone (T4) could
decrease level of thyroid hormone (T4) (Movahedinia et al.
2018). Flame retardants are known to form glucuronide me-
tabolite through UDP-glucuronosyl transferases (Eng et al.

2019). Flame retardants are potential to cause changes in dio
(deiodinase) gene transcription that an important enzyme for
circulating and peripheral TH levels in the fish (Liu et al.
2019). Dio2 enzyme catalyzes T4 to T3 (Xu et al. 2018).
Thus, the disturbance in conversion of T4 to T3 might reduce
the T3 levels in the plasma of TCEP-treated groups. A signif-
icant decrease in thyroid hormone levels has been reported in
Danio rerio exposed to tris(1,3-dichloro-2-propyl)phosphate
(Xu et al. 2015). Likewise, a significant decrease in thyroxine
(T4) level was reported in zebrafish exposed to tris(1,3-
dichloro-2-propyl)phosphate (TDCIPP) and tris(1,3-
dichloroisopropyl)phosphate (TDCPP) (Wang et al. 2013;
Kim et al. 2015) which indicates these compounds might be
potential endocrine disruptors (Zhang et al. 2016). TDCIPP
may alter the gene transcriptions which are responsible for the
production of growth hormones (Wang et al. 2013). Tris(2-
butoxyethyl)phosphate (TBOEP) altered the whole body T3
and T4 concentrations in zebrafish larvae indicating the dis-
ruptive action of the TBOEP (Liu et al. 2017). FRs could
displace thyroid hormone competitively from a thyroid-
binding protein, transthyretin. The displacement of thyroid
hormone from its binding site could result in metabolism
and elimination of hormone which results in decline of thyroid
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hormone for circulation (Osimitz et al. 2016). From our result,
we conclude that FRs could cause alterations in thyroid hor-
mones that might affect growth and metabolism of an organ-
ism. The alterations of these hormones indicate the disruptive
action of TCEP. However, the mode of action on thyroid
function or the endocrine disruption potential of TCEP on
aquatic organisms needs to be studied (Wu et al. 2017).

Detoxification, excretion, and balanced antioxidants could
strengthen immune system to adapt aquatic organisms to dif-
ferent types of waterborne contaminants (Sahu et al. 2018).
Generation of reactive oxygen species associates with many
health defects including neurological defects, and FRs known
to generate reactive oxygen species (Jarosiewicz et al. 2019).
Any imbalance occurred between free radicals and antioxi-
dants results in oxidative stress in an organism (Tabassum
et al. 2016; Poopal et al. 2017). Among antioxidants, SOD,
CAT, and GPx act as a first-line defense system in converting
free radicals to hydrogen peroxide, molecular oxygen, and
water. Their imbalance could be an indication of oxidative
stress caused by stressors in an organism (Yan et al. 2017;
Yonar et al. 2014). In the present study, the increased activity
of SOD and CAT in gills, liver, and kidney tissues of fish
indicates that the body triggered its defense mechanism

against the production of free radicals during the detoxifica-
tion of TCEP.

Arukwe et al. reported that bis(2-chloroethyl)carboxymethyl-
phosphate, bis(2-chloroethyl)hydrogen-phosphate, and bis(2-
chloroethyl)-2-hydro-xyethyl-phosphate glucuronides were the
urinary metabolites of TCEP involved in the metabolic path-
ways such as oxidative and hydrolytic reactions, as well as
glucuronidation through phase-II metabolism (Arukwe et al.
2018). The increase in CAT activity indicates the role of CAT
in elimination of H2O2 produced by SOD (Guptha et al. 2016).
In contrast to the present study, failure of antioxidant system has
been reported in fish exposed to brominated flame retardant
(BFR) (Feng et al. 2013) indicating that the capacity of mitigat-
ing and scavenging of free radicals by the antioxidants in the
organism is governed by the toxic strength of the chemical.

GPx metabolizes H2O2 and reduces fatty acid perox-
ides. This enzyme can act on a variety of organic perox-
ides and catalyzes the oxidation of reduced glutathione to
glutathione disulfide (Di Giullio and Hinton 2008;
Plhalova et al. 2014). In our study, the activity of GPx
in gills and kidney tissues of TCEP-exposed fish showed
a significant decrease, whereas it was found to be in-
creased in the liver tissue. The significant increase in
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GPx activity in the liver tissue of fish indicates the acti-
vation of defense mechanism or an adaptation of fish to
respond the TCEP-related ROS production (John et al.
2001; Li et al. 2009, 2010). In contrast, the decrease in
GPx activity in gill and kidney tissues indicates reduced
capacity to scavenge hydrogen peroxide produced in these
organ/tissues (Melekh et al. 2017). Interference of TCEP
on the synthesis of GPx in tissues might be another reason
for the disruption of the enzyme activity. Furthermore,
differences in the response of GPx activity in gills, liver,
and kidney tissues might result from different mechanisms
of TCEP and H2O2 and distribution of enzymes in tissue/
organs as suggested by Tkachenko et al. (2014).

GSH is a major antioxidant that has a critical role as a co-
substrate of GST in phase II biotransformation. It involves in
reactive intermediates and free oxide detoxification mecha-
nism (Samanta et al. 2014). The decrease in GSH activity in
tissues is an indication of counteract to oxidative stress caused
by TCEP, which is due to the imbalance of free radicals and
antioxidants resulting in reduction of GSH in fish (Yonar et al.
2014). It has been reported that BFRs could induce oxidative

stress, which results in increased utilization of GSH for the
detoxification processes (Feng et al. 2013). GST could in-
volve in the protective mechanism against many chemical
substances (Bastos et al. 2013). In the present study, the in-
creased activity of GST in tissues of fish is probably due to the
action of defensive mechanism against the TCEP toxicity. The
increase in the process of biotransformation of chemicals
could activate GST in an organism (Modesto and Martinez
2010). The activity of GSH lays antiparallel to GST, i.e., in-
hibition of GSH results due to their exhaustion in the phase II
biotransformation process with an elevation of GST activity
(Kaur and Jindal 2017). Our results are in strong agreement
with the authors’ statement.

LPO levels could be used as an indication of health status
of cell and tissues. Imbalanced antioxidant and free radical
could result in alteration of LPO level (Pan et al. 2006). In
the present study, we found elevation of LPO level in tissues
of TCEP-exposed fish. The elevation of LPO level is an evi-
dence of improper functioning of cells due to oxidative stress
caused by TCEP (Monteiro et al. 2006; Feng et al. 2013).
Likewise, tris(2-butoxyethyl)phosphate (TBOEP) at 2500
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μg/L concentration increased the MDA level and resulted ox-
idative stress in zebrafish (Jiang et al. 2018). Generally, lipid
peroxidation formation will be prevented by SOD activity. In
our study, both LPO and SOD activities are elevated; this
reveals that antioxidants are intolerable to TCEP-mediated
free radicals. FRs could generate higher intercellular reactive
oxygen species and damage DNA as concentration increases
(Yuan et al. 2019). This reveals that TCEP have potential to
generate free radicals and act on lipid profiles.

Glucose level is frequently used as stress response bio-
marker in toxicology. Fish exposed to TCEP showed hyper-
glycemic response. Generally, this situation occurs as a result
of high energy demand in an organism. TCEP showed in-
creased glucose level at higher concentration and neurological
metabolic disorders on experimental mammalian model
(Yang et al. 2018b). Thus, the hyperglycemic condition in
the present study reveals that the fish utilize glucose to com-
pensate stress caused due to TCEP toxicity. Proteins have
significant role in many metabolic actions in the body and
their concentrations are widely used as health indicator in
the field of toxicology. Proteins are utilized as major among

the energy sources under stress conditions (Woo et al. 2018).
Hypoproteinemia in the TCEP-exposed fish indicates the ca-
tabolism of protein to meet the energy demand generated dur-
ing elimination or detoxification process. The protein might
act as a compensatory action for inefficiency of immune ac-
tion to tolerate TCEP-mediated stress. Moreover, TCEP may
influence citrate cycle by elevating citrate and 2-oxoglutarate
which result in energy deficiency (Deng et al. 2018); this
could result in gluconeogenesis process, which ultimately al-
ter biochemical (glucose and protein) levels to meet out the
energy demand caused in the fish exposed to TCEP.

Electrolyte imbalances are important biomarkers that have
beenwidely studied in toxicity assessment (Ajima et al. 2018).
Levels of Na+, K+, and Cl− in circulatory system are widely
used to assess the health conditions of aquatic organisms
(Poopal et al. 2013; Hemalatha et al. 2016). Na+ and Cl− level
in the plasma of TCEP-exposed fish was declined. The K+

level was found higher in TCEP-treated fish. In the present
study, accumulation of TCEP in gills and liver may lead to
osmoregulatory failure which results in alterations of plasma
ions. Accumulation of TCEP has been reported in fish species
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such as Silurus glanis and Atlantic salmon (Jakimska et al.
2013; Arukwe et al. 2018). The alteration of electrolytes in
living organisms might be due to dehydration and damage in
liver or kidney tissues (Curran et al. 2017).

Structural changes in the tissues are widely used as
an ideal biomarker in toxicology. Adverse changes that
occurred in biochemical and physiological parameters

could cause histological alterations in tissues of fish
(Arellano et al. 2001; Fanta et al. 2003). Most of lipo-
philic chemical substances tend to cross the cell mem-
brane actively and accumulate in the cell. This could
affect the amino acid, fatty acid, and lipid metabolism,
which are known to be the major components in energy
regulation for normal homeostasis and function of cells.
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Fig. 7 LPO activity in the gills (a), liver (b), and kidney (c) tissues of Cirrhinus mrigala under long-term exposure periods. TCEP treatment I (0.04 mg/
L), treatment II (0.2 mg/L), and treatment III (1 mg/L). Different letters on the bars indicate significant difference at p < 0.05
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Gill is the primary organ in contact with waterborne
contaminants. It also plays a vital role in osmoregula-
tion (Marigoudar et al. 2018). A series of structural
anomalies such as epithelial lifting (EL), hyperplasia
(H), mucus accumulation (M), and vacuolation (V) were
observed in the gills of TCEP-treated fish. Since TCEP
is a lipophilic substance, it could cross the epithelial
membrane and altered the biochemical component in
the layer and that could be the reason for occurring of
epithelial lifting and degeneration of cells in primary
lamellae. Fusion of cells could generate more free
space; thus, vacuolation occurred in TCEP-treated fish.
In aquatic animals, OPFRs usually absorbed from the
water by gill and tend to accumulate in gill (Saeger
et al. 1979; Hou et al. 2016).

Liver is a second target organ for most of the com-
pounds, where the biotransformation and detoxification
take place. In the present study, TCEP included in-
creased in fat deposits, pyknotic nuclei, vacuolization,
necrosis, enlarged sinusoidal vessels, and congestion.
Similarly, structural changes in the liver tissues of

Danio rerio exposed to triphenyl phosphate (Du et al.
2016). Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP)
concentration caused structural alterations in liver such
as vacuolization and apoptosis in zebrafish (Liu et al.
2016). The ability of liver to degrade various toxicants
results in subsequent structural damage of liver tissues
(Bruslé and Anadon 1996; Tabassum et al. 2016). And
also, kidney is a major excretory organ where protein
reabsorption occurs, where the compounds either parent
or metabolites reach the kidney. In the present study,
TCEP induced changes in kidney such as hypertrophy
in the epithelial cells of renal tubes (HER), shrinkage of
glomeruli (SG), expansion of Bowman’s capsule (EBC),
and degenerated tubular epithelium (TD). TCEP at high
concentration (10 mg/kg) damage the structure and
function of the intestinal epidermal cells, which may
lead to multiple biochemical changes in earthworm
(Yang et al. 2018a). Several structural anomalies were
noted in Xenopus tropicalis embryos upon exposure to
FRs (Zhang et al. 2016). Changes in LPO activity ob-
served in this study reveal the action of free radicals on
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Fig. 10 Histological sections of
gills of C. mrigala. a) control
group, with a normal gill filament
(GF), gill lamella (GL), cartilage
(CA), pillar cells (P), erythrocytes
(W). A series of morphological
anomalies (epithelial lifting (EL),
hyperplasia (H), degeneration of
cells in primary lamellae (DP),
fusion (F), mucous accumulation
(M), Vacuolation (V)) were
noticed in TCEP treatment
(treatment I (b), treatment II (c),
and treatment III (d)) groups. (HE
× 40)

Fig. 11 Histological sections of
liver of C. mrigala. a) control
group, with a normal hepatocyte
(HN), and nucleus (N). A series of
morphological anomalies
(pyknotic nuclei (PN), fat
deposition (FD), necrosis (N),
increased sinusoids vessels (ISS),
congestion (C) and vacuolation
(V)) were noticed in TCEP treat-
ment (treatment I (b), treatment II
(c), and treatment III (d)) groups.
(HE × 40)
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the lipid membrane of the cell, which might result in a
series of histological anomalies in TCEP-treated fish.
Thus, ant ioxidants, hormonal, and biochemical

alterations observed in the present study might cause
some morphological changes in the tissues of TCEP-
treated fish.

Fig. 12 Histological sections of
kidney of C. mrigala. a) control
group, with a normal Bowman’s
capsule (BC), renal tubule (RT),
and glomerulus (EC). A series of
morphological
anomalies (hypertrophied
epithelial cells of renal tubes
(HER), shrinkage of glomeruli
(SG), expansion of Bowman’s
capsule (EBC), degenerated
tubular epithelium (TD)) were
noticed in TCEP treatment
(treatment I (b), treatment II (c),
and treatment III (d)) groups. (HE
× 40)

Table 1 Morphological analysis
of gill tissues of C. mrigala
exposed to different
concentrations (0.04, 0.2, and 1
mg/L) of TCEP. The
morphological anomalies were
represented in symbol based on
their severity

Organ Pathology Control Treatment I Treatment II Treatment III

Gills Epithelial lifting − + ++ +++

Hyperplasia − + ++ +++

Degeneration of cells in primary lamellae − + ++ +++

Lamellar fusion − + ++ +++

Mucus accumulation − + ++ +++

Vacuolation − + ++ +++

(−) no anomalies examined, (+) anomalies examined

Table 2 Morphological analysis
of liver tissues of C. mrigala
exposed to different
concentrations (0.04, 0.2, and 1
mg/L) of TCEP. The
morphological anomalies were
represented in symbol based on
their severity

Organ Pathology Control Treatment I Treatment II Treatment III

Liver Pyknotic nuclei − + ++ +++

Fat deposition − + ++ +++

Necrosis − + ++ +++

Increased sinusoids − + ++ +++

Vessels

Congestion − + ++ +++

Vacuolation − + ++ +++

(−) no anomalies examined, (+) anomalies examined
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Conclusion

The findings of the present investigation indicate that the
TCEP at tested concentrations induced endocrine disruption
especially in the thyroid hormone levels and caused oxidative
stress in fish. Furthermore, the structural damage mediated by
TCEP resulted in high energy demand that ultimately in-
creased the energy metabolism in fish. The alterations of these
parameters can be effectively used to monitor the impact of
FRs on aquatic environment. The data of the present study
could be used as a toxicity data for other organophosphorus
flame retardants on fishes. From the result, we conclude that
the levels of FRs in aquatic environment should be monitored.
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