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Abstract
This exploratory study extends the literature on the convergence of per capita carbon dioxide emissions in analyzing stochastic
and club convergence within a panel framework for developing countries. The results from Pesaran (Journal of Applied
Econometrics, 22(2), 265-312, 2007) and Bai and Carrion-i-Silvestre (Review of Economic Studies, 76(2), 471-501, 2009)
panel unit root tests with allowance for cross-sectional dependence confirm stochastic convergence for low-income, lower
middle-income, and combined country panels. Further analysis using the nonlinear time-varying factor model of Phillips and
Sul (Econometrica, 75(6), 1771-1855, 2007; Journal of Applied Econometrics, 24(7), 1153-1185, 2009) to test for convergence
reveals the emergence of multiple convergence clubs within each of the three country panels examined. We observe geographic
proximity among many of the countries within the respective convergence clubs.
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Introduction

While renewable energy sources and conservation mea-
sures have grown in importance as policymakers attempt
to mitigate the global impact of greenhouse gas emissions
on climate change and the environment, fossil fuels con-
tinue to serve as the primary energy source for a vast
majority of countries. With carbon dioxide emissions, a
prominent component of greenhouse gas emissions, the

debate continues in regard to the appropriate mitigation
and emission allocation strategies, as reflected in the
Framework Convention on Climate Change in 1992, the
Kyoto Protocol in 1997, and the Paris agreement in
2015.1 Indeed, the generation of carbon dioxide emissions
is directly tied to the country’s energy mix, level of eco-
nomic development, economic structure, natural resource
endowments, among other factors, and as such, vary
greatly across developed and developing countries. This
is a relevant point in the discussions related to the emis-
sion allocation approaches that focus on the distribution
of per capita emissions. Specifically, countries with lower
per capita emissions (i.e., developing countries) may very
well expect countries with higher per capita emissions
(i.e., developed countries) to shoulder more of the burden
for the mitigation efforts and the reduction in emissions
(Aldy 2006). This issue of fairness and equity associated
with emission allocation strategies on a per capita basis
becomes less of a concern if there is convergence in per

1 See Zhou and Wang (2016) for a review of carbon dioxide emissions allo-
cation approaches.
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capita emissions. On the other hand, if per capita emis-
sions fail to converge, then a per capita emissions allo-
cation scheme would trigger the potential for the relo-
cation of emission-intensive industries and resource
transfers through international trading of carbon
allowances.2

The distinction in the convergence behavior between
developed and developing is relevant in relation to the
environmental Kuznets curve (EKC). The EKC hypoth-
esis postulates that in the early stages of economic de-
velopment and growth, environmental quality diminishes
as income increases. However, at some threshold level
of income, the demand for environmental quality in-
creases whereby emissions decrease. Another facet
influencing a country’s emissions profile is the adoption
of clean energy technologies across industries with dif-
fering pollution intensities and the substitution toward
more environmentally friendly inputs in the production
process (Apergis and Payne 2020). Moreover, the green
Solow model set forth by Brock and Taylor (2010)
demonstrates that technological progress which enhances
production efficiencies and abatement is a fundamental
consideration in the relationship between the EKC hy-
pothesis and the convergence of emissions.

In this context, the literature on the issue of carbon dioxide
emissions convergence has been extensively explored in the liter-
ature, as documented in the survey articles by Pettersson et al.
(2014), Acar et al. (2018), and Payne (2020).3 In general, the
evidence from large multi-country studies on the convergence of
per capita carbon dioxide emissions has been generally mixed (see
Nguyen Van 2005; Aldy 2006; Ezcurra 2007a; Westerlund and
Basher 2008; Nourry 2009; Panopoulou and Pantelidis 2009;
Brock and Taylor 2010; Ordas Criado and Grether 2011;
Herrerias 2013; Li and Lin 2013; Acaravci and Erdogan 2016;
Ahmed et al. 2017; Brannlund et al. 2017; Churchill et al. 2018;
Rios and Gianmoena 2018; Haider and Akram 2019; and
Fernandez-Amador et al. 2019). However, studies focused on
countries grouped by institutional structure, income classification,
and geographic region lend greater support for convergence in per
capita carbon dioxide emissions (see Strazicich and List 2003;
Barassi et al. 2008, 2011, 2018; Lee et al. 2008; Lee and Chang
2008, 2009; Romero-Avila 2008; Jobert et al. 2010; Herrerias

2012; Yavuz and Yilanci 2013; Solarin 2014; Robalino-Lopez
et al. 2016; Presno et al. 2018; Erdogan and Acaravci 2019; and
Karakaya et al. 2019).4,5

Given that the majority of the studies to date have focused
primarily on more developed, industrialized countries, we ex-
plore the convergence of per capita carbon dioxide emissions
in the case of developing countries due to the differences in
their level of economic development and growth prospects
relative to industrialized countries as the EKC hypothesis
would suggest. Furthermore, this line of inquiry will provide
additional insights on the environmental sustainability of the
economic development process for developing countries. As
such, we test for the convergence of emissions using two
approaches: stochastic convergence and club convergence.
Following Carlino and Mills (1993) and Bernard and
Durlauf (1995, 1996), the stochastic convergence approach
evaluates the stationarity of relative per capita carbon dioxide
emissions defined for each country i as the natural logarithm
of the ratio of per capita carbon dioxide emissions relative to
the average of all countries. If relative per capita carbon diox-
ide emissions follow a stationary process (i.e., stochastic con-
vergence), shocks will be transitory in nature. Unlike the sto-
chastic convergence approach, which relies on unit root/
stationarity tests, the club convergence approach of Phillips
and Sul (2007, 2009), which is based on a nonlinear time-
varying factor model, does not depend on the stationarity
properties of variables in question and considers the possibil-
ity of multiple convergence clubs. As noted by Panopoulou
and Pantelidis (2009), the Phillips-Sul approach is similar to
examining conditional σ-convergence and β-convergence
within a panel framework.6 More specifically, the Phillips-
Sul approach tests for a decline in the cross-sectional variation
of per capita carbon dioxide emissions among countries over
time (conditional σ-convergence), as well as tests whether or
not heterogeneous time-varying idiosyncratic components
converge over time to a constant after controlling for a com-
mon growth component among countries (conditional β-
convergence).

2 In addition, the convergence of per capita emissions is also a key assumption
inherent in climate change models, and projecting future emissions (Apergis
and Payne 2017).
3 While we focus our attention on per capita carbon dioxide emissions, a
number of studies have investigated other types of emissions. In the case of
sulfur dioxide and/or nitrogen oxide emissions, see List (1999), Lee and List
(2004), Bulte et al. (2007), Ordas Criado et al. (2011), Payne et al. (2014), Hao
et al. (2015a, b), Liu et al. (2018), and Solarin and Tiwari (2020); greenhouse
gas emissions, see El-Montasser et al. (2015) and de Oliveira and Bourscheidt
(2017); ecological footprint, see Biligili and Ulucak (2018), Ulucak and
Apergis (2018), Solarin (2019), Ulucak et al. (2020), and Yilanci and Pata
(2020); and for protected areas in the measurement of environmental quality,
see Bimonte (2009).

4 In addition to country-wide studies, several studies have examined the con-
vergence of per capita carbon dioxide emissions at the sub-national level, for
the USA, see Aldy 2007; Burnett 2016; and Apergis and Payne 2017; and for
China, see Huang andMeng 2013;Wang and Zhang 2014;Wu et al. 2016; and
Yu et al. 2019.
5 Ezcurra (2007b), Li et al. (2014), and Tiwari and Mishra (2017) investigate
the convergence of the level of carbon dioxide emissions. Camarero et al.
(2008) and Camarero et al. (2013b) explore the convergence of environmental
performance indicators and eco-efficiency indicators, respectively. Camarero
et al. (2013a), Moutinho et al. (2014), Wang et al. (2014), Brannlund et al.
(2015), Hao et al. (2015a, b), Zhao et al. (2015), Apergis et al. (2017),
Kounetas (2018), Yu et al. (2018), Apergis and Payne (2020), and Apergis
et al. (2020) examine the convergence of carbon dioxide emissions intensity.
6 As pointed out by Quah (1993) along with Evans (1996) and Evans and
Karras (1996), cross-sectional β-convergence does not consider the possibility
of multiple steady states.
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The “Data, methodology, and results” section discusses the
data, methodology, and results, while the “Concluding re-
marks” section provides concluding remarks.

Data, methodology, and results

Data

Annual data from 1972 to 2014 for per capita carbon dioxide
emissions (in metric tons) is obtained from the World Bank
Development Indicators.7 The data is constructed into three
panels: (1) low-income countries (27), lower middle-income
countries (38), and the combination of both low- and lower
middle-income countries (65) as shown in Appendix A.
Table 1 displays the summary statistics of per capita carbon
dioxide emissions by income classification. For the case of
low-income countries in Table 1, we find that mean per capita
carbon dioxide emissions ranges from 0.034 in Burundi and
Chad to 2.644 in the Syrian Arab Republic, while the variation
(standard deviation) ranges from 0.009 in Burundi to 0.643 in
the Syrian Arab Republic. The distribution of per capita car-
bon dioxide emissions shows positive skewness in 21 of the
27 countries with the kurtosis measure less than three for 17 of
the 27 countries. The null hypothesis of normality in the dis-
tribution of per capita carbon dioxide emissions is rejected in
over half the countries.

In Table 2 for lower middle-income countries, we find
much more dramatic ranges in both the mean and variation
of per capita carbon dioxide emissions. The mean per capita
carbon dioxide emissions ranges from 0.120 in Bangladesh to
4.362 in Mongolia, and the variation (standard deviation)
ranges from 0.040 in Comoros to 1.974 in Mongolia. The
distribution of per capita carbon dioxide emission also reveals
positive skewness in 30 of the 38 countries with the kurtosis
measure less than three for 29 of the 38 countries. The null
hypothesis of normality in the distribution of per capita carbon
dioxide emissions is rejected in nearly half the countries.

Stochastic convergence

We begin our analysis with examining stochastic convergence
within a panel data framework recognizing that first-
generation panel unit root tests may yield biased results if
positive residual cross-section dependence is present. As a
result, second-generation panel unit root tests have evolved
to address the need to first determine the degree to which
cross-sectional dependence is an issue. As such, we explore
whether or not cross-sectional dependence is present in the
data using the Pesaran (2004) cross-sectional dependence

(CD) statistic. The CD statistic is an average of all pair-wise
correlation coefficients of the ordinary least square residuals
from the standard augmented Dickey and Fuller (1979) re-
gression. With the null hypothesis of cross-sectional indepen-
dence, the CD statistic follows asymptotically a two-tailed
normal distribution as follows:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T
N N−1ð Þ

s
∑N−1

i¼1 ∑
N
j¼iþ1bρij� �

ð1Þ

where T is the time period andN is the number of countries.bρij
is the pair-wise correlation coefficient estimates of the resid-
uals. The results in Table 3 show that up to three lags, the null
hypothesis of cross-sectional independence is rejected for
each of the three country panels.

Given the presence of cross-sectional dependence, we pro-
ceed with Pesaran’s (2007) augmented ADF-panel unit root
test, which incorporates the lagged cross-sectional mean and
its first difference in recognition of cross-sectional depen-
dence as follows:

Δyit ¼ αi þ βiyit−1 þ θiyt−1 þ γiΔyi þ εit ð2Þ
where yt−1 denotes the mean of the lagged levels; Δyi is the
mean of the first-differences; and εit is the error term. Pesaran
(2007) uses a modified Im et al. (2003) statistic given by the
average of the individual cross-sectional-ADF statistics
(CADF) from Eq. (2) in defining the cross-sectional augment-
ed IPS (CIPS) to test the null hypothesis of a unit root:

CIPS ¼ 1

N
∑N

t¼1ti N ; Tð Þ ð3Þ

where ti(N, T) represents the t statistic from the ordinary least
squares estimate of β in Eq. (2). In addition, we also
correct for potential small sample bias via the CIPS*
statistic as follows:

CIPS* ¼ 1

N
∑N

t¼1t
*
i N ; Tð Þ ð4Þ

where:

t*i N ; Tð Þ ¼
K1 ti N ; Tð Þ≤K1

ti N ; Tð Þ K1 < ti N ; Tð Þ < K2

K2 ti≥K2

8<
:

The constants K1 and K2 are fixed, where the probability that
ti(N,T) resides in [K1, K2] and close to one. Panel A of Table 4
displays the results of the Pesaran (2007) panel unit root tests with
respect to relative per capita carbon dioxide emissions for the three
country panels. The null hypothesis of a unit root is rejected at the
1% significance level across all three country panels based on the
CIPS and CIPS* statistics, thus supporting stochastic convergence
with respect to relative per capita carbon dioxide emissions.

7 The time period is selected in order to include as many countries as possible
in the analysis.
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To address the possibility of spurious results due to
the absence of structural breaks, we also report tests for
panel unit roots under multiple structural breaks using
the Bai and Carrion-i-Silvestre (2009) approach. The
Bai and Carrion-i-Silvestre (2009) panel unit root test
takes into consideration both multiple structural breaks
and cross-section dependence through the common fac-
tors model proposed by Bai and Ng (2004). Their meth-
od allows for structural breaks in the level, slope, and
both the level and slope, thus providing a certain degree
of heterogeneity in the number of breaks across coun-
tries. This approach relies on the following two models:

Dit ¼ μi þ ∑li
j¼1θijDUijt ð5Þ

and

Dit ¼ μi þ βit þ ∑li
j−1θijDUijt þ ∑mi

k¼1γikDTikt ð6Þ

where the component Dit represents the deterministic
component. The structural breaks associated with the
mean and the trend of a series, respectively, are denoted
by li and mi, in which the number of breaks, li and mi,
may differ. The dummy variables are defined as DUijt =
1 for t > Ti

aj and 0 otherwise, and DTikt ¼ t−Ti
bk

� �
for

t > Ti
bk , and 0 otherwise. Ti

aj and Ti
bk represent the jth and

kth dates of the structural breaks in the level and trend, respec-
tively, for the ith individual with j = 1,…, li and k = 1,…, mi.
The test is based on simplified test statistics, which are invari-
ant to both mean and trend breaks:

Z* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

MSB* λð Þ−ξ*� �
ζ*2

( )vuut →N 0; 1ð Þ ð7Þ

where MSB* λð Þ ¼ 1
N ∑N

i¼1MSB*
i λið Þ, ξ* ¼ 1

N ∑N
i¼1ξ

*
i , and

ζ*2 ¼ ∑N
i¼1ζ

*2
i . MSB∗(λ) is the pool modified Sargan and

Table 1 Summary statistics. low-
income countries (27) Country Mean Median Max Min SD Skew K JB

Afghanistan 0.159 0.153 0.406 0.037 0.097 0.535 2.440 2.661 (0.27)

Benin 0.250 0.188 0.614 0.078 0.166 1.055 2.630 8.223 (0.01)a

Burkina Faso 0.081 0.076 0.179 0.028 0.035 0.961 3.672 7.429 (0.02)b

Burundi 0.034 0.035 0.050 0.020 0.009 0.111 1.656 3.322 (0.19)

Central African Rep. 0.067 0.065 0.098 0.048 0.011 0.898 3.894 7.216 (0.02)b

Chad 0.034 0.039 0.053 0.011 0.013 − 0.443 1.664 4.605 (0.10)c

Congo, Dem. Rep. 0.081 0.067 0.151 0.017 0.050 0.120 1.287 5.360 (0.06)c

Ethiopia 0.060 0.056 0.118 0.031 0.018 1.264 4.884 17.811 (0.00)a

Gambia 0.200 0.197 0.254 0.119 0.033 − 0.475 2.873 1.649 (0.44)

Guinea 0.196 0.194 0.267 0.157 0.024 0.826 3.986 6.630 (0.04)b

Guinea-Bissau 0.163 0.158 0.242 0.090 0.029 0.378 3.966 2.698 (0.25)

Haiti 0.160 0.148 0.271 0.040 0.053 0.197 2.461 0.799 (0.67)

Liberia 0.397 0.225 1.107 0.137 0.338 1.193 2.686 10.377 (0.01)a

Madagascar 0.113 0.107 0.224 0.069 0.031 1.564 5.827 31.842 (0.00)a

Malawi 0.085 0.080 0.114 0.062 0.015 0.498 2.147 3.080 (0.21)

Mali 0.059 0.055 0.083 0.040 0.011 0.408 1.964 3.114 (0.21)

Mozambique 0.144 0.099 0.369 0.065 0.090 1.115 2.858 8.949 (0.01)a

Nepal 0.089 0.072 0.298 0.021 0.067 1.224 4.133 13.027 (0.00)a

Niger 0.087 0.084 0.148 0.049 0.029 0.656 2.371 3.791 (0.15)

Rwanda 0.071 0.069 0.122 0.017 0.023 − 0.217 3.570 0.919 (0.63)

Sierra Leone 0.139 0.125 0.237 0.082 0.040 0.578 2.293 3.293 (0.19)

Somalia 0.085 0.075 0.166 0.042 0.034 0.642 2.185 4.145 (0.12)

Syrian Arab Rep. 2.644 2.861 3.366 1.122 0.643 − 1.000 2.872 7.189 (0.02)b

Tanzania 0.125 0.113 0.231 0.078 0.040 1.178 3.739 10.919 (0.00)a

Togo 0.248 0.226 0.523 0.129 0.085 1.308 4.567 16.669 (0.00)a

Uganda 0.072 0.060 0.142 0.036 0.032 0.816 2.236 5.822 (0.05)b

Yemen 0.742 0.820 1.091 0.234 0.227 − 0.637 2.342 3.684 (0.16)

Max is the maximum value and Min is the minimum value. SD represents the standard deviation. Skew is
skewness and K kurtosis. JB is the Jarque-Bera test for normality. p values are in round brackets with the
significance levels a(1%), b(5%), and c(10%)
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Bhargava (1983) test for individual time series. ξ*i and ζ*2i
denote the mean and the variance of the individual modified

MSB*
i λið Þ statistics, respectively, where λi ¼ Tb

i =T is the
break fraction parameter. The results of the Bai and Carrion-
i-Silvestre (2009) test rejects the null hypothesis of a unit root
in relative per capita carbon dioxide emissions, confirming
stochastic convergence.

Club convergence

Finally, we follow Panopoulou and Pantelidis (2009), Apergis
et al. (2017), and Apergis and Payne (2020), among others, in
the use of the time-varying nonlinear factor model approach
by Phillips and Sul (2007, 2009). The Phillips-Sul approach
tests whether there is convergence with respect to the

Table 2 Summary statistics. lower middle-income countries (38)

Country Mean Median Max Min SD Skew K JB

Angola 0.717 0.611 1.330 0.288 0.305 0.829 2.282 5.843 (0.05)b

Bangladesh 0.120 0.164 0.474 0.053 0.120 0.832 2.619 5.219 (0.07)c

Bhutan 0.415 0.400 1.392 0.010 0.367 0.827 3.158 4.952 (0.08)c

Bolivia 1.085 1.005 1.906 0.599 0.354 0.535 2.329 2.857 (0.23)

Cabo Verde 0.515 0.362 1.235 0.114 0.338 0.702 1.988 5.360 (0.07)b

Cambodia 0.143 0.141 0.438 0.004 0.119 0.783 2.723 4.527 (0.10)c

Cameroon 0.295 0.229 0.697 0.091 0.163 1.388 3.903 15.263 (0.00)a

Comoros 0.163 0.155 0.258 0.074 0.040 0.506 2.948 1.837 (0.39)

Congo, Rep. 0.493 0.505 1.089 0.174 0.217 0.426 2.600 1.590 (0.45)

Cote d’Ivoire 0.503 0.484 0.826 0.282 0.141 0.516 2.341 2.686 (0.26)

Djibouti 0.672 0.611 1.080 0.451 0.183 0.630 2.130 4.198 (0.12)

Egypt 1.604 1.474 2.569 0.645 0.573 0.187 1.942 2.255 (0.32)

El Salvador 0.740 0.691 1.143 0.330 0.280 0.042 1.285 5.282 (0.07)c

Eswatini 0.790 0.787 1.248 0.149 0.284 − 0.161 2.093 1.660 (0.44)

Ghana 0.317 0.301 0.549 0.208 0.078 1.155 4.115 11.786 (0.00)a

Honduras 0.704 0.597 1.124 0.419 0.223 0.548 1.756 4.927 (0.08)a

India 0.833 0.780 1.728 0.375 0.380 0.671 2.509 3.661 (0.16)

Indonesia 1.115 1.079 2.564 0.358 0.549 0.723 2.967 3.751 (0.15)

Kenya 0.280 0.281 0.383 0.190 0.054 0.184 2.039 1.897 (0.39)

Kiribati 0.449 0.418 0.739 0.280 0.123 0.560 2.195 3.407 (0.18)

Lao 0.129 0.096 0.294 0.045 0.081 0.578 1.855 4.746 (0.09)c

Mauritania 0.562 0.470 1.748 0.204 0.313 2.838 10.514 158.889 (0.00)a

Mongolia 4.362 3.804 13.447 2.419 1.974 2.785 12.292 210.282 (0.00)a

Morocco 1.108 1.079 1.887 0.482 0.388 0.434 2.053 2.958 (0.23)

Myanmar 0.182 0.167 0.414 0.100 0.058 1.562 7.082 47.347 (0.00)a

Nicaragua 0.681 0.693 0.951 0.362 0.125 − 0.242 2.544 0.792 (0.67)

Nigeria 0.650 0.684 1.010 0.326 0.192 − 0.180 2.034 1.906 (0.39)

Pakistan 0.635 0.666 0.947 0.308 0.203 − 0.169 1.712 3.178 (0.20)

Papua New Guinea 0.547 0.515 0.899 0.397 0.120 1.066 3.428 8.475 (0.01)a

Philippines 0.799 0.828 1.051 0.517 0.124 − 0.456 2.770 1.586 (0.45)

Sao Tome and Principe 0.417 0.410 0.603 0.141 0.107 − 0.446 2.987 1.423 (0.49)

Senegal 0.458 0.436 0.642 0.322 0.085 0.585 2.394 3.106 (0.21)

Solomon Islands 0.411 0.375 0.569 0.290 0.081 0.759 2.291 5.035 (0.08)c

Tunisia 1.791 1.777 2.606 0.893 0.483 − 0.139 2.211 1.254 (0.53)

Vanuatu 0.470 0.451 0.931 0.222 0.113 1.429 8.156 62.258 (0.00)a

Vietnam 0.693 0.447 1.820 0.263 0.487 1.039 2.611 8.000 (0.02)b

Zambia 0.384 0.291 0.994 0.154 0.235 1.125 3.108 9.093 (0.01)a

Zimbabwe 1.193 1.267 1.671 0.447 0.326 − 0.513 2.251 2.888 (0.24)

Max is the maximum value andMin is the minimum value. SD represents the standard deviation. Skew is skewness andK kurtosis. JB is the Jarque-Bera
test for normality. p values are in round brackets with the significance levels a(1%), b(5%), and c(10%).
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heterogeneous time-varying idiosyncratic components af-
ter controlling for a common growth component among
the countries that share the same convergence pattern.
This approach has the comparative advantage that it
does not rely on any assumptions regarding the station-
arity of the variables as in tests of stochastic conver-
gence. Specifically, the Phillips-Sul approach utilizes a
time-varying common factor defined as:

PCCO2it ¼ δitμt ð8Þ
where PCCO2it represents per capita carbon dioxide
emissions in country i at time t, which is comprised
of a common component, μt, and an idiosyncratic com-
ponent, δit, both of which are time-varying. Note that
the idiosyncratic component is a measure of the distance
between PCCO2it and the common component, μt.

Table 3 Tests of cross-sectional
dependence Panel A: low-income countries

1 lag 2 lags 3 lags

Relative per capita carbon dioxide emissions 10.673 (0.00)a 10.120 (0.00)a 9.728 (0.00)a

Panel B: lower middle-income countries

1 lag 2 lags 3 lags

Relative per capita carbon dioxide emissions 8.137 (0.00)a 7.925 (0.00)a 6.348 (0.00)a

Panel C: low- and lower middle-income countries

1 lag 2 lags 3 lags

Relative per capita carbon dioxide emissions 11.964 (0.00)a 10.916 (0.00)a 10.026 (0.00)a

Under the null hypothesis of cross-sectional independence, the CD statistic is distributed as a two-tailed standard
normal distribution. Results reported based on the test of Pesaran (2004) with p values in round brackets.
a p ≤ 0.01

Table 4 Panel unit root tests of
stochastic convergence Panel A: panel unit root tests without breaks

Low-income countries

Pesaran CIPS Pesaran CIPS*

Relative per capita carbon dioxide emissions − 6.48 (0.00)a − 6.19 (0.00)a

Lower-middle income countries

Pesaran CIPS Pesaran CIPS*

Relative per capita carbon dioxide emissions − 6.14 (0.00)a − 5.83 (0.00)a

Low- and lower middle-income countries

Pesaran CIPS Pesaran CIPS*

Relative per capita carbon dioxide emissions − 6.95 (0.00)a − 6.61 (0.00)a

Panel B: panel unit root test with breaks

Low-income countries

Bai and Carrion-i-Silvestre Z*

Relative per capita carbon dioxide emissions − 1.54 (0.00)a

Lower middle-income countries

Bai and Carrion-i-Silvestre Z*

Relative per capita carbon dioxide emissions − 1.86 (0.00)a

Low- and lower middle-income countries

Bai and Carrion-i-Silvestre Z*

Relative per capita carbon dioxide emissions − 1.97 (0.00)a

p values are in round brackets. For the Bai and Carrion-i-Silvestre Z* test, the number of common factors is
estimated using the panel Bayesian information criterion proposed by Bai and Ng (2002), and the test is estimated
with a maximum number of breaks at 3
a p ≤ 0.01
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Phillips and Sul (2007, 2009) use the relative transition
parameter, hit, as follows:

hit ¼ PCCO2it
1

N
∑N

i¼1PCCO2it
¼ δit

1

N
∑N

i¼1δit

ð9Þ

Equation (9) measures the loading coefficient, δit, relative
to the panel average, thus the transition path for per capita
carbon dioxide emissions in country i relative to the panel
average. In the case that the factor loadings, δit, converge to
a constant, δ, then the cross-sectional mean of the relative
transition path for country i, hit, converges to unity, and the
cross-section variation, Ht, of the relative transition path con-
verges to zero as t → ∞:

Ht ¼ 1

N
∑N

i¼1 hit−1ð Þ2→0 ð10Þ

The semi-parametric form of δit is given as:

δit ¼ δi þ σiξit
L tð Þtα ð11Þ

where δi is fixed; ξit~iid (0,1) varies across countries i = 1, 2,
…, N; σi is an idiosyncratic scale parameter; L(t) is a slow
varying function where L(t)→∞ and t→∞; and α represents
the speed of convergence. Equation (11) ensures that δit con-
verges to δi for α ≥ 0. Hence, the null hypothesis of conver-
gence is the following: H0 : δi = δ and α ≥ 0, against the
alternative hypothesis, HA : δi ≠ δ for some i and/or α < 0.

Following Phillips and Sul (2007, 2009), we set L(t) = logt
in the decay model, so the empirical log t regression can be
used to test for convergence and the deployment of the clus-
tering algorithm to identify convergence clubs as follows:

log
H1

Ht

	 

−2logL tð Þ ¼ baþ bblogt þ εt ð12Þ

for t = rT, rT + 1, …, T where r > 0 set on the interval (0.2,

0.3).8 For bb ¼ 2α, the null hypothesis is considered a one-

sided test of bb≥0 against bb < 0. To address estimates in Eq.
(12) that may be weakly time-dependent, heteroskedasticity
and autocorrelation-consistent standard errors are employed in

the least squares estimates of bb.
The Phillips and Sul (2007, 2009) procedure uses a club

convergence approach to identify convergence clubs as fol-
lows: (1) order the N countries in the panel using the final
values of per capita carbon dioxide emissions for the respec-
tive countries; (2) starting from the highest-order country in
terms of per capita carbon dioxide emissions, sequentially
estimate Eq. (12) on the k highest member countries to iden-
tify a core group of countries using the cut-off point criterion:

k* ¼ ArgMaxk tbbk
n o

; subject toMink tbbk
n o

> 1:65, for k = 2,

3, …N; (3) add one country at a time from the remaining
countries to the core group, and re-estimate Eq. (12) using

the sign criterion (bb≥0 ) to determine whether to add a country
to the core group; and (4) repeat the above steps iteratively for
the remaining countries until clubs can no longer be formed.
Given this iterative approach, each club formed is associated
with its own convergence path. Countries that do not exhibit a
convergence pattern are considered non-convergent.

We begin with examining tests of club convergence in the
case of the panel of 27 low-income countries as shown in
panel A of Table 5. The null hypothesis of overall panel con-
vergence is rejected at the 1% significance level given the t
statistic of − 30.606. Given the absence of overall panel con-
vergence, we proceed with the algorithm of Phillips and Sul
(2007, 2009) to determine whether convergence clubs are
formed. As documented in panel A of Table 5, three conver-
gence clubs emerge with only Haiti exhibiting non-
convergent behavior. Club 1 consists of four countries:
Afghanistan, Nepal, Syrian Arab Republic, and Yemen;
Club 2 encompasses 18 African countries: Benin, Burkina
Faso, Burundi, Central African Republic, Chad, Democratic
Republic of Congo, Ethiopia, Madagascar, Malawi, Mali,
Mozambique, Niger, Rwanda, Sierra Leone, Somalia,
Tanzania, Togo, and Uganda; and Club 3 contains four West
African countries: Gambia, Guinea, Guinea-Bissau, and
Liberia. An examination of the speed of convergence, α,
shows that club 2 (0.4790) has the fastest speed of conver-
gence, followed by club 1 (0.3310) and club 3 (0.2480).9

However, as noted by Phillips and Sul (2009), the conver-
gence algorithm may lead to over-estimation of the true num-
ber of clubs. To address this potential issue, we evaluate merg-
ing adjacent numbered clubs into larger clubs by performing
club merging tests via regression (12). The club merging tests
in panel B of Table 5 reject the null hypothesis of merging
clubs. Interestingly enough, the convergence clubs reveal the
geographic proximity of the respective club members, similar
to previous convergence studies tied to geographic regions.

Next, we undertake the same tests of club convergence, but
in this case for the panel of 38 lower middle-income countries.
In panel A of Table 6, the null hypothesis of overall panel
convergence is again rejected at the 1% significance level with
a t statistic of − 30.837. Following the algorithm of Phillips
and Sul (2007, 2009), we determine the number of conver-
gence clubs. From panel A of Table 6, we identify five con-
vergence clubs with seven countries (Cabo Verde, Comoros,
Mongolia, Papua New Guinea, Sao Tome and Principe,
Solomon Islands, and Vanuatu) considered non-convergent.
Club 1 consists of 15 African countries (Angola, Cameroon,
Republic of Congo, Cote d’Ivoire, Djibouti, Eswatini, Ghana,

8 Set r = 0.3. 9 α defined as bb=2:
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Kenya, Kiribati, Mauritania, Nigeria, Senegal, Zambia, and
Zimbabwe). Club 2 includes only three North African coun-
tries (Egypt, Morocco, and Tunisia); Club 3 comprises five
Asian countries (Bangladesh, Bhutan, Cambodia, Laos,
Myanmar, and Vietnam); Club 4 consists of four Central
and Latin American countries (Bolivia, El Salvador,
Honduras, and Nicaragua); and Club 5 contains four Asian
countries (India, Indonesia, Pakistan, and the Philippines). A
review of the speed of convergence associated with each con-
vergence club reveals that club 5 (0.6685) exhibits the fastest
speed of convergence, followed by club 4 (0.5140), club 2
(0.4195), club 1 (0.3490), and club 3 (0.2555). As in the case
of the convergence clubs for low-income countries reported in
Table 5, the club merging tests, shown in panel B of Table 6,
do not support the merger of the respective convergence clubs.

Likewise, convergence clubs among lower middle-income
countries again reflect a high degree of geographic proximity.

Finally, we combine low-income and lower middle-income
countries to form a developing country panel of 65 countries.
Panel A of Table 7 shows that the null hypothesis of overall
panel convergence is once again rejected at the 1% signifi-
cance level with a t statistic of − 31.219. We find six conver-
gence clubs with 11 countries (Cabo Verde, Comoros, Haiti,
Malawi, Mongolia, Papua New Guinea, Sao Tome and
Principe, Solomon Islands, Syrian Arab Republic, Vanuatu,
and Yemen) non-convergent. Club 1 includes 32 African
countries (Angola, Benin, Burkina Faso, Burundi,
Cameroon, Central African Republic, Chad, Republic of
Congo, Cote d’Ivoire, Democratic Republic of Congo,
Djibouti, Eswatini, Gambia, Ghana, Kenya, Kiribati, Liberia,

Table 6 Tests of club convergence: lower middle-income countries

Panel A: club convergence tests

Lower middle-income countries, overall: Angola, Bangladesh, Bhutan, Bolivia, Cabo Verde, Cambodia, Cameroon, Comoros, Republic of Congo, Cote
d’Ivoire, Djibouti, Egypt, El Salvador, Eswatini, Ghana, Honduras, India, Indonesia, Kenya, Kiribati, Laos, Mauritania, Mongolia, Morocco,
Myanmar, Nicaragua, Nigeria, Pakistan, Papua New Guinea, Philippines, Sao Tome and Principe, Senegal, Solomon Islands, Tunisia, Vanuatu,
Vietnam, Zambia, Zimbabwe bb coefficient t statistic

Per capita carbon dioxide emissions − 0.756 − 30.837a

Club 1: Angola, Cameroon, Republic of Congo, Cote d’Ivoire, Djibouti, Eswatini, Ghana, Kenya, Kiribati, Mauritania, Nigeria, Senegal, Zambia,
Zimbabwe bb coefficient t statistic a

Per capita carbon dioxide emissions 0.698 1.317 0.3490

Club 2: Egypt, Morocco, Tunisia bb coefficient t statistic a

Per capita carbon dioxide emissions 0.839 1.109 0.4195

Club 3: Bangladesh, Bhutan, Cambodia, Laos, Myanmar, Vietnambb coefficient t statistic a

Per capita carbon dioxide emissions 0.511 1.093 0.2555

Club 4: Bolivia, El Salvador, Honduras, Nicaragua bb coefficient t statistic a

Per capita carbon dioxide emissions 1.028 1.196 0.5140

Club 5: India, Indonesia, Pakistan, Philippines bb coefficient t statistic a

Per capita carbon dioxide emissions 1.337 1.462 0.6685

Non-converging countries: Cabo Verde, Comoros, Mongolia, Papua New Guinea, Sao Tome and Principe, Solomon Islands, Vanuatu

Panel B: club merging tests

Clubs bγ tbγ
Club 1 + Club 2 − 0.088 − 5.91a

Club 2 + Club 3 − 0.109 − 6.74a

Club 3 + Club 4 − 0.093 − 6.22a

Club 4 + Club 5 − 0.115 − 7.12a

Club convergence tests: Test for the one-sided null hypothesis,bb≥0 againstbb < 0, using the critical value t0.05 = − 1.65156. Clubmerging tests: Test for
the one-sided null hypothesis, bγ≥0 against bγ < 0, using the critical value t0.05 = − 1.65156
a p ≤ 0.01
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Madagascar, Mali, Mauritania, Mozambique, Niger, Nigeria,
Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo,
Uganda, Zambia, and Zimbabwe); Club 2 comprises three
North African countries (Egypt, Morocco, and Tunisia);
Club 3 consists of six Asian countries (Bangladesh, Bhutan,
Cambodia, Laos, Myanmar, and Vietnam); Club 4 encom-
passes four Central and Latin America countries (Bolivia, El
Salvador, Honduras, and Nicaragua); Club 5 includes six

Asian countries (Afghanistan, India, Indonesia, Nepal,
Pakistan, and the Philippines), and three African countries in
club 6 (Ethiopia, Guinea, and Guinea-Bissau). As is the case
with Tables 5 and 6, the speed of convergence varies greatly
across the convergence clubs with the fastest convergence in
club 5 (0.5145), followed by club 4 (0.3915), club 2 (0.3310),
club 1 (0.2705), club 3 (0.2195), and club 6 (0.2040). Similar
to panel B of Tables 5 and 6, the clubmerging tests reported in

Table 7 Tests of club convergence: low- and lower middle-income countries

Panel A: club convergence tests

Low-income and lower middle-income countries, overall: Afghanistan, Angola, Bangladesh, Benin, Bhutan, Bolivia, Burkina Faso, Burundi, Cabo
Verde, Cambodia, Cameroon, Central African Republic, Chad, Comoros, Democratic Republic of Congo, Republic of Congo, Cote d’Ivoire,
Djibouti, Egypt, El Salvador, Eswatini, Ethiopia, Gambia, Ghana, Guinea, Guinea-Bissau, Haiti, Honduras, India, Indonesia, Kenya, Kiribati, Laos,
Liberia, Madagascar, Malawi, Mali, Mauritania, Mongolia, Morocco, Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Papua
NewGuinea, Philippines, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Solomon Islands, Somalia, Syrian Arab Republic, Tanzania, Togo,
Tunisia, Uganda, Vanuatu, Vietnam, Yemen, Zambia, Zimbabwebb coefficient t statistic

Per capita carbon dioxide emissions − 0.944 − 31.219a

Club 1: Angola, Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Republic of Congo, Cote d’Ivoire, Democratic Republic of
Congo, Djibouti, Eswatini, Gambia, Ghana, Kenya, Kiribati, Liberia, Madagascar, Mali, Mauritania, Mozambique, Niger, Nigeria, Rwanda, Senegal,
Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zambia, Zimbabwebb coefficient t statistic α

Per capita carbon dioxide emissions 0.541 1.168 0.2705

Club 2: Egypt, Morocco, Tunisia bb coefficient t statistic α

Per capita carbon dioxide emissions 0.662 0.784 0.3310

Club 3: Bangladesh, Bhutan, Cambodia, Laos, Myanmar, Vietnambb coefficient t statistic α

Per capita carbon dioxide emissions 0.439 0.922 0.2195

Club 4: Bolivia, El Salvador, Honduras, Nicaragua bb coefficient t statistic α

Per capita carbon dioxide emissions 0.783 0.863 0.3915

Club 5: Afghanistan, India, Indonesia, Nepal, Pakistan, Philippinesbb coefficient t statistic α

Per capita carbon dioxide emissions 1.029 1.223 0.5145

Club 6: Ethiopia, Guinea, Guinea-Bissau bb coefficient t statistic α

Per capita carbon dioxide emissions 0.408 0.816 0.2040

Non-converging group: Cabo Verde, Comoros, Haiti, Malawi, Mongolia, Papua New Guinea, Sao Tome and Principe, Solomon Islands, Syrian Arab
Republic, Vanuatu, Yemen

Panel B: club merging tests

Clubs bγ tbγ
Club 1 + Club 2 − 0.096 − 6.13a

Club 2 + Club 3 − 0.126 − 7.10a

Club 3 + Club 4 − 0.108 − 6.84a

Club 4 + Club 5 − 0.120 − 7.05a

Club 5 + Club 6 − 0.095 − 6.24a

Club convergence tests: Test for the one-sided null hypothesis,bb≥0 againstbb < 0, using the critical value t0.05 = − 1.65156. Clubmerging tests: Test for
the one-sided null hypothesis, bγ≥0 against bγ < 0, using the critical value t0.05 = − 1.65156
a p ≤ 0.01

33760 Environ Sci Pollut Res (2021) 28:33751–33763



panel B of Table 7 reject the null hypothesis of merging clubs.
While panel unit root tests find stochastic convergence in rel-
ative per capita carbon dioxide emissions for each of the three
country panels, the club convergence tests reveal multiple
convergence clubs in each country panel that show unique
transition paths for countries within each convergence club
to a steady state.

Concluding remarks

With the ongoing debate on the appropriate mitigation and
emission allocation strategies pertaining to per capita carbon
dioxide emissions, this exploratory study provided additional
evidence with respect to the convergence of per capita carbon
dioxide emissions in the case of developing countries.
Specifically, Pesaran (2007) and Bai and Carrion-i-Silvestre
(2009) panel unit root tests with allowance for cross-sectional
dependence lend support for stochastic convergence in per
capita carbon dioxide emissions for the respective country
panels. The nonlinear time-varying factor model of Phillips
and Sul (2007, 2009) revealed multiple convergence clubs
within the country panels with the speed of convergence vary-
ing across convergence clubs. Within the low-income country
panel, the analysis identified three convergence clubs, five
convergence clubs for the lower middle-income country pan-
el, and six convergence clubs for the country panel that com-
bined both low- and lower middle-income countries. A com-
mon theme for many of the convergence clubs was the geo-
graphical proximity of countries within the club. With respect
to the non-convergent countries, a common characteristic was
that many were island countries and to some extent geograph-
ically isolated.

As noted by Rios and Gianmoena (2018), rather than the
two-track emission allocation framework in which developing
countries did not have mitigation requirements, as in the case
of industrialized countries under the Framework Convention
on Climate Change and the Kyoto Protocol, the Paris 2015
agreement provided for carbon dioxide emissions mitigation
to be tied to country-specific circumstances. This is particu-
larly relevant as our results from the Phillips-Sul club conver-
gence procedure illustrate that countries in geographic prox-
imity, as defined within the convergence clubs, exhibit unique
transition paths toward their respective steady states. The geo-
graphic proximity between countries within their respective
convergence clubs may reflect similar natural resource en-
dowments, weather conditions, and economic structure, all
of which influence their energy consumption mix.
Moreover, the geographical proximity may also indicate the
potential for strategic interactions between governments with
respect to environmental policy actions whose economies are
spatially linked relative to other countries (Fredriksson et al.
2004). In addition, the quality of a country’s institutions and

governance structure plays a critical role in the effective im-
plementation of the appropriate economic instruments (price-
based and rights-based measures) to mitigate emissions as
their level of economic development evolves over time. The
ability of developing countries to adopt emerging mitigation
and low carbon technologies, alongside movement toward
renewable energy sources and improvement in energy effi-
ciency, should be given serious consideration in order to con-
trol carbon dioxide emissions in these countries.

Appendix A

Low-income countries (27)

Afghanistan Malawi

Benin Mali

Burkina Faso Mozambique

Burundi Nepal

Central African Republic Niger

Chad Rwanda

Democratic Republic of Congo Sierra Leone

Ethiopia Somalia

Gambia Syrian Arab Republic

Guinea Tanzania

Guinea-Bissau Togo

Haiti Uganda

Liberia Yemen
Madagascar

Lower middle-income countries (38):

Angola Kiribati

Bangladesh Laos

Bhutan Mauritania

Bolivia Mongolia

Cabo Verde Morocco

Cambodia Myanmar

Cameroon Nicaragua

Comoros Nigeria

Republic of Congo Pakistan

Cote d’Ivoire Papua New Guinea

Djibouti Philippines

Egypt Sao Tome and Principe

El Salvador Senegal

Eswatini Solomon Islands

Ghana Tunisia

Honduras Vanuatu

India Vietnam

Indonesia Zambia

Kenya Zimbabwe
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