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Moss biomonitoring and air pollution modelling on a regional scale:
delayed reflection of industrial pollution in moss in a heavily polluted
region?
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Abstract
A passive biomonitoring survey using terrestrial mosses was performed in a heavily polluted industrial region on the border
between Czechia and Poland in a regular grid of 41 sampling points. The concentrations of 38 elements were determined in the
moss samples, using Neutron Activation Analysis (NAA). Simultaneously, air pollution modelling was performed using the
Czech reference methodology Symos’97 for the year of the sampling (2015) and 3 years prior (2012) in order to compare the
results of both the approaches and evaluate the credibility of the moss biomonitoring method. The NAA results were transformed
according to the principles of compositional data analysis and assessed using hierarchical clustering on principal components.
The resulting clusters were compared with the results of air pollution modelling using one-way analysis of variance. The
association of determined clusters with the pollution from industrial sources was confirmed only for the results of the 2012
modelling. This validates the complementarity of the air pollution modelling and the moss biomonitoring, ascertains the moss
biomonitoring as a valid method for long-term pollution assessment and confirms one of the fundamentals of moss biomonitor-
ing, the reflection of the atmospheric conditions prevailing in the period before the sampling.
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Introduction

The spatial distribution of airborne pollutants in ecosystems
can be studied using passive moss biomonitoring (Markert
et al. 2003). This low-cost monitoring technique is well-
recognized in studies of atmospheric deposition and
transboundary pollution all over Europe (Schröder et al.
2008; Harmens et al. 2010). Regular European surveys have
been carried out every 5 years since 1990 (Harmens et al.
2015). According to the Monitoring Manual by the
International Cooperative Programme on Effects of Air
Pollution on Natural Vegetation and Crops, only the apical
segments of the moss are to be collected during the passive
monitoring surveys (ICP Vegetation 2014). In field, this usu-
ally translates to collecting the green part or green-brown
shoots with maximum length of 3–4 cm, representing the last
2 to 3 years of growth depending on the species. The lack of
standardization of the exposure time has been criticized, and
collecting only the green parts of the same length was recom-
mended in order to minimize the age-related cation uptake of
tissues (Boquete et al. 2014). Nevertheless, the relationship
between the elemental concentrations in mosses and
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atmospheric deposition was deemed to be obscure despite
following these recommendations (Fernández et al. 2015b).
In order to assess the association between the atmospheric
conditions and tissue concentrations, the data on air pollution
and at the sampling site are needed. This can be achieved by
performing the biomonitoring survey at the site of the techni-
cal monitoring stations (e.g. Motyka et al. 2015) or by calcu-
lating the air pollution situation at the sites of interest using air
pollution modelling. The spatial distribution of the airborne
pollution is closely related to the transport of atmospheric
particles depending on emissions and meteorological condi-
tions (Connan et al. 2013; Fang et al. 2014; Omrani et al.
2017; Siudek and Frankowski 2017). When these are known,
air pollution modelling can be employed. Gaussian dispersion
models are common air pollution models and are used for
modelling complex real-world environments with high num-
ber of different kinds of pollution sources. Themodels assume
an emission transport from continuous pollution sources in
homogenouswind fieldwithout spatial limits. The transport itself
is-in the model-provided by the convection by wind and via
turbulence diffusion, which is described statistically by
Gaussian distribution. Spatial limitations, mainly the terrain, are
included into model by correction coefficients. Gaussian disper-
sion models are commonly used for long-term (e.g. annual) av-
erage concentrationsmodelling. The dispersion is calculated for a
set of standardmeteorological conditions and summed, weighted
by probability of occurrence of such conditions. Gaussian
models can also incorporate dry deposition velocity of particles
allowing the dry deposition calculation. (Zanetti 1990).

The study area is characterized by specific air pollution
problems connected with its history, topography and local
meteorological conditions (Blažek 2013). It is situated in the
eastern part of the Czech-Polish borderland, in the Moravian-
Silesian region. The region is burdened with black coal min-
ing and heavy industry: energy industry, coking plants and
ironworks (Klusáček 2005; Cabala 2004). The concentration
of industrial activities led to a population with high density,
which is related with substantial emissions from domestic
boilers, especially in the case of the Polish part of the area
where the coal is still a frequently used fuel. Thus, it belongs
to the most polluted regions in Europe. The concentrations of
particles (PM10, PM2.5), benzo [a] pyrene and ozone repeti-
tively exceed the limit values (European Environmental
Agency 2017) settled in the Directive on ambient air quality
and cleaner air for Europe (Directive 2008/50/EC). The air
pollution limit values set for harmful metals such as Pb, As,
Cd and Ni in particulate matter are usually not exceeded in the
region (Czech Hydrometeorological Institute 2016), but since
they tend to accumulate in the environment and are connected
to the anthropogenic sources present in the area for a long time
(Vojtěšek et al. 2009; Voutsa and Samara 2002), they repre-
sent a significant health and ecosystem risk in the area. This
presumption was previously confirmed by systematic

biomonitoring performed in the framework of the
International Co-operative Programmes (ICPs) under
Convention on Long-Range Transboundary Air Pollution
(CLRTAP) (Suchara and Sucharová 2004; Sucharová et al.
2008; Suchara et al. 2015;Suchara et al. 2017). Some other
biomonitoring surveys have also partially covered this area
(Grodzińska et al. 2003; Kapusta et al. 2014; Kłos et al.
2011); however, no gathered data are detailed enough neither
to reveal the local specific pollution sources nor to provide
data possible to be compared with air pollution modelling.

The partial aims of this study were (1) identification of the
origin of air pollution in the Moravian-Silesian region, (2)
determination of the spatial distribution of trace elements in
the Moravian-Silesian region and (3) verification of the air
pollution model SYMOS’97 by the biomonitoring survey re-
sults and vice versa.

The hypothesis tested was that the results of moss biomon-
itoring reflect the air pollution situation-determined by air pol-
lution modelling-prior to the sampling and not the immediate
situation at the time of the sampling.

Materials and methods

Sampling and analysis

The sampling network for this study was designed to cover the
area were the PM concentrations continuously exceed the an-
nual average limit (Jančík et al. 2013). According to the stan-
dards and critical reviews (EN 16414:2014, (Fernández et al.
2005; Fernández et al. 2015a), the regular grid was used to
design the sampling network. Sampling sites were located at
nodes of a regular 10 × 10 km grid with extra points within
every grid cell. The grid numbered 41 points covering an area
of 1600 km2 (40 km × 40 km).

The sampling was carried out according to the ICP
Vegetation Monitoring Manual (ICP Vegetation 2014). The
moss samples were collected within 1 week in October 2015
to minimize the influence of the intra-annual variability
(Fernández et al. 2015b). Although just one moss species
should be sampled to avoid the interspecific element concen-
tration variation (Fernández et al. 2015b; Schröder et al.
2008), this prerequisite could not be met since no one species
was present at every site. Due to the design of the study, this
was unavoidable trade-off; nevertheless, the supposed varia-
tion between the species had no effect on the eventual group-
ing of results. In the cases when two species were available at
one site, the concentrations were assessed according to the
recommendations of Halleraker et al. (1998). Necessary re-
quirements for disregarding the inter-species differences (sig-
nificant correlation between concentrations, species ratio
around 1) were satisfied. The most frequently sampled moss
species in the area was Brachythecium rutabulum (Hedw.)
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(66% of all samples). This moss grows in areas affected by
anthropogenic activity (Sucharová et al. 2008). Other
pleurocarpous mosses sampled were (in descending order of
frequency): Cirriphyllum piliferum (Hedw.) (12% of sam-
ples), Hypnum cupressiforme (Hedw.) (10%), Hylocomium
splendens (Hedw.), Brachythecium salebrosum Schimp. and
Eurhynchium hians (Hedw.).

The samples were transported to a laboratory on a daily
basis; here, they were left at constant ambient temperature
(20 °C) for 24 h and, then, manually cleaned. All extraneous
material (plant remains, visible particles) was removed and
green apical segments-representing the approx. 3-year
growth-were separated from shoots. The cleaned samples
were transported for the instrumental neutron activation anal-
ysis (INAA) to the Frank Laboratory of Neutron Physics, Joint
Institute for Nuclear Research in Dubna (Frontasyeva 2011).
The samples were analysed for the concentrations of Na, Mg,
Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br,
Rb, Sr,Mo, Cd, Sb, I, Cs, Ba, La, Ce, Nd, Sm, Tb, Tm, Hf, Ta,
W, Au, Th and U.

NAA applied within the IBR-2 reactor provides activation
with thermal and epithermal neutrons at low temperatures-
convenient for biological samples-and it is equipped with
the automatic system for sample transportation and measure-
ment (Pavlov et al. 2016). Neutron flux characteristics and
other technical details can be found in work of Frontasyeva
(2005). To determine elemental content in moss, samples
(approx. 300 mg a piece) were-after drying at 40 °C to con-
stant weight-pelletized and packed in polyethylene and alu-
minium cups for short-term and long-term irradiation, respec-
tively. Complete information about automation of the process
and improvement of the quality of analysis (labelling, storage
and recording of analysed samples, irradiations, measure-
ments and systematization of the results of analysis) can be
found in (Dmitriev and Pavlov 2013) and (Pavlov et al. 2016).

For short-term irradiation (Al, Br, Ca, Cl, I, In, Mg, Mn, Ti
and V isotopes), Channel 2 was used with irradiation time
about 3 min. Samples were measured immediately after irra-
diation for 15 min. For long-term irradiation (Cd), Channel 1
was used with irradiation time around 4 days (epithermal neu-
trons, flux densityφepi = 3.6 × 1011 n.cm−2.s−1). After cooling
for 4 days, the samples were repacked and measured twice.
The first time, directly after repacking, for 45min to determine
As, Br, Dy, K, La, Na, Mo, Sm, U andW and the second time,
20 days after the irradiation, for 1.5 h to determine Ba, Ce, Co,
Cr, Cs, Eu, Fe,Hf, Ni, Rb, Sb, Sc, Se, Sr, Ta, Tb, Th, W, Yb,
Zn and Zr. Gamma spectra of activated samples was measured
on HPGe detectors (resolution of 1.9 keV for the 60Co
1332 keV line). All the gamma-spectra obtained were proc-
essed using GENIE software (CANBERRA 2009), and con-
tent of each element in moss was calculated using the certified
reference materials and flux comparators via software devel-
oped in the FLNP (Pavlov et al. 2016).

The quality control of NAA results was ensured by
performing a simultaneous analysis of the reference material.
As nuclear reactions and decay processes are virtually unaf-
fected by the chemical and physical structures of the material
during and after irradiation, standards with different composi-
tions can be employed (Frontasyeva 2011). Following stan-
dard reference materials were used: 2711 Montana II Soil
from the National Institute of Standards and Technology
(NIST), 1633b Constituent Elements in Coal Fly Ash
(NIST) and BCR-667 Estuarine sediment (trace elements)
from the Institute for Reference Materials and Measurements
(IRMM). The reference materials and 10–12 moss samples
were packed together at each transport container. Thus, four
measurements of the reference materials were done for each
set of samples.

Air pollution modelling

In biomonitoring studies, the elemental content in moss tis-
sues is compared with the European Monitoring and
Evaluation Programme (EMEP) deposition modelling results
(e.g. Schröder et al. 2014; Schröder et al. 2013; Schröder et al.
2017; Harmens et al. 2012; Pacyna et al. 2009). Nowadays,
EMEP provides data on the atmospheric deposition of PM and
selected metals on a 0.1° × 0.1° longitude-latitude grid. This
resolution of the atmospheric deposition data is not detailed
enough to be compared with the present biomonitoring survey
.

Therefore, appropriate air pollution modelling in the area
was performed. The Czech reference methodology Symos’97
was applied (Bubník 1998). The Symos’97 model is a
Gauss ian plume model developed by the Czech
Hydrometeorological Institute (compare to Benson (1979) or
Cambridge Environmental Research Consultants (2017)).
This methodology is based on the application of the statistical
theory of turbulent diffusion formulated by Sutton (Sutton
1947). Input meteorological data are based on the processing
the real meteorological observations (wind direction, wind
speed and the average vertical temperature gradient in the
mixing layer). The annual average data on respective sources
(industry, transport, households) and annual average meteoro-
logical data is used. The respective pollution sources are com-
puted separately, which enables the evaluation of their contri-
butions to the total annual concentration in the calculation
point later on. To get more accurate concentration values,
modelling results are calibrated in accordance with the pollu-
tion monitoring data (Merbitz et al. 2012; Hoek et al. 2008).
Therefore, modelling output concentrations characterize the
pollution distribution more realistically and accurately and
the influence of different pollution sources on the air quality
in a specific location can be estimated.

Symos’97 enables the computation of pollution dispersion
both particulate and gaseous pollutants as well as dry
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deposition in the mesh of receptor points. The model was
implemented in the Python programming language using
numpy, pandas and multiprocessing modules, with a gravita-
tional settling speed of 0.5 cm s−1. (Lapple 1961).

The air pollution modelling was performed for PM10 at
receptors located on the moss sampling sites for the years
2012 and 2015. The emission data for 2012 were obtained
from the emission inventory carried out within the Air
Silesia project (AIR SILESIA n.d.), updated within the Air
Progress Czecho-Slovakia project (Air Progress Czecho-
Slovakia). The emission data for 2015 was acquired from
the database of the AIR TRITIA project.

The data regarding the terrain and meteorological data
needed for the modelling were also extracted from the results
of these projects. The outputs of the modelling were the an-
nual average PM10 concentration and the annual average
PM10 dry deposition at each sampling point. Only the results
of dispersion modelling were taken into account for further
analyses since the results of the deposition modelling were
found to be highly underestimated due to insufficiently de-
tailed input PM characteristics and no possibility of calibration
for lack of deposition monitoring in the area-only four depo-
sition monitoring sites are present in the area (Czech
Hydrometeorological Institute 2016). At each receptor, the
contribution of the respective pollution sources to the air pol-
lution at the site was quantified. This comprised the contribu-
tion of industrial sources, domestic boilers and traffic.
According to these contributions, the prevalent origin of air
pollution was determined.

Statistical analyses

All statistical analyses, as well as the visualization of the re-
sults, were performed in the R environment (R Core Team
2015). The measurements containing sub-limit values (round-
ed zeros) have to be removed from the dataset or suitable
values have to be imputed instead (Dray and Josse 2015) in
order to meet the principle component analysis assumption of
the complete dataset. For the imputation, expectation-
maximization-based replacement of rounded zeros in compo-
sitional data was applied using the impRZilr algorithm present
in the robCompositions package (Templ et al. 2011).

The lowest observed non-zero concentrations were taken
as a detection limit since neutron activation analysis detection
limits vary from sample to sample. The ilr-EM algorithm al-
lows imputation of unique non-zero values under the detection
limit (or lowest observed) value. This ensures that no distor-
tion of the multivariate analysis results due either to inappro-
priate imputation or undesirable removal of the information
from the dataset (when denoting them NA) is present.

The dataset with imputed values was further transformed
following the principles of compositional data analysis
(CoDa) in order to allow relevant multivariate analysis.

Since compositional data are non-Euclidean, their transforma-
tion into the Euclidean space is required (Pawlowsky-Glahn
and Buccianti 2011). The isometric log-ratio (ilr) transforma-
tion (Egozcue et al. 2003) was used since it allows the expres-
sion of the composition in orthonormal coordinates (hence it
better represents distances between points). Although-in com-
parison with another transformation methods-it prevents the
identification of the individual variables (by reducing the n-
dimensional space to n-1 dimensions), it is an ideal approach
for the analysis of the overall similarity between the elemental
composition of the samples collected on the individual
collecting sites.

The calculated results of dispersion modelling relevant to
the sampling sites (with PM10 concentrations predicted for
traffic, local heating and industrial sources) were transformed
using centred log-ratio (clr) transformation (Aitchison 2003).
This transformation is not orthogonal; on the other hand, it
allows identification of the individual variables, which was
desirable in this case. Principal component analysis (PCA)
followed by hierarchical clustering on principal components
(HCPC) was performed on the transformed data to discover
the clusters of sampling sites in the FactoMineR package
(Husson et al. 2015). The initial clustering based on Ward’s
method was supplemented by k-means consolidation to get
more robust clusters and more optimal partition in terms of
inertia criterion; the maximum number of iterations for k-
means set to ten (Le Ray et al. 2009).

For the characterization of the clusters, clr-transformed vari-
ables were also used since the ilr transformation, though better
suited for the distinction of the clusters, leads to loss of the
information on the individual variables; hence, the characteriza-
tion would be impossible. The values predicted by both the dis-
persionmodels-for the years 2012 and 2015-were assigned to the
identified clusters, disregarding the cluster comprising only one
site and one-way analysis of variance (ANOVA) in order to
assess whether the clusters based on the biomonitoring data are
characterizable by the values predicted by the models.

Results and discussion

Principal component analysis (PCA) showed that the first two
principal components account for more than 47% of the total
variation, while point 40 is the most unique observation. No
outliers-defined by measurements with a contribution to the
plane higher than three times the standard deviation-were de-
tected in the dataset. Nine first principal components-
accounting for 82.8% of explained variation-had eigenvalues
higher than one. On these nine principal components-or, more
precisely, on the scores of the measurements on these princi-
pal components-agglomerative hierarchical clustering
(HCPC) was performed; the rest of the variation was regarded
to be a random fluctuation (statistical noise).
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Five distinct clusters could be observed, while one sam-
pling point-the aforementioned unique point 40-had its own
cluster. The five-cluster cut of the dendrogram was the most
reasonable, mainly because of the highest relative inertia loss.
The resulting clusters are plotted on the results of the PCA in
Fig. 1. All the clusters are distinctly divided alongside the first
axis (Dim 1), only Clusters 3 and four 4 are more distin-
guished in their scores on the second axis (Dim 2). Cluster 2
appears to be the most heterogeneous, while Cluster 3 is the
most homogenous of all the clusters (disregarding the one site
forming a unique Cluster 1).

Interestingly, the species of themoss collected had no influence
on the clustering. This may be due to the fact that the interspecies
differences were negligible or that they were eliminated either by
the transformation of the data or during the first step of analyses-
the PCA pre-treatment. Indeed, when the PCA was performed on
untransformed data, significant relationship of species and the first
component was revealed; this was, however, not the case when
transformed data were assessed. Moreover, the process of
performing the clustering on principal component is able to disre-
gard the less important sources of variation in the dataset.

Тhe characterization of resulting clusters is presented in
Table 1.

Site 40 formed a unique cluster (Cluster 1), and, since the
cluster had too little observations to make a conclusive com-
parison with the modelling results, it was excluded from the
further analysis. The sample on this site was taken after the

rainy period, which could explain that elements connected
with the crustal composition are lower than average and phys-
iological elements (K, Mg) higher than average. The higher
than average concentration of Rb, Cs and Zn indicates the
association with primary ferrous metallurgy (Hlínová 2005;
Alleman et al. 2010; Larsen et al. 2008). Higher relative con-
centrations of Zn imply a possible connection to Cluster 3,
which is also supported by the geographical proximity of the
site and the sites comprising this cluster.

Cluster 3 is characterized by the elevated content of Fe,
Mn, Cr, W. These elements are typical for the iron- and
steelworks-related pollution. (Hlínová 2005; Alleman et al.
2010). Mn is a common element in austenitic steels produced
in local steelworks, while Cr and W are important solutes for
steel alloying in order to obtain special properties of steel
(Ghosh and Chatterjee 2010). Thus, the cluster can be deemed
to be most affected by the metallurgical industry in the sur-
veyed region. This is further shown in Fig. 2, where the sam-
pling sites and their corresponding clusters are plotted along
with the dominant sources of the pollution in the area (iron and
steelworks). Apart from site 9 (and partially site 23), all sites
belonging to Cluster 3 are in the vicinity of these pollution
sources. In the case of the sampling points 19, 41 and 24, the
dispersion of the pollution from the steelworks in the city of
Třinec is further strongly corroborated by the wind rose (Fig.
2) displaying the general direction of the wind in 2012. In the
valley delimited by two mountain ranges, on the northeast and

Fig. 1 Hierarchical clustering on
principal components (HCPC):
resulting clusters
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northwest, the respective sites belong to the same cluster af-
fected by the iron and steelworks industry. Sampling point 23
located at the mountain slope in the Protected Landscape Area
Moravskoslezské Beskydy, somewhat apart from the sub-
cluster forming around Třinec, may be influenced by both of
the Ostrava and Třinec Steelworks. Since there are no other
sources of pollution in the vicinity, long-range transport could
be the source of pollution in this sampling point.

In the case of Cluster 2, the origin of the pollution is not as
clear, although the correlation revealed a statistically signifi-
cant positive correlation between the relative concentrations
of Fe and Cr, Co and Zn (Pearson correlation coefficient of
0.82, 0.83 and 0.74, respectively). This could indicate a rela-
tion with the metallurgical industry in the region once again
(Raclavská et al. 2014). Ca relative concentration was signif-
icantly positively correlated with the relative concentration of

Fig. 2 Map of the surveyed area.
Sampling points are coloured
respective to their clusters. Wind
roses demonstrate prevailing
winds surrounding the primary
sources of pollution

Table 1 Elements most
characteristic for the clusters (clr-
transformed values)

Cluster Higher than average Lower than average

1 Rb, Ba, Cs, Mg, K, Mn, Zn Sc, Th, U, Sm, La, Cr, Hf, Al, Ce, V, Ta

2 Ca, Sr, Se, I, Zn Nd, Th, V, La, Ta

3 Fe, W, Cr, I, Mn Tb, Na, Ce, Tm

4 Tm, Nd, Na, Hf, Cl W, Ni, I, Se, Fe

5 Ce, Co, Sc, Tb, Th Br, Cl, Ca, I, K
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Mg and Ti (r = 0.78 and 0.7, respectively), which could imply
a connection with metallurgical industry as the correlation
with other elements connected with the crustal layer is absent.
Ca and Mg constitute base additives used in almost each step
of steel making process from agglomeration and blast furnaces
(dolomitic limestone, limestone, dolomite), to steel making
(lime, magnesite), and Ti is an important solute (Geerdes
et al. 2015; Sylvestre et al. 2017); this is further supported
by the fact that the correlation with other elements connected
with the crustal layer is absent.

Cluster 4 seems to be comprised of well-prospering
mosses, as the concentrations of elements related to the
proper vital function are high (K highest within all clus-
ters) and the respective sampling sites were in green
localities (woods, clearings, etc.) and, hence, they were
less influenced by anthropogenic activities. The bivariate

correlation assessment exposed a statistically significant
positive correlation between the relative concentrations
of Na and both K and Cl (r = 0.6 in both cases). The
content of Na and Cl higher than average together with
lanthanoids (Nd, Tm) can imply also the influence of
crustal contamination or mining (Matýsek et al. 2014).

Cluster 5 seems to represent sites contaminated by mineral
dust as the elements connected with the crustal composition
are significantly positively correlatedAl-Ta, Ti, V, Hf, La (r =
0.92, 0.9, 0.85, 0.83 and 0.8, respectively).

In the case of the 2012 models (Fig. 3), ANOVA showed a
significant difference between the identified clusters in PM10

values typical for industrial pollution sources for the disper-
sion model (p = 0.0102). In the case of the 2015 models, no
significant relationship between the observed clusters and pre-
dicted PM10 values was revealed at all.

Fig. 3 PM10 concentrations as predicted by the 2012 (left) and 2015 (right) model. a, b Linear sources. c, d Local sources. e, f Industrial sources
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Apparently, biomonitoring data-in particular, the character-
ization of the sampling sites by their clustering-reflects the
pollution in the studied region with a delay. The 2012 model
revealed an association of the predicted PM10 concentration
values and the biomonitoring-derived clusters, while the mod-
el for the year of the biomonitoring survey sampling (2015)
revealed no association at all. This accords with and confirms
the most elemental assumption of moss biomonitoring meth-
odology (Frontasyeva and Harmens 2014)-that moss accumu-
lates pollutants from the atmosphere for a more prolonged
period of time. Given that the recommendations of the ICP
Vegetation Monitoring Manual (ICP Vegetation 2014) leads
to collection of material up to 3 years old, no revealed associ-
ation between the biomonitoring results and the model based
on the situation in the same year (2015) was to be expected.
Although dispersion modelling for all the 3 years prior to the
biomonitoring was not possible mainly due to absence of his-
torical records at the Polish part of the study area, themodelled
year 2012 can be deemed as representing the preceding pol-
lution load well. Years 2013–2015 were, according to Czech
Hydrometeorological Institute (2016), rather similar in terms
of air pollution, while it was significantly lower than in the
years before (2010–2012). Association with the modelled air
pollution for the year 2012 is, hence, reflective of the ability of
moss to retain pollutants accumulated in the years prior to the
biomonitoring survey. Furthermore, as the most important and
specific local pollution sources define the concentrations
of particular elements in the moss tissue over a longer
period, this pollution can trace back even after emis-
sions reductions or a shutdown.

Conclusions

Multivariate analysis of the results of the biomonitoring
survey in a heavily polluted region performed on the
properly transformed data revealed clusters of sampling
sites closely related to the known pollution sources and
the geographical aspects of the assessed region. When
compared with the dispersion model-predicted PM10

concentrations related to the three prevailing sources of
pollution, the resulting clusters associated with the in-
dustry, specifically iron and steelworks, were identified.
The comparison of the modelling and biomonitoring in
this study is novel, and it confirms the presumed rela-
tionship between the accumulated pollutants in the moss
and the pollution in the surveyed region. Since the moss
reflected the pollution state years prior to the sampling
and not the state contemporary to the sampling, this
study brings further confirmation of the fact that moss
biomonitoring reveals atmospheric conditions typical for
a period of time prior to the sampling.
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