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Abstract

Landscape patterns in a watershed potentially have significant influence on the occurrence, migration, and transformation of
pollutants, such as nitrogen (N) and phosphorus (P) in rivers. Human activities can accelerate the pollution and complicate the
problem especially in a peri-urban watershed with different types of land use. To characterize the heterogeneous correlations
between landscape patterns and seasonal variations of N and P in a peri-urban watershed located upstream of Tianjin metropolis,
China, observations of total nitrogen (TN) and total phosphorus (TP) at 33 locations were performed in the wet and dry seasons
from 2013 to 2016. The data from individual locations were averaged for the wet and dry seasons and analyzed with geographical
detector to identify influential landscape indices on seasonal water quality variations. The geographically weighted regression
method, capable of analyzing heterogeneous correlations, was used to evaluate the integrated effects from different landscape
indices. The results demonstrated that the location-weighted landscape contrast index (LWLI), the ratio of urban areas, and the
ratio of forest areas were major influential indicators that affected TN and TP in river water. These indices also had integrated
effects on variations of TN and TP together with other indices such as Shannon diversity index, landscape shape index, largest
patch index, and contagion index. The integrated effects were different in the wet and dry seasons because of different effects of
flushing and dilution by rainwater and the heterogeneity in landscape patterns. The LWLI had a positive relationship to water
quality in the areas with high ratio of urban areas, indicating that domestic wastewater can be a major source of N and P pollution.
The approaches and findings of this study may provide a reference for characterizing the major factors and integrated effects that
control nonpoint source pollution in a watershed.

Keywords Nitrogen and phosphorus pollution - Landscape patterns - Geographical detector - Geographically weighted
regression - Integrated effects

Introduction resulting in eutrophication of the water bodies and deteriora-

tion of water quality in rivers (Bu etal. 2014; Liu etal. 2018a).
A wide range of human activities may cause discharge of =~ Landscape patterns in a peri-urban watershed, an interaction
nitrogen (N) and phosphorus (P) into water environments,  zone with adjacent urban and rural activities, may undergo
modifications by human activities (Li et al. 2018; Lantz
et al. 2013). Rivers are an important component of a water-
shed landscape, and changes in river water quality are closely
related to landscape patterns. (Mello et al. 2018). The land-
scape pattern in a catchment can be characterized by land-
scape types, or types of land use and structure, and has a
significant impact on the hydro-ecological processes within
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be used to control and manage water quality in a watershed
(Uuemaa et al. 2007; Xu et al. 2019a). Although several case
studies on relationships between landscape patterns and water
quality in catchments are available (Tu 2013; Han et al. 2014;
Chen et al. 2016), most of them are focused on landscape
composition and structure, such as the percentages of land
use type and the impacts of landscape indices on water quality.
Because of the complexity of water body pollution processes,
approaches that analyze the spatial distribution and integrated
effects of different areas and landscape indicators on water
quality remain to be explored (Wu and Lu 2019).

Statistical analyses such as correlation analysis, principal
component analysis, and conventional linear regression can be
used to analyze the effects of landscape patterns on river water
pollution. In addition, multivariate stepwise regression and
redundancy analysis can also be used to evaluate the factors
that cause seasonal variations in river water quality (Yu et al.
2016; Wu and Lu 2019; Xu et al. 2019b). However, all these
methods are based on global statistics so that spatial changes
in influential factors are difficult to consider. The spatial het-
erogeneity may have significant influence on nitrogen and
phosphorus pollution, but this topic has not been addressed
so far for a watershed and cannot be evaluated with traditional
linear statistical approaches. The objectives of this study were
twofold: 1) to identify influential landscape indices that may
affect seasonal variations of water quality in rivers and 2) to
evaluate heterogeneous correlations between landscape pat-
terns and water quality in rivers caused by the integrated ef-
fects of different landscape indices. To realize these objec-
tives, the geographical detector method, a novel method based
on spatial variance analysis (Wang et al. 2010, 2016), and the
geographically weighted regression method (Fotheringham
et al. 2002; Robinson et al. 2013; Chu et al. 2018), which
can evaluate spatial variations in the relationships between
dependent and independent variables, were adopted for the
first and second objectives, respectively. The methods were
then used to analyze the data associated with total nitrogen
(TN) and total phosphorus (TP) measured in river water at 33
points from 2013 to 2016 in the Yugiao watershed. This wa-
tershed contains the Yugiao reservoir, the only one water sup-
ply source for Tianjin city, the third largest municipality of
China, and with a population over 15 million (Wu et al. 2019;
Wen et al. 2019). The study on water quality in Yugiao wa-
tershed is very important for the security of water resource for
Tianjin Municipality.

Study area
We selected the Yugqiao watershed as the study area because
previous fundamental study based on stepwise regression and

redundant analysis illustrated that the watershed contains
complicated landscape structures (Zhang et al. 2017), which
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can be preferable for the study on spatial heterogeneity. The
Yugiao watershed extends across 39° 56" N-40° 23’ N and
117° 26" E-118° 12’ E and has a total area about 2060 km®
(Fig. 1). It is located about 4 km east of Jizhou District in the
north of Tianjin municipality, in the southern part of Hebei
Province, China. The terrain descends from northeast to south-
east, with mountains in the northwest, plains in the middle,
and hills and low mountains in the south parts. Major soil
types within the watershed are brown and cinnamon soils.
The location belongs to a warm, continental monsoon region,
with a semi-humid climate and an average annual precipita-
tion greater than 700 mm. The average temperatures in the dry
(April to June) and wet (July to September) seasons were
about 19 °C and 24.5 °C, respectively, during the years
2013-2016. According to the data measured at one of the
weather stations established within the Yuqiao watershed,
the accumulated precipitations during the dry season were
about 130 mm, 270 mm, 180 mm, and 200 mm, and the
accumulated precipitations during the wet season were about
550 mm, 375 mm, 320 mm, and 347 mm in each year between
2013 and 2016. Major rivers that flow into the basin are the
Sha, Lin, and Li rivers. Villages and towns are widely distrib-
uted in the basin with a population about 800,000, and various
types of pollution may affect the water quality in the rivers
running across the watershed (Wen et al. 2019). To analyze
the water environment within the watershed in detail, the basin
catchment area was divided into 33 sub-basins using the hy-
drology toolset in ArcGIS and 1:50,000 DEM. To avoid po-
tential influence of the water diversion project, divisions of
sub-basin were concentrated in the upstream and middle areas
of the basin.

The watershed mainly consists of forest, urban, orchard,
bare, grass, and farm lands (Fig. 1). Landscape patterns were
unchanged from those reported in Zhang et al. (2017), which
were analyzed with the Landsat 8 remote sensing image taken
in 2013. In this study, the land use data were extracted and
interpreted from the Landsat 8 remote sensing image taken in
August 2015. The types of land use in each sub-basin were
characterized with the same approach used in Zhang et al.
(2017), and shown in Fig. 2.

Methods
Sampling and water quality analysis

Sampling of river water was performed at the downstream
point of each sub-basin (a total of 33 sub-basins; Fig. 1) in
the dry (April to June) and wet (July to September) seasons
from 2013 to 2016. Sampling during the dry season was ba-
sically performed every month in the middle of month, and
sampling during the wet season was performed after moderate
rains (> 10 mm/24 h) and heavy rains (> 25 mm/24 h). A total
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Fig. 1 The location of and land
use in Yuqiao watershed
(modified from Zhang et al. 2017)
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of 957 samples were collected and analyzed over the 4-year
period. The sampling procedures were conducted in accor-
dance with the “technical specifications requirements for
monitoring of surface water and wastewater” issued by the
China’s State Environmental Protection Administration (HJ-
T91-2002). We took 500 ml of water from each point, sealed it
within a glass bottle, and kept the temperature below 4 °C
during transportation and storage before laboratory analyses.
The study objectives were to characterize the heterogeneous
correlations between the landscape patterns and seasonal var-
iations in river water quality, so TN and TP were selected as
indicators for pollution, although both nitrogen and
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phosphorus have different forms in natural conditions. TN
and TP in water samples were analyzed with the alkaline po-
tassium persulfate digestion UV spectrophotometric method
and ammonium molybdate spectrophotometric method de-
scribed by Chinese GB11894-89 and GB11893-89, respec-
tively, with reference to the GB3838-2002 on environmental
quality standards for surface water.

Landscape metric analysis

Landscape metrics were calculated with FRAGSTATS (ver-
sion 4.2), a commercialized software that is designed to
Farm ® Orchard Grassland = Water

Bare

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Sub Watershed

Fig. 2 Composition of land use types in individual sub-basins in Yuqiao watershed (updated from Zhang et al. 2017)

@ Springer



34070

Environ Sci Pollut Res (2020) 27:34067-34077

compute a wide variety of landscape metrics for categorical
map patterns. Six landscape indices, specifically Shannon’s
diversity index (SHDI), contagion index (CON), landscape
shape index (LSI), edge density (ED), largest patch index
(LPI), and patch density (PD) were selected for the computa-
tion. Table 1 briefly summarizes the functions and roles of the
individual indicators (Peng et al. 2010). In addition, the
location-weighted landscape contrast index (LWLI), a scale-
independent approach for landscape pattern evaluation based
on source-sink ecological processes, was also used. This index
was calculated using Egs. 1 and 2 (Chen et al. 2009):

LWLl =3" A; x W; X AP,

+ XA X Wi X AP+ 3718 x W) x AP;
(1)

LWLI = LWLI distance x LWLI elevation
= LWLI slope (2)

where A; and S; refer to the areas of the ith “source” and jth
“sink” landscapes; W; and W; are the weights for the “source”
and “sink” landscapes; AP; and AP, refer to the percentages of
the i-source and j-type landscapes; and m and n are the num-
bers of “source” and “sink” landscape types, respectively.
LWL gistances LWLI clevations and LWLI gjope are the values
of LWLI with respect to the distance, relative elevation, and
slope gradient, respectively. We categorized forest and grass-
land as “sink” landscapes while farm, urban, and orchard
lands as “source” landscapes. The weights for the forest,
grassland, farmland, urban land, orchard land, and bare land
were assigned to be 0.8, 0.6, 0.4, 1.0, 0.4, and 0.5, respective-
ly, with reference to Chen et al. (2009).

Geographical detector

Geographical detector is a novel tool originally proposed by
Wang et al. (2010, 2016) for investigating spatial stratified
heterogeneity. The basic principle of geographical detector is
to compare the spatial consistency of driving forces (e.g., the
types of land use and landscape indices) with relevant resul-
tant outcomes (Wang et al. 2010) such as water quality (TN

Table 1

and TP in river water in this study). This technique assumes
that a risk exhibits a similar distribution as the factors that lead
to the risk. The power of the determinant value, corresponding
to the significance of effects of a landscape index or land use
type in this study, for the geographical detector, is defined in
Eq. 3 (Wang et al. 2016):

él i <Yhi_?h> ’
o (Yi—?) ’

L
Y Npop
=1 No2 !

_SSW
SST

qg=1- (3)

where 4 = (1 to L) is the number of classification; N, and N
are the number of sampling units in layer /# and the whole
region, respectively; andoy, and o are the variances of the layer
h and whole region, respectively. SST and SSW are the total
sum of squares and within sum of squares, respectively. The
g-statistic is a monotonic function of the strength of the spatial
stratified heterogeneity and ¢€[0, 1]. It increases as the
strength of the stratified heterogeneity increases, meaning that
a larger ¢ value corresponds to more significant effects of a
landscape index or land use type on water quality.

The most important advantage of geographical detector
over traditional approaches is that there are less assumptions
and less constraints. The tool can be used to filter out and
differentiate the relative importance of determinants based
on spatial variation (Liu et al. 2018b). This method has recent-
ly been used to analyze the factors affecting the loss of phos-
phorus from soils (Liu and Wang et al. 2018) and the sources
for heavy metal pollution in basins (Luo et al. 2019).

The interaction detector in the geographical detector meth-
od can be used to examine whether two (or more) factors (X,
X5) have an interactive influence on a response variable
through comparison of ¢ values (Zuo et al. 2018; Luo et al.
2019). A description of the interactive relationships between
two factors is tabulated in Table 2.

Geographically weighted regression

Geographically weighted regression is an extension of tradi-
tional least squares regression that allows a model, i.e., the
relationships between dependent and independent variables,

The functions and roles of major indices describing landscape patterns

Index Function and role

Shannon’s diversity index (SHDI)
Contagion index (CON)
Landscape shape index (LSI)

Reflects the diversity or heterogeneity of landscapes
Reflects the observed contagion over the maximum possible contagion for the given number of patch types

Reflects the complexity of landscape patch shapes and provides a measure of class aggregation

Quantifies the percentage of total landscape area comprised by the largest patch at the class level

Edge density (ED) Reflects the degree of landscape fragmentation
Largest patch index (LPI)
Patch density (PD) Quantifies the number of patches per unit area
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Table 2 Types of interactive

relationships between two factors Description

Interaction

defined in geographical detector ]
g(X1NX2) < Min(g(X1),q(X2))

Min(g(X1).q(X2)) < g(X1NX2) < Max(q(X1),q(X2))

q(X1NX2) > Max(q(X1),q(X2))
gX1NX2) = X1+ q(X2)
g(X1NX2) > g(X1)+ q(X2)

Weakened, nonlinear

Weakened, single factor nonlinear
Enhanced, double factors
Independent

Enhanced, nonlinear

to vary over space so that spatial heterogeneity can be consid-
ered (Fotheringham et al. 2002). The regression coefficient /3
is no longer a global constant but becomes a dependent con-
stant, [3;, to the spatial position. The regression models that
underlie geographically weighted regression are expressed in
Eq. 4:

yi = Bo(ui,vi) + él Bz, vi)xix + € (4)

where x; and y; are the independent and dependent vari-
ables, respectively; (u;, v;) is the coordinate of ith sampling
point; By (u;, v;) is the kth regression coefficient obtained for
the sampling point 7; and 3 (u;, ;) and ¢; are the intercept and
residual obtained from the model for the sampling point i,
respectively.

The regression coefficient, 3y (#; v;), can be estimated
using the method of weighted least squares with the weights
defined with Eq. 5:

Wi = exp [_% (d"/b)z] (5)

where w;; is the weight given to data point j for the estima-
tion of local parameters at point i; d;; is the distance between
the points 7 and j; and b, named kernel bandwidth, is a non-
negative attenuation function describing the relationship be-
tween the weight and distance (Purwaningsih and Erfiani
2015). A fixed value of b was adopted and was determined
by minimizing Akaike’s information criterion in this study (da
Silva and Mendes 2018).

Geographically weighted regression has been applied to
study the effects of landscape structure, such as the types of
land use (Tu 2013; Chen et al. 2016) and population density
(Chen et al. 2016) on regional water quality. Tu (2013) con-
cluded that geographically weighted regression has better
model performance than ordinary least squares regression.
The effects of landscape pattern indices, however, were not
examined in their studies. In general, geographically weighted
regression is limited by collinearity among variables, and the
significance of collinearity increases with an increase in the
number of variables. To avoid this limitation, we used geo-
graphical detector to filter out the landscape indices with ¢ <
0.5 that do not have significant effects on the river water

quality and to reduce the number of variables before the geo-
graphically weighted regression analysis.

After the geographically weighted regression, the ¢ values
for local parameter estimates were further determined through
t tests, because the ¢ test can be used to analyze the signifi-
cance of parameter estimates as an effective exploratory tool
(Malczewski and Poetz 2005; Jaimes et al. 2010; Tu 2013). If ¢
> 0, it means that the influential factor (i.e., a landscape index
or a type of land use) has a positive relationship with the result
(i.e., water quality in this study). If # < 0, the relationship
becomes negative. The bigger the absolute value of ¢, the more
significant the effect of landscape index or the type of land use
will be on river water quality. The p value can be determined
from the ¢ value and its degree of freedom. When the signif-
icance level a = 0.01, the corresponding ¢ value equals + 2.59;
when « = 0.05, the corresponding ¢ value equals + 1.97; and
when a = 0.1, the corresponding ¢ value equals + 1.65.

Results
Water quality

The TN and TP in river water collected at each of the 33
sampling points during the wet and dry seasons between
2013 and 2015 did not show significant variations (Zhang
et al. 2017). The values were averaged with the water quality
data from 2016 and depicted in Fig. 3 a and b. The TN ranged
from 2.10 to 18.80 mg/L and 1.16 to 22.00 mg/L in the wet
and dry seasons, respectively, and the TP ranged from 0.20 to
1.96 mg/L and 0.04 to 0.56 mg/L in the wet and dry seasons,
respectively. Note that TN and TP are shown on different
scales because the TN concentration is several times higher
than the TP concentration. The concentrations of TN and TP
have significant spatial heterogeneity.

Effects and integrated effects of landscape patterns
on river water quality

The value of ¢ reflects the significance of the relationships
between each landscape index or the type of land use and river
water quality in the wet and dry seasons, estimated by the
geographical detector (Fig. 4). The first column states the
factors (i.e., landscape index and land use type) that have
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Fig. 3 The average concentrations of TN and TP measured at each sampling point in wet and dry seasons in Yuqiao watershed from 2013 to 2016

significant effects (¢ > 0.5). The second column states the
factors that affect river water quality but are not significant
(g <0.5). The third column states the integrated effects of the
two factors listed in the first and second columns.

Factors that had strong positive effects on river water
quality

A positive ¢ value obtained from the ¢ test corresponds to
positive effects, and the value of p obtained from the ¢ test
can be used to evaluate the significance of the effects of a
landscape pattern indicator (either landscape index or land
use type) on river water quality. Landscape indicators that
had strong positive effects on TN and TP in river water are
shown in Fig. 5. The sub-basins that had the effects from
LWLI (p < 0.1 and p < 0.01) and from Urban% on TN (p <
0.1 and p < 0.05) in wet and dry seasons are shown in Fig. 5 a
and b, respectively. The sub-basins that showed the effects
from LWLI (p < 0.05) and Urban% on TP (p < 0.1 and p <
0.05) in wet and dry seasons are shown in Fig. 5 ¢ and d,
respectively. TN and TP concentrations followed different
trends, which were also different between wet and dry sea-
sons, as the plots showing significant effects from the land-
scape indices (i.e., the LWLI and Urban%) are located in
different sub-basins and have different significance levels
(p values).

Factors that had strong negative effects on river
water quality

A negative ¢ value obtained from the 7 test corresponds to
negative effects. The ratio of forest areas (For%) was charac-
terized as the only factor that had strong negative effects on
river water quality (Fig. 6), where Fig. 6a shows the sub-

@ Springer

basins that had strong negative effects on TN (p < 0.1) in the
dry season (but not for the wet season), and Fig. 6b shows the
sub-basins that had strong negative effects on TP (p < 0.1) in
both the wet and dry seasons.

Discussion

Spatial distribution and seasonal variations of TN and
TP

The differences in concentrations of TN and TP varied
between sampling points, indicating that the strong spatial
heterogeneity and/or landscape patterns may have signifi-
cant effects on the spatial distribution of TN and TP in
river water (Fig. 3). Such spatially heterogeneous correla-
tions cannot be simply analyzed with traditional statistical
analyses based on global statistics. A method that con-
siders spatial heterogeneity, such as the geographical de-
tector and geographically weighted regression methods
adopted in this study, should be used for the analysis of
the relationships between landscape patterns and river wa-
ter quality. Compared with N, the P concentration signifi-
cantly decreased in river water in the dry season, suggest-
ing that the ratio of particulate phosphorus to dissolved
phosphorus is high, and that rainfall is a key factor con-
trolling the migration of P in the watershed.

Effects of individual landscape indicator on river
water quality

Overall, a series of landscape indicators independently affect-
ed river water quality, with ¢ values varying from 0.1 (ED and
CON for TP in wet season) to 0.86 (LWLI for TN in dry
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Fig. 4 The values of ¢ estimated independently for each landscape
indicator (1st and 2nd columns) and under combination of two
landscape indicators (3rd column). *, ** and *** indicate that the
p values with significance levels a = 0.05, 0.01, and < 0.001,
respectively. LWLI, Urban%, and For% denote the location-weighted

season; the first two columns in Fig. 4). The LWLI, For%, and
Urban% were strongly related to the TN and TP in river water
both in wet and dry seasons (the first column in Fig. 4, ¢ >
0.5). The tendencies associated with the effects of For% and
Urban% were consistent with the findings reported by Chen
et al. (2016), Tu (2011, 2013), and Xu et al. (2019a). Human
activities are concentrated in urban areas, inducing the release
of nitrogen and phosphorus to the environment. The forest can
act as a filter to capture both nitrogen and phosphorus (Mello,
et al. 2018).

The average g values of the three indicators for TN and
TP were 0.65, 0.60, and 0.58, respectively. Among these
three indicators, the LWLI had the strongest relationships
(p < 0.05; the first column in Fig. 4, and Fig. 5) with TN

ED(0.13) ——— For% N ED(0.92) |
For% | SHDI(0.18) —— For% N SHDI(0.94)
(0.68*™) <CON(O.16)—{F«% N CON(0.96)
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LPI(0.29) urban% N LP1(0.88)
SHDI(0.18) ———urban% () SHDI(0.94)
LSI(0.22) —— urban% N LSI(0.98) |

urban%
(0.54™)

ﬂ

landscape contrast index, ratio of urban areas, and ratio of forest areas,
respectively. PD denotes patch density, LPI denotes the largest patch
index, ED denotes edge density, CON denotes contagion index, SHDI
denotes Shannon’s diversity index, and LSI denotes landscape shape
index, respectively

and TP in river water. The LWLI is an integrated index
that considers the landscape patterns, spatial distance, and
geographical characteristics (Chen et al. 2009; Wang et al.
2018), and it was the most effective indicator for evalu-
ating the effects of landscape pattern on river water qual-
ity in the study area.

A more detailed examination found that the relation-
ships between the indicators and water quality were dif-
ferent in wet and dry seasons (Fig. 5). In the wet season,
the relationships between the influential landscape indica-
tors, especially the LWLI, with TP were stronger (p <
0.05) than those with TN (p < 0.1). The tendency was
opposite in the dry season with p < 0.05 and p < 0.01
for TP and TN, respectively. In general, rainfall in the wet
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phosphorus can be washed into rivers by rainfall in the
wet season, resulting in the increase in measured TP con-
centration in the water (Han et al. 2014). Nitrogen has
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organic nitrogen, among which nitrate is most easily lost
to water. Compared with phosphorus, nitrogen is relative-
ly soluble and the TN concentration in river water is rel-
atively high. Rainwater can dilute nitrogen in rivers and
decrease in TN concentration in the wet season.
Wastewater and leaching from city rubbish are a major
source of nitrogen and can result in higher nitrogen con-
centrations compared with phosphorus (Han et al. 2014).
Similar results were also reported by Li et al. (2016) and
Cui et al. (2018).

In the wet season, the effects of Urban% on TN were con-
centrated in the areas with low Urban% (Fig. 5a). In areas with
a higher ratio of orchard land, rainwater flushes the nitrogen
(especially nitrogen fertilizers) from the soils in orchard lands
and increases the concentration of N in related sub-basins (Tu
2013). In the dry season, the areas that had higher effects from
LWLI were concentrated in the areas with high Urban% (Fig.
5 b and d). In such areas of high human activity, leaching from
livestock wastes increases soluble nitrogen and phosphorus in
related sub-basins (Bu et al. 2014).

Although the effects were not significant (¢ < 0.5), other
types of land use, such as the ratio of farm land areas and the
ratio of grass land areas, and landscape indices such as the PD
and LSI also showed co-relationships with the river water
quality (the second column in Fig. 4). The ¢ values for the
wet (¢ = 0.26 for LSI for TP in wet season) and dry (g = 0.32
for LSI for TN in dry season) seasons were different, indicat-
ing that river water quality has seasonal variations and de-
pends on land use and landscape patterns.

Integrated effects of landscape indicators on river
water quality

The estimated values of g under combined conditions (the
third columns in Fig. 4) were greater than those estimated
independently for individual landscape indicators (the first
and second columns in Fig. 4). Many of them had enhanced,
nonlinear interactions with g(X1NX2) > g(X1) + ¢(X2) and
enhanced, double factors interactions with g(X1NX2) >
Max(q(X1), g(X2) (refer to Table 2 for interaction
definition). These results indicated that the two indicators
were interactive and had integrated or enhanced effects on
river water quality. The landscape indicators, such as SDHI,
CON, LSI, ED, LPI, and PD had low, independent effects (p >
0.05) on river water quality (the second column in Fig. 4) but
had enhanced effects when combined with an indicator that
had significant effects on river water quality (the first column
in Fig. 4). For example, the ¢ value for describing the signif-
icance of the relationships between the LWLI and TN was
0.57 in the wet season but increased to 0.93 when combined
with the SHDI having an independent, low ¢ value of 0.12.
Similar examples can be found from most of the combinations
given in Fig. 4. These results indicated again that the

independent use of landscape indices as the factors for evalu-
ating their effects on river water quality is not sufficient. In
other words, the evaluation of the integrated effects based on
the geographical detector is much more effective.

In the wet season, SHDI showed enhanced effects on TN in
the rivers located in sub-basins having high values of the
LWLI (Fig. 5a), where human activities, land use, and hetero-
geneity of landscapes can induce integrated effects. The LSI
had a positive effect on TN in the dry season and on TP in the
wet and dry seasons (Fig. 5 b, ¢, and d), because more com-
plex landscape fragments contribute more to the release of
nitrogen and phosphorus (Xu et al. 2019a).

LPI had negative effects on TN in the dry season (Fig. 6a),
because the forest and grass land with large areas can capture
the nitrogen (Xu et al. 2019a). CON had negative effects on
TP in both wet and dry seasons (Fig. 6b), consistent with
reports by Xu et al. (2019b) and Guo et al. (2018).

Significance of the t test

The use of ¢ test enabled the determination of whether the
effects of a landscape indicator on river water quality was
positive or negative (¢ > 0 or ¢ < 0), while simultaneously
judging the significance of the effects based on p value (Fig.
5 and Fig. 6). The LWLI and the Urban% had strong positive
effects (Fig. 5), while the ratio of forest, For%, had strong
negative effects (Fig. 6). The results were consistent with the
findings reported in previous studies (Chen et al. 2016; Tu
2011,2013; Xuetal. 2019a). In addition, these results indicate
that forests capture both nitrogen and phosphorus, and human
activities (in urban areas and those involved in LWLI) are a
major source of nitrogen and phosphorus pollution.

A detailed examination of the data revealed that in the wet
season, the effects of LWLI and the Urban% on TN were
concentrated in the areas having high SHDI and low
Urban% (Fig.5a), whereas their effects on TP were concen-
trated in the areas having high LST and high Urban% (Fig. 5¢).
In the dry season, the effects of LWLI and Urban% on both
TN and TP were concentrated in almost the same areas having
high Urban% and high LSI (Fig. 5 b and d).

The effects of For% on water quality showed spatial-
temporal differences (Fig. 6). The effects of For% on TN were
not significant (p > 0.1) in the wet season, whereas the effects
were significant in the dry season (p < 0.1). The effects of
For% on TP were significant both in the wet and dry seasons
(p <0.1). High values of  were concentrated in the area hav-
ing high LSI. The integrated effects of For% and LSI were
enhanced when combined. Negative effects of For% on TP
were concentrated in the area having low CON, meaning that
their integrated effects were significant. These results indicat-
ed the effectiveness of evaluating the integrated effects of
combined landscape indicators based on geographically
weighted regression.
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Conclusions

Landscape patterns potentially affect the quality of river water
in a watershed. In this study, we examined the effects of dif-
ferent kinds of landscape indicators, specifically the types of
land use and landscape indices capable of describing the land-
scape structure, on TN and TP in the rivers in Yuqiao water-
shed at Tianjin, China, using the methods of geographical
detector and geographically weighted regression. The major
conclusions drawn from this study can be summarized as
follows:

1) Compared with the Urban%, For%, and other landscape
indicators, LWLI was the most effective index for evalu-
ating the effects of landscape patterns on river water qual-
ity in the study area.

2) Independent use of landscape indices, such as SHDI,
CON, LSI, ED, LPI, and PD, was not effective for eval-
uating effects on river water quality. Their effects were
nonlinearly enhanced when combined with an indicator
having significant effects such as LWLI, Urban%, and
For%. The use of geographical detector, which considers
the integrated effects of two landscape indicators, was
effective.

3) The effects and integrated effects of landscape pat-
tern indicators on river water quality were more
significant in the dry season than in the wet season,
especially for TP, indicating that rainfall is a driving
force for the migration of pollutants in the water-
shed. Flushing and dilution of soluble nitrogen and
dissolved and particulate phosphorus, along with re-
lease of nitrogen and phosphorus from human activ-
ities and capture by the forest, were the major
mechanisms for dynamic change in the watershed.

4) The use of ¢ tests enabled simultaneous evaluation of ei-
ther positive or negative effects and the significance levels
of the effect. Simultaneously using ¢ test for detailed ex-
amination of the effects of landscape patterns on river
water quality in the watershed was effective.

The approaches and findings of this study provide a meth-
od for finding critical source areas with significant effects on
nonpoint source pollution in a watershed considering spatial
heterogeneity. Further studies, such as on the correlations be-
tween landscape patterns and the existing forms of N and P,
will be performed in the future.
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