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Abstract
In the context of the continued increased global uptake of fingerprinting procedures to explore fluvial sediment sources, far less
attention has been paid to dust source tracing and especially using different particle size fractions and low-cost tracers such as
colour and magnetic susceptibility. The objective of this study, therefore, was to apportion local dust storm source contributions
for the < 63-μm and 63–125-μm fractions of dust samples in a case study in central Iran. Colour and magnetic susceptibility
properties were measured on 62 source samples and six dust storm samples. Statistical methods were used to select four different
composite fingerprints for discriminating the dust sediment sources. These statistical approaches comprised (1) the Kruskal–
Wallis H test (KW-H), (2) a combination of KW-H and discriminant function analysis (DFA), (3) a combination of KW-H and
principal components and classification analysis (PCCA), and (4) a combination of KW-H and a general classification and
regression tree model (GCRTM). Local dust source contributions were ascribed using a Bayesian un-mixing model using the
final composite fingerprints. For both the < 63- and 63–125-μm fractions, the different composite signatures consistently
suggested that alluvial fan material was the dominant source of the dust samples. The root mean square differences between
the apportionment results using the different fingerprints ranged from 0.5 to 1.6% for the < 63-μm fraction and from 1.8 to 5.8%
for the 63–125-μm fraction. The Wald-Wolfowitz runs test was used to compare the posterior distributions of the predicted
source proportions created using the alternative final composite fingerprints and the results indicated that most of the pairwise
comparisons were significantly different (p ≤ 0.05). For the < 63-μm fraction, the RMSE and MAE estimates of divergence
between the modelled and known virtual source mixtures using the different final composite signatures ranged between 1.5 and
23.4% (with a correspondingmean value of 9.4%). The equivalent estimates for the 63–125-μm fractionwere 1.2–20.1% (8.3%).
The findings clearly demonstrate that colour and magnetic susceptibility tracers offer low-cost options for apportioning dust
sources.
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Introduction

The total annual rate of storm dust mobilisation on arable land
by wind erosion has been estimated to be ~ 2 Gt year−1 and
approximately 40% of the Earth’s surface (~ 4.3 million km2

of dry-land) (Ravi et al. 2011) is prone to erosion by wind
(Thomas andMiddleton 1997). In a review of the dust cycle as
an emerging phenomenon, Shao et al. (2011) included the
results of 13 studies that estimated total global dust emissions
to be in the range of 500 to ~ 3320 Tg year−1. Storm dust is
therefore a global environmental problem worthy of attention.
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More than two-thirds of Iran’s land area is subject to arid and
semi-arid climates with deserts covering approximately 20% of
the area. Wind erosion has been estimated to be affecting ~ 20
million hectares of land (NAP 2005). Storm dust phenomena
occur frequently in Iran. The average dust storm days has been
reported to vary between 23 and 80 days per year (Middleton
1986). The socioeconomic impacts of storm dust include
compromising visibility, health problems (especially ophthal-
mic and respiratory diseases), and soil loss from crop land fields
(Al-Hemoud et al. 2019; Reheis 2006). Information on storm
dust provenance is therefore an important requirement for de-
veloping targeted abatement strategies. The results of a study
based on remote sensing techniques by Prospero et al. (2002)
showed that the dominant dust sources are alluvial materials
deposited by irregular periodic flooding during the Quaternary
and Holocene. In arid and semi-arid lands more generally, al-
luvial material is deposited during storm rainfall events, thereby
providing a potential source of wind-erodible material (Ginoux
et al. 2012). Protecting different environments from the inva-
sion of aeolian sediments (sand dunes and storm dust) and
associated pollutants requires techniques that can answer key
questions such as which land use types or landforms are key
sources of local storm dust in impacted areas? Assessment of
storm dust sources is vital to educate people in impacted areas
so that they can manage the dust issue which is degrading
social, environmental, and economic pillars of sustainability.
Therefore, there is an ongoing need for research to quantify
the contributions of individual dust sources for targeting best
management practices for wind erosion control.

The concept of sediment source fingerprinting was origi-
nally developed to un-mix fluvial sediments into multiple
sources using different tracers. A key stage in the fingerprint-
ing approach concerns the discrimination of potential sources
and, to date, different multivariate statistical methods have
been used to identify composite signatures comprising differ-
ent sets of tracers (Collins et al. 2012; Nosrati and Collins
2019a; Nosrati and Collins 2019b; Nosrati et al. 2018;
Palazón et al. 2015; Palazón and Navas 2017; Pulley et al.
2017; Tiecher et al. 2015).

Applications of the fingerprinting approach to assess aeo-
lian sediment provenance using alternative composite signa-
tures have recently (since 2016) started emerging in the inter-
national literature, but these studies focus on sand dune sedi-
ment rather than storm dust. More recently (2019 to 2020),
two papers were published in the specific case of source fin-
gerprinting atmospheric dust using GLUE and Monte Carlo
simulation (Behrooz et al. 2019; Gholami et al. 2020). In
recognition of the latter gap in current applications of the
fingerprinting approach and the need for further work, we
tested colour and magnetic susceptibility properties for tracing
storm dust origin using Bayesian un-mixing model. Magnetic
susceptibility measurements have been widely used in several
fields (Asgari et al. 2018; Bourliva et al. 2018; Caitcheon

1993; Karimi et al. 2013, 2017; Mathé and Lévêque 2003;
Morris et al. 1994; Shenggao 2000; Valaee et al. 2016), but
not for tracing storm dust sources. The same is true of colour,
since previous work has used colourimetric properties to in-
vestigate fluvial sediment sources (e.g. Martínez-Carreras
et al. 2010). Existing studies applying sediment source finger-
printing to estimate sand dune and storm dust provenance
have primarily used elemental geochemistry (e.g. Behrooz
et al. 2019; Gholami et al. 2019a; Gholami et al. 2017,
2019b, 2020; Liu et al. 2016; Muhs and Budahn 2019) and
end-users therefore need evidence of the potential utility of
alternative types of tracers for understanding the source dy-
namics of aeolian sediment. Dust storms in the Bahadoran
region study area started ~ 10 years ago due to droughts,
groundwater scarcity, vegetation loss, and land use change.
The on-site and off-site effects of storm dust in the study area
comprise soil loss from crop lands, decreasing agricultural
production, and reductions in land utility compromised visi-
bility, as well as health problems. Assembling reliable evi-
dence for targeting abatement measures is therefore a local
policy priority. On this basis, the objective of this study was
to apportion local source contributions to the < 63- and 63–
125-μm fractions of dust samples in a case study in central
Iran using colour and magnetic properties in conjunction with
a Bayesian un-mixing model. We tested colour and magnetic
properties since these are low cost and thereby accessible to
more researchers interested in applying the fingerprinting ap-
proach to dust problems in arid and semi-arid environments.

Materials and methods

Study area

The study area, known as the Bahadoran region or plain
(3345.4 km2), is located to the south-east of Mehriz city,
Yazd Province, in central Iran between 54° 39′ 03″ to 55° 20′
46″ E longitude and 30° 39′ 33″ to 31° 35′ 35″ N latitude (Fig.
1). The Bahadoran is a small plain within the larger Yazd-
Ardakan plain and is characterised by relatively fertile soils,
considered to be one of the major agricultural and pistachio
production areas in Yazd province. The topography of the
study area comprises a mixture of plain, pediment, and moun-
tain. The elevation of the study area ranges from 1334 to 2830
m above sea level. A land use map of the study area prepared
by the Iran Forests, Range and Watershed Management
Organization (IFRWMO) shows that the land cover includes
rangelands and bushlands (2839 km2 area; 84.9%), rock out-
crops (374 km2 area; 11.2%), agricultural lands, (105 km2 area;
3.1%), aeolian sediment and sand dunes (25 km2 area; 0.7%),
and residential areas (2 km2 area; 0.1%). The principal litholo-
gy comprises marl, sandy marl, red and green (Em), andesite to
trachy andesite (Ev), granite to granodiorite (Dogger) (gsh),
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marl, shale (Kdz), sandstone, conglomerate, red (Ks), limestone
partly marmorised (Kt), grey, thick to massive, cliff forming
orbitolina limestone (Kt3−l1), upper limestone (Kuy), red beds,

sandstone, sandmarl, conglomerate (Etsh
1 ), upper conglomerate

(Ng2), conglomerate, poorly consolidated (Ng2c), hornblende-
pyroxene andesite (Ng2a), Kerman conglomerate (PgK), Jamal
type limestone (Pj), low-level pediment fan and valley terrace
deposits (Qft2), and salt flat (Qsf). The soil map of Iran prepared
by the IFRWMO shows that the main soil orders are Entisols
and Aridisols. Using data (1986–2015) collected by the Iran
Meteorological Organization at Bahadorn and Mahdiabad
climatologic stations in the study area, the mean annual rainfall
is ~ 70 mm. Mean monthly minimum/maximum temperatures
are 12 °C and 43 °C, respectively. Using the DeMarton climate
grouping, the climate is cold arid and the study area is influ-
enced by the warm and dry weather of the central plain of Iran,
meaning that it has very hot summers and very cold winters. A
wind rose is available based on a 14-year long-term wind data
record (2003–2017), at Bahadorna climatological station in the
study area (54° 54′ 01″ E longitude and 31° 13′ 13″N latitude).

The wind rose data suggests that the prevailing wind directions
are generally north-western to south-eastern and south-western
to north-eastern. Themain erosive wind (with a velocity > 21m
s−1) direction is also south-western to north-eastern and north-
western to south-eastern (Fig. 1).

Fieldwork and laboratory analyses

Wind-rose and sand-rose diagrams were prepared to es-
tablish the main and effective wind directions as the as-
sumption here is that the dominant dust sources are in the
direction of major effective winds. Prior to sampling, re-
connaissance field surveys were undertaken to identify
potential key dust sources. These potential dust sources
were classified as alluvial fans (Fig. 2a and b), aeolian
sand dunes (Fig. 2c and d), and agricultural land (Fig.
2e and f). The target dust samples were collected during
local dust storm events in the residential areas of
Bahadoran village (Fig. 2g and h).

Fig. 1 Map of the study area in Yazd Province, central Iran, storm dust sampling locations and source sampling sites
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In total, 62 dust source samples were retrieved to charac-
terise these key sources, including 45 samples from the north-
ern, western, southern, and eastern alluvial fans and pediment;
12 from aeolian sand dunes; and five from agricultural land
(Fig. 1). In order to increase the representativeness of the
source samples and to take some account of spatial variability
in tracer content, each source sample represented a composite
of 5 sub-samples collected within ca. 100 m2 at a specific site.
Here, source samples were collected from the upper 5 cm of
the soil layer to represent material at risk of mobilisation and
redistribution by wind erosion (Gholami et al. 2017).

All individual storm dust samples were retrieved during
dust storm events using five marble dust collectors (Fig. 3a)
installed at a height of 4 m and two siphon dust samplers (1.8
m height; Fig. 3b). The geographical coordinates of themarble
dust collectors are presented in Fig. 1. The siphon dust sam-
plers were installed at the Bahadoran (54° 54′ 01″ E longitude
and 31° 13′ 13″ N latitude) and Mahdiabad (54° 54′ 24″ E

longitude and 31° 19′ 54″ N latitude) climatologic stations
(Fig. 1). Sampling was undertaken at an approximate monthly
interval at different strategic locations across Bahadoran vil-
lage during six local dust storm events in 2018; 21 March, 21
April, 22 May, 22 June, 23 July, 23 August, and 23
September. Samples were composited together to provide suf-
ficient mass for tracer laboratory analyses.

In order to determine the dominant particle size fraction by
mass in the storm dust samples and to show that the tracers we
used are distributed across that fraction, a two-step procedure
was implemented: (1) dry sieving to separate fractions of 250–
500 μm, 125–250 μm, and < 125 μm and (2) tracer analysis to
confirm tracer distribution. The results of this work confirmed
that the < 125-μm fraction was dominant (Fig. 3c). In the
second step, all samples were fractionated into < 63 and 63–
125 μm to assess whether the tracers were distributed across
the < 125-μm fraction or within the sub-fraction (63–125
μm).

(a)

(f)

(d)

(b)

(c)

(h)(g)

(e)

Fig. 2 Photos showing the dust
sources (a and b), alluvial fans (c
and d), aeolian sand dunes and
agricultural land (e and f), and
dust storm events (g and h)
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For the colour tracers, source and target storm dust sam-
ples were placed into transparent polythene bags and

scanned using a Xerox WorkCentre 7120 colour scanner.
All the generated images were processed using the GIMP 2
open-source image editing software and the RGB colour
model. Here, red, green, and blue were estimated on a scale
of 0 to 255.

A Bartington MS2 dual-frequency sensor was used for
measurements of target storm dust and source sample magnet-
ic susceptibility (χ) at low (0.47 kHz; χlf) and high (4.7 kHz,
χhf) frequency using about 10 g of each sample which were
placed in a plastic vial with a 2.3-cm diameter. Equation 1 was
used to calculate the dependent frequency (χfd) (Dearing et al.
1996):

χfd ¼ χlf−χhfð Þ=χlf½ � � 100 ð1Þ

Statistical discrimination of storm dust sources

Before running statistical tests to select the final sets of tracers
in the composite fingerprints, conservation tests were carried
out based upon the bracket or range test and biplots to identify
significantly non-conservative tracers for both particle size
fractions. The bracket tests (Foster and Lees 2000) were run
based on two comparisons. Firstly, the minimum and maxi-
mum concentrations of each tracer measured for the dust
sources were calculated and compared with the corresponding
concentrations measured for the target dust samples. If a tracer
for the target storm dust samples fell outside the ranges of the
concentrations in the sources, that tracer was removed from
further analysis. Secondly, the average tracer concentrations
in the target dust samples were calculated and compared with
the ranges of the average tracer concentrations for all dust
sources. This second range test is considered to be stricter.
Finally, after selecting the final sets of tracers for discriminat-
ing the storm dust sources, biplots of tracer concentrations in
source and target storm dust samples were generated for both
particle size fractions as a further and more sensitive means of
assessing tracer conversion during dust transportation and de-
position processes.

Statistical methods were used to select four alternative
composite fingerprints for discriminating the storm dust
sources. These statistical tests comprised (1) the Kruskal–
Wallis H test (KW-H), (2) a combination of KW-H and dis-
criminant function analysis (DFA), (3) a combination of KW-
H and principal components and classification analysis
(PCCA), and (4) a combination of KW-H and a general clas-
sification and regression treemodel (GCRTM). Further details
on these tests can be found in Nosrati and Collins (2019a),
Nosrati and Collins (2019b) Nosrati et al. (2018), and Nosrati
et al. (2019). Four different composite signatures were select-
ed using these tests which were applied using STATISTICA
V.8.0 (StatSoft 2008).

(b)

(a)

(c)

Fig. 3 aMarble dust collector, b siphon sand sampler, and c particle size
distribution of the samples
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Storm dust source apportionment

Fluvial sediment source tracing studies are increasingly using
Bayesian un-mixing models (Collins et al. 2017) including
Modified MixSIR for source apportionment purposes
(Nosrati 2017; Nosrati and Collins 2019a; Nosrati et al.
2014, 2018). On this basis, we applied Modified MixSIR.
The model was applied using three key steps (Nosrati et al.,
2014) comprising (1) calculation of the prior probability dis-
tributions for model factors; (2) creation of a likelihood func-
tion for the statistical model; and (3) extraction of the posterior
probability distributions for the factors using the Bayes rule to
calculate the relative contributions from the sources to the
target storm dust samples. For both particle size fractions,
106 samples were drawn from the posterior distributions of
the estimated target storm dust mixtures in MATLAB using
the sampling-importance-resampling (SIR) algorithm (Moore

and Semmens 2008). All of the parameters in the model are
proportional contributions from each source, and they are
bounded within the interval 0–1. Also, the bounded propor-
tions sum to 1. For both particle size fractions, the two-sample
Wald-Wolfowitz runs test was used to test for statistically
significant differences between the distributions of the poste-
rior proportional contributions computed for the three dust
sources using each of the different composite signatures.
Additionally, for both particle size fractions, predicted source
proportions using the different statistical approaches were also
compared using the root mean square difference.

TheModifiedMixSIR predictions of source proportions were
evaluated using 7 sets of virtual dust mixtures for each composite
signature for both particle size fractions using a range of source
proportions: (1) equal proportions from each dust source—
33.3% alluvial fan, 33.3% sand dunes, 33.3% agricultural land;
(2) 50% alluvial fan, 25% sand dunes, 25% agricultural land; (3)

Table 1 Tracer concentration data for the < 63- and 63–125-μm frac-
tions for the sources and target dust samples and the Kruskal–Wallis H
test results for discriminating the individual dust sources. The RGB raw

data reflect red, green, and blue light and are measured by base 10
(decimal) values ranging from 0 to 255

Sediment
sources

Statistics < 63-μm fraction 63–125-μm fraction

Red Green Blue χlf** χhf χfd Red Green Blue χlf χhf χfd

Alluvial fan Mean 169.6 166.7 137.3 434.4 432.6 0.5 163.5 146.4 119.8 457.6 456.0 0.4

SD 6.5 5.7 5.3 299.3 298.5 0.2 10.0 8.1 6.6 351.6 350.8 0.2

Sand dunes Mean 205.7 183.9 154.1 158.4 157.1 0.9 189.6 171.7 145.4 133.2 132.4 0.7

SD 4.5 5.0 5.3 70.4 70.4 0.3 5.5 5.9 5.8 82.7 82.7 0.4

Agricultural
land

Mean 191.0 152.4 123.6 166.7 165.2 0.9 179.7 158.8 131.3 142.9 141.9 0.8

SD 5.5 5.2 4.5 34.1 34.0 0.4 6.2 4.4 3.1 40.1 39.9 0.6

KW-H test Chi-Square 30.4 28.8 29.1 22.4 22.6 19.5 28.4 25.7 25.8 22.4 22.6 12.1

p value < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 0.002*

Dust samples 1 176.4 159.4 131.9 232.8 231.4 0.6 155.4 139.5 114.6 220.6 219.7 0.4

2 163.9 147.4 120.2 416.7 415.8 0.3 154.3 138.5 114.0 436.7 436.4 0.1

3 171.4 154.8 128.4 141.2 139.2 1.4 158.7 142.8 119.7 113.0 111.4 1.4

4 170.2 152.9 126.2 252.2 250.7 0.6 156.3 140.6 117.6 243.4 242.4 0.4

5 174.4 154.5 127.1 306.3 304.8 0.5 167.3 149.6 123.3 307.0 305.9 0.4

6 178.3 161.4 133.6 229.8 227.7 0.9 166.6 151.8 128.3 217.2 215.4 0.8

Mean 172.4 155.1 127.9 263.2 261.6 0.7 159.8 143.8 119.6 256.3 255.2 0.6

*Critical p value = 0.05.KW-H test, Kruskal–Wallis H test. **χlf, magnetic susceptibility at low frequency (10
−8 m3 kg−1 ),χhf high frequency (10

−8 m3

kg−1 ), and χfd dependent frequency (10
−8 m3 kg−1 )

Table 2 Summary of the backward discriminant function analysis (DFA)

Function Eigenvalue Canonical correlation Wilks’ lambda Chi-square p-level

< 63-μm fraction

0 3.9 0.89 0.09 140.9 < 0.0001

1 1.2 0.74 0.46 46.5 < 0.0001

63–125-μm fraction

0 2.4 0.84 0.18 99.5 < 0.0001

1 0.7 0.63 0.60 29.6 < 0.0001
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25% alluvial fan, 50% sand dunes, 25% agricultural land; (4)
25% alluvial fan, 25% sand dunes, 50% agricultural land; (5)
75% alluvial fan, 10% sand dunes, 15% agricultural land; (6)
15% alluvial fan, 75% sand dunes, 10% agricultural land; and (7)
10% alluvial fan, 15% sand dunes, 75% agricultural land. Since
the virtual dust mixtures were constructed using the measured
tracer data for the dust source samples, the tracer concentrations
in the virtual mixtures satisfied the bracket tests for tracer con-
servation. Root mean square error (RMSE) and mean absolute
error (MAE) were used to assess the accuracy of the Bayesian
modelling in solving virtual sediment mixtures. This stage in the
source fingerprinting procedure tests the accuracy of the predict-
ed source proportions by comparing themwith the known source
proportions in the virtual mixtures.

Results and discussion

Final composite signatures

Table 1 compares the tracer concentrations in the storm dust
sources and target dust samples for the < 63- and 63–125-μm
particle size fractions. The results of the bracket tests showed
that all tracers (red, green, and blue colour properties, as well
as magnetic susceptibility: χlf, χhf, and χfd) were broadly
conservative. The KW-H test (Table 1) indicated that all tracer
properties showed a statistically significant difference be-
tween the dust sources. All tracers were therefore selected as
a composite signature for use in the Modified MixSIR un-
mixing model for both particle size fractions.

Table 4 Summary of the backward discriminant function analysis (DFA)

Dust sources DFA parameters Dust sources

Alluvial fan Sand dunes Agricultural land

< 63-μm fraction

Alluvial fan Mahalanobis distance 0.0

Classified (%) correctly 100.0

Sand dunes Mahalanobis distance 21.9* 0.0

Classified (%) correctly 0.0 100.0

Agricultural land Mahalanobis distance 33.1* 19.6* 0.0

Classified (%) correctly 0.0 0.0 100.0

63–125-μm fraction

Alluvial fan Mahalanobis distance 0.0

Classified (%) correctly 93.3

Sand dunes Mahalanobis distance 11.2* 0.0

Classified (%) correctly 100.0 100.0

Agricultural land Mahalanobis distance 19.5* 11.6* 0.0

Classified (%) correctly 100.0 100.0 100.0

*Significant at 0.05 level

Table 3 Selected tracers by backward discriminant function analysis (DFA) and associated statistics

Tracer Wilks’ lambda Partial lambda F-remove p-level Tolerance 1-tolerance

< 63-μm fraction

Blue 0.15 0.62 17.4 < 0.0001 0.03 0.97

Red 0.26 0.36 51.6 < 0.001 0.03 0.97

Green 0.19 0.48 31.4 < 0.0001 0.01 0.99

χfd
1 0.12 0.80 7.3 0.001 0.90 0.10

63–125-μm fraction

Blue 0.31 0.58 20.6 < 0.0001 0.03 0.97

Red 0.39 0.46 33.1 < 0.0001 0.01 0.99

Green 0.35 0.51 27.2 < 0.0001 0.01 0.99

χfd 0.20 0.88 3.7 0.03 0.91 0.09

1Magnetic susceptibility dependent frequency (χfd)
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The six properties passing the KW-H test were then entered
into the backward stepwise DFA (Table 2). For the < 63-μm
fraction, the first function of the Wilks’ lambda value (0.09)
showed that about 99% of the total variance among the storm
dust sources was explained by these six tracers. The canonical
correlation values for the first and second functions were 0.89
and 0.74, respectively, indicating a strong relationship be-
tween the discriminant scores and the storm dust source
groups (Table 2). The discriminatory power of the tracers in
the DFA model for each particle size fraction was determined
using Wilks’ lambda statistics. Four tracers comprising red,
green, blue, and χfd were selected based upon Wilks’ lambda
values for both particle size fractions (Table 3). The partial

Wilks’ lambda values indicated that red contributed the most,
green second most, blue third most, and χfd the least to the
overall discrimination (Table 3).

The backward stepwise DFA classification results showed
that 100% and 95% of the dust sources samples were grouped
correctly based on the selected tracers for the < 63- and 37–
63-μm particle size fractions, respectively (Table 4). The
squared Mahalanobis distance statistics showed that the dust
sources were strongly discriminated for both particle size frac-
tions (Table 4). Similarly, a scatterplot of the first and second
discriminant function scores computed using backward DFA
demonstrated that the dust source samples were well separated
for both size fractions (Fig. 4).

Fig. 4 Scatterplot of the first and
second discriminant functions
calculated using backward DFA
associated with selection of the
composite signature for a the <
63-μm fraction and b the 63–125-
μm fraction
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Tracers passing the KW-H test in both particle size frac-
tions were also tested using PCCA. The results of PCCA for
the < 63-μm fraction indicated that the first and second PCs
have eigenvalues of more than one and explained more than
90% of the total variance among the tracer values for the
storm dust end members (Table 5). The communality values
showed that all five tracers, except χfd, have a value > 0.95.
Thus, χfd was the least significant tracer because of its lowest
communality value (Table 5). The first PC, with an eigenval-
ue of 3.9, accounted for about 64% of the total variance
among the dust end members. The second PC with an eigen-
value of 1.6 explained about 25% of the total variance
(Table 5). In order to finalise tracer selection using the first
PC, a threshold for the range of absolute values was set as
needing to be within 10% of the highest loading. Since the
red tracer has the highest loading value (0.91), the alternative
tracer loadings should thereby exceed 0.82. Red, green, and
blue (i.e. all colourimetric tracers) all returned loadings ex-
ceeding 0.82. In order to select tracers from the second PC, a
similar approach was implemented whereby the tracer load-
ings needed to exceed a threshold equivalent to within 10%
of the highest loading tracer (χhf with a loading of 0.671). On
this basis, the tracer loadings needed to exceed 0.6. In this
case, χlf and χhf (Table 5) returned loadings exceeding 0.6.

Due to correlation between these tracers, only χhf was includ-
ed in the final composite signature since it returned the
highest loading.

The results of the PCCA for the 63–125-μm fraction indi-
cated that the first and second PCs have eigenvalues of more
than one and explained more than 87% of the total variance
among the tracer values for the storm dust end members
(Table 5). All five tracers, except χfd, returned a communality
value > 0.96. The first PC, with an eigenvalue of 3.7, accounted
for about 62% of the total variance among the dust end mem-
bers. The second PC, with an eigenvalue of 1.5, explained
about 25% of the total variance (Table 5). The red tracer
returned the highest loading of 0.94 and additional tracers were
retained if their loadings exceeded 0.84 (i.e. a threshold within
10% of the maximum loading). Red, green, and blue all
returned loadings exceeding 0.84. Due to significant correlation
issues between these tracers, red, with the highest loading, was
retained for the final composite signature. A consistent ap-
proach was adopted to identify tracers from the second PC
wherein χhf returned the highest loading of 0.681, meaning that
the selection threshold was 0.61. χlf and χhf (Table 5) returned
loadings > 0.61, but only χhf was retained in the final compos-
ite signature for this coarser particle size fraction because these
PC2 tracers were strongly correlated.

During the data mining for both particle size fractions, the
six tracers passing KW-H were entered into a general classi-
fication and regression tree model (GCRTM). The final trees
that were determined based on the tracers v-fold cross-valida-
tion (CV cost) test are presented in Fig. 5. For the < 63-μm
fraction, the final tree classified the dust end members into
three terminal nodes (i.e. the sampled dust sources) using the
cases (samples for all sources) collected to characterise these
potential sources with minimum CV cost (0.09). For this finer
particle size fraction, the classification results (the histograms
of samples in each class at the nodes in the final tree) illustrat-
ed that 100% of the cases were classified correctly (Fig. 5a).
For the 63–125-μm fraction, the final tree also classified the
dust end members into three terminal nodes using the cases
with minimum CV cost (0.12). Here, the classification results
(the histograms of samples in the final tree) showed that 100%
of the cases were also classified correctly (Fig. 5b).

The bar plots of predictor importance using dust sources as
the dependent variable and the tracer variables as the predic-
tors are shown in Fig. 6. For each tracer in this final signature,
the predictor importance was calculated based on the relative
average of the sum of squares of prediction for all trees and
nodes for which the maximum value of predictor importance
equals to 1. Hence, the predictor importance values reveal the
power of the relationship between the tracers and the storm
dust source of interest over the sequential boost up steps. In
this case, for the < 63-μm fraction, the tracers red, green, and
blue (importance value ≥ 0.9) stand out as the most important
predictors within this particular final set of tracers (Fig. 6a).

Table 5 Principal component and classification analysis (PCCA) factor
coordinates of the variables and the eigenvalues of the correlation matrix

Tracer PC 1 PC2 Communality estimates

< 63-μm fraction

Red 0.911 0.36 0.96

Green 0.89 0.45 0.99

Blue 0.84 0.50 0.97

χlf − 0.72 0.67 0.95

χhf − 0.72 0.67 0.96

χfd 0.71 − 0.28 0.58

Eigenvalue 3.9 1.6

% Total variance 64.4 25.9

Cumulative % variance 64.4 90.3

63–125 fraction

Red 0.94 0.30 0.97

Green 0.91 0.41 0.99

Blue 0.84 0.51 0.96

χlf − 0.71 0.68 0.96

χhf − 0.71 0.68 0.97

χfd 0.57 − 0.21 0.37

Eigenvalue 3.7 1.5

% Total variance 62.0 25.0

Cumulative % variance 62.0 87.0

1 Italic values indicate selected tracers with highest loadings

Magnetic susceptibility at low frequency (χlf) and high frequency (χhf)
and dependent frequency (χfd)
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For the 63–125-μm fraction, the tracers red, green, χlf, χhf,
and χfd (importance value ≥ 0.7) stand out as the most impor-
tant predictors within this final set of tracers.

Using the above statistical analyses, four composite signatures
were used in the Modified MixSIR un-mixing model for storm
dust source apportionment. The biplots in Fig. 7 suggested that
the tracers selected in the final composite signatures had not been
subjected to major transformation during redistribution from the
source to the target dust sampling locations.

Storm dust end member contributions

Considering priors and estimations of uncertainty associated
with the un-mixing model inputs, Modified MixSIR model
runs of 106 iterations, for each composite signature for each
particle size fraction, resulted in convergence of the solutions.
The maximum importance ratio values (calculated by deter-
mining the ratio of the maximum un-normalised posterior
probability resample to the sum of all un-normalised posterior

Fig. 5 The classification tree for
the storm dust sources using
GCRTM for a the < 63-μm frac-
tion and b the 63–125-μm
fraction
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probability resamples for each set of model runs) were less
than 0.01, indicating that the un-mixing model was effective
in estimating the true posterior densities.

For the < 63-μm fraction, using the KW-H composite sig-
nature, the relative contributions (with corresponding 5–95%
uncertainty bounds) from alluvial fans, aeolian sand dunes, and
agricultural land were estimated as 98.3% (95.1–99.7%), 0.4%
(0.0–1.8%), and 1.1% (0.1–4.4%), compared with 98.6%
(95.8–99.6%), 0.3% (0.0–1.4%), and 0.8% (0.1–3.6%), using
a composite signature selected using a combination of KW-H
andDFA, or 96.2% (89.9–99.2%), 1.1% (0.1–4.5%), and 2.1%
(0.2–8.3%), using a fingerprint selected using KW-H and
PCCA, or 98.4% (95.2–99.6%), 0.4% (0.0–1.5%), and 1.0%
(0.1–4.1%), using a fingerprint selected using KW-H and

GCRTM. The root mean square difference between the appor-
tionments results for alluvial fans, sand dunes, and agricultural
lands using the different fingerprints and using this finer parti-
cle size fraction was 1.6%, 0.5%, and 1.6%, respectively.

For the 63–125-μm fraction, using the KW-H composite
signature, the respective relative contributions from alluvial
fans, aeolian sand dunes, and agricultural lands were estimat-
ed as 96.6% (90.3–99.3%), 0.9% (0.1–3.4%), and 2.1% (0.2–
8.5%), compared with 97.3% (92.6–99.4%), 0.8% (0.1–
3.2%), and 1.5% (0.1–6.4%), using a composite signature
selected using a combination of KW-H and DFA, or 88.3%
(75.6–96.9%), 3.5% (0.3–12.4%), and 6.4% (0.6–20.3%),
using a fingerprint selected using KW-H and PCCA, or
93.8% (83–98.7%), 1.4% (0.1–5.6%), and 3.8% (0.3–

Fig. 6 The importance plot of the
dust sources using GCRTM for a
the < 63-μm fraction and b the
63–125-μm fraction
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15.3%), using a fingerprint selected using KW-H and
GCRTM. The root mean square difference between the
Modified MixSIR results for alluvial fans, sand dunes, and
agricultural lands using the alternative fingerprints was
5.8%, 1.8%, and 3.1%, respectively. For both the < 63- and
63–125-μm particle size fractions, all the composite signa-
tures suggested that alluvial fans were the dominant source
of the target dust samples (the overall mean contributions from
this source using the different composite signatures were esti-
mated at 97.9% and 94%, respectively).

Pairwise comparisons of the distributions of the posterior pro-
portional contributions predicted for the three dust end members
using the four different composite signatures for both particle
size fractions are presented in Table 6. The Z statistic in the
Wald-Wolfowitz runs test is affected by sample size and the
biggest absolute difference between the two distributions being
compared. A significance value of < 0.05 shows that the two
distributions are significantly different. Accordingly, the results
ofWald-Wolfowitz runs test pairwise comparisons indicated that
most of the comparisons were significantly different (Table 6).

Fig. 7 Biplots of all pairings for some tracers selected in the final composite signatures for discriminating and apportioning the storm dust source
contributions. Top six plots are for the < 63-μm fraction, and the bottom six plots are for the 63–125-μm fraction
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For the < 63-μm fraction, 7 from a total of 18 possible pairwise
comparisons of the source proportions predicted using the dif-
ferent composite signatures were not significantly different
(Table 6). For the 63–125-μm fraction, only 4 from 18 possible
pairwise comparisons were not significantly different (Table 6).

For the < 63-μm fraction (Table 7), the RMSE and MAE
estimates based on the virtual mixture tests for the different final
composite signatures ranged between 1.5–23.4% (with a corre-
sponding mean value of 9.4%) and 1.2–20.1% (with a corre-
sponding mean value of 8.3%), respectively. For the coarser
particle size fraction (Table 8), the respective estimates ranged
between 3.2–21.8% (with a mean value of 11%) and 2.8–
18.8% (with a mean value of 9.8%). The mixture tests therefore
suggested that the Modified MixSIR solutions for storm dust
source contributions were acceptable in terms of accuracy.

At the outset of this study, it was assumed that the aeolian
deposits (sand dunes) were the main source of storm dust in
Bahadoran Village because of their close proximity and
alignment with the dominant wind direction (Figs. 1 and 2c

and d). However, all four alternative composite signatures
suggested that alluvial fans were the prevailing source of
the target storm dust samples retrieved from the field. Our
results are consistent with those reported by Washington
et al. (2003) who, using remote sensing, reported that at
regional scale in southwest Asia, alluvial fans and ephemeral
lakes are important dust sources. Two particle size fractions
were used in this study and here it is important to recognise
that the interaction between particle size and wind velocity
can govern particle transportation. More specifically, both
the distance travelled and the transportation process can be
influenced by the interplay between particle size and wind
velocity (Pye 1987). Very fine sand (63–125 μm) particles
are typically transported shorter distances by saltation,
whereas silt and clay particles (< 63 μm) are transported
longer distances. Wind conditions can interplay here since
particles are transported further when the wind velocity ex-
ceeds 16 m/s. Extreme wind velocities result in the particle
sizes in storm dust ranging from ≤ 60 μm (dust) to 60–2000

Table 6 Wald-Wolfowitz runs test pairwise comparisons of the probability density functions computed for the predicted contributions from dust
sources based on composite signatures selected by different statistical approaches

Paired statistical approaches in selecting tracers Statistics Storm dust source contributions

Alluvial fan Sand dunes Agricultural land

< 63-μm fraction

KW-H test vs. combination of KW-H test and DFA Z 0.86 0.58 0.39

p-level 0.39 0.56 0.70

KW-H test vs. combination of KW-H test and PCCA Z 9.51 6.65 3.69

p-level < 0.001 < 0.001 < 0.001

KW-H test vs. combination of KW-H test and GCRTM Z 1.82 2.24 2.85

p-level 0.069 0.025 0.004

Combination of KW-H test and DFA vs. combination of KW-H test and PCCA Z 12.43 9.26 6.20

p-level < 0.001 < 0.001 < 0.001

Combination of KW-H test and DFA vs. combination of KW-H test and GCRTM Z 0.76 1.39 0.65

p-level 0.45 0.16 0.52

Combination of KW-H test and PCCA vs. combination of KW-H test and GCRTM Z 10.80 8.65 4.73

p-level < 0.001 < 0.001 < 0.001

63–125-μm fraction

KW-H test vs. combination of KW-H test and DFA Z 1.9 1.8 3.2

p-level 0.063 0.078 0.001

KW-H test vs. combination of KW-H test and PCCA Z 20.9 14.2 10.0

p-level < 0.001 < 0.001 < 0.001

KW-H test vs. combination of KW-H test and GCRTM Z 4.1 1.6 3.1

p-level < 0.001 0.1 0.002

Combination of KW-H test and DFA vs. combination of KW-H test and PCCA Z 24.6 13.9 13.7

p-level < 0.001 < 0.001 < 0.001

Combination of KW-H test and DFA vs. combination of KW-H test and GCRTM Z 7.8 2.6 5.0

p-level < 0.001 0.008 < 0.001

Combination of KW-H test and PCCA vs. combination of KW-H test and GCRTM Z 6.8 5.3 0.03

p-level < 0.001 < 0.001 1.0
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μm (sand) (Shao 2008). In our study area, the dominance of
the alluvial fan source reflects the interplay between prevail-
ing wind velocities and the sparse vegetation cover on the
alluvial fans (Fig. 2a and b). Land surface characteristics
play an important role in the opportunity for dust
mobilisation and the particle size characteristics of storm
dust. Observational evidence for the alluvial fans in the study
area, including the appearance of gravel and stones on the
land surface, lack of soil moisture, and stone pavements,
supported the finding that alluvial fans are an important
source of the sampled storm dust. Dust storms in the
Bahadoran region started ~ 10 years ago due to decreasing
soil moisture and vegetation cover due to anthropogenic ac-
tivities and reduced rainfall. Climate change and drought

have intensified the aridity thereby increasing the supply of
dust at risk of remobilisation by wind.

To date, studies investigating storm dust provenance have
used a range of approaches including remote sensing, as well
as sedimentological or meteorological (synoptic) approaches
to infer the sources of storm dust. For example, Al-Hemoud
et al. (2020) used satellite images to suggest that storm dust in
Kuwait is sourced from a wind erosion hot spot in southern
Iraq. Achilleos et al. (2020) reported that an intense dust event
in 2006 (24 h-PM10) in the Eastern Mediterranean originated
from the Sahara desert. Farahani and Arhami (2020) argued
that Iraqi and Syrian deserts contributed ~ 40% of the partic-
ulate matter (PM) in Tehran during dust storms. In our study,
rather than infer the sources of storm dust, we applied a source

Table 7 Comparison of the predicted and known relative contributions
from the sources to the virtual dust mixtures using the composite
signatures selected by different statistical approaches and the

corresponding root mean squared error (RMSE) and mean absolute error
(MAE) for the < 63-μm fraction

Statistical approaches for selecting composite fingerprints Known dust source proportions1 Predicted dust source proportions RMSE MAE

1 2 3 1 2 3

KW-H (tracers: red, green, blue, χlf, χhf, χfd)
2 33.3 33.3 33.3 27.6 25.9 45.4 8.8 8.4

50 25 25 37.7 25.8 35.5 9.3 7.9

25 50 25 19.2 48.5 30.5 4.7 4.3

25 25 50 22.5 26.3 49.9 1.6 1.3

75 10 15 52.3 13.8 32.7 16.8 14.7

15 75 10 10.5 68.2 19.6 7.3 7.0

10 15 75 11.3 19.1 67.7 4.9 4.2

Combination of KW-H and DFA (tracers: red, green, blue, χfd) 33.3 33.3 33.3 36.8 25 37.7 5.8 5.4

50 25 25 41.4 25.3 32.9 6.7 5.6

25 50 25 25.9 47.4 25.1 1.6 1.2

25 25 50 35 25.8 38.7 8.7 7.4

75 10 15 52.3 13.4 33.2 16.9 14.8

15 75 10 14 68.3 14.9 4.8 4.2

10 15 75 31.2 17.5 50.6 18.7 16.0

Combination of KW-H and PCCA (tracers: red, χhf) 33.3 33.3 33.3 29.6 23.7 42.7 8.0 7.6

50 25 25 37.7 23.2 35 9.2 8.0

25 50 25 19.2 42.3 34.1 7.7 7.5

25 25 50 24.6 27.6 44.1 3.7 3.0

75 10 15 51.6 14.4 30.3 16.3 14.4

15 75 10 11 59.9 25 12.5 11.4

10 15 75 18.5 24.3 53.5 14.4 13.1

Combination of KW-H and GCRTM (tracers: red, green, blue) 33.3 33.3 33.3 36 24.1 39 6.4 5.9

50 25 25 36.5 24.8 37.9 10.8 8.9

25 50 25 24.3 47.6 25.9 1.5 1.3

25 25 50 33.8 24.5 40.5 7.5 6.3

75 10 15 44.5 13.2 41.5 23.4 20.1

15 75 10 13.8 68.3 14.5 4.7 4.1

10 15 75 35 16.5 47.5 21.5 18.0

1Dust sources comprising the following: 1, alluvial fan; 2, sand dunes; and 3, agricultural land
2Magnetic susceptibility at low frequency (χlf) and high frequency (χhf) and dependent frequency (χfd)
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fingerprinting approach with explicit estimation of uncertainty
for the predicted source proportions. The results are promising
and suggest that wider applications could be as equally suc-
cessful. Reliable data on the provenance of storm dust is need-
ed to target remedial actions.

Limitations of the work

The storm dust tracing results from our work must be
interpreted in the knowledge of some limitations and uncer-
tainties. Compared with fluvial sediment source fingerprint-
ing, storm dust tracing is more complex. In the case of catch-
ment scale fluvial sediment tracing, when we collect target

sediment samples (e.g. suspended, channel bed sediment),
we are more certain that all particles have originated from
the upstream catchment and not from neighbouring catch-
ments. In dust tracing, however, storm dust origin is strongly
affected by wind direction and prevailing meteorological con-
ditions. Air masses can cover large scales including up to
regional or continental and this can raise challenges for delin-
eation of known sources. In the case of our study reported
here, both field survey and questionnaires were used to assess
potential storm dust sources. Local resident questionnaires can
help to evaluate the history of local dust storms.

Dust sample collection during storm events is another chal-
lenge: there are two main kinds of dust comprising infusing

Table 8 Comparison of the predicted and known relative contributions
from the sources to the virtual dust mixtures using the composite
signatures selected by different statistical approaches and the

corresponding root mean squared error (RMSE) and mean absolute error
(MAE) for the 63–125-μm fraction

Statistical approaches for selecting composite fingerprints Known dust source
proportions1

Predicted dust source
proportions

RMSE MAE

1 2 3 1 2 3

KW-H (tracers: red, green, blue, χlf, χhf, χfd)
2 33.3 33.3 33.3 26.3 24.2 47.9 10.7 10.2

50 25 25 34.8 24.1 39.2 12.0 10.1

25 50 25 17.4 45.4 35.6 8.0 7.6

25 25 50 20.2 27.4 51.1 3.2 2.8

75 10 15 50.2 14.5 32.5 17.7 15.6

15 75 10 10.1 62.1 25.8 12.1 11.2

10 15 75 10.9 21.8 65.6 6.7 5.7

Combination of KW-H and DFA (tracers: red, green, blue, χfd) 33.3 33.3 33.3 33.7 24.1 39.8 6.5 5.4

50 25 25 35.5 23.2 39.3 11.8 10.2

25 50 25 21.5 44.8 30.7 4.9 4.8

25 25 50 28.4 27.7 41.8 5.4 4.8

75 10 15 49.2 13.2 34.5 18.8 16.2

15 75 10 14.2 62.5 19.8 9.2 7.7

10 15 75 25.9 23.1 49 18.2 16.7

Combination of KW-H and PCCA (tracers: red, χhf) 33.3 33.3 33.3 28.4 26.6 39.3 5.9 5.9

50 25 25 36.2 24.7 33.4 9.3 7.5

25 50 25 18.7 38.1 38.3 10.9 10.5

25 25 50 22.4 30.7 41.2 6.2 5.7

75 10 15 49.8 17.4 26.8 16.6 14.8

15 75 10 11.8 47.5 35.7 21.8 18.8

10 15 75 15.7 32.2 47 19.3 17.0

Combination of KW-H and GCRTM (tracers: red, green, χlf, χhf, χfd) 33.3 33.3 33.3 27.3 26.2 43.9 8.1 7.9

50 25 25 36 26 35.2 10.0 8.4

25 50 25 17.6 43.7 36.4 8.6 8.4

25 25 50 20.8 30.5 46.6 4.5 4.4

75 10 15 51.8 16.9 27.4 15.7 14.2

15 75 10 10.3 58 29.5 15.2 13.7

10 15 75 11.3 27.2 59.4 11.5 9.7

1Dust sources comprising the following: 1, alluvial fan; 2, sand dunes; and 3, agricultural land
2Magnetic susceptibility at low frequency (χlf) and high frequency (χhf) and dependent frequency (χfd)
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(downfall) dust with vertical movement and stream (moving
or flow) dust with lateral movement. In order to trap both dust
types, both a siphon dust collector and marble dust sampler
were used. In the siphon dust collector, it is necessary to em-
bed a fine filter to have sufficient capacity for trapping finer
dust particles. Although available budgets affect the dust sam-
ple numbers collected for any dust tracing exercise, the col-
lection of both kinds of dust samples across an extended area
and bulking these into fewer composite samples for laboratory
analyses improves representativeness by considering macro-
scale spatial variations in the character and properties of target
storm dust. Sampling during storm events also requires con-
sideration of the temporal dimension. In the study reported
herein, to improve robustness, dust samples were collected
from more than one site and one height to explore any poten-
tial scale-dependency associated with dust tracers during
transportation from the sampled sources to the target destina-
tion for sampling the dust sediment. However, here it should
be borne in mind that in our study, target dust samples for
source apportionment were collected from samplers that were
installed at a maximum height of 4 m. We, therefore, did not
sample all transported storm dust particles. Even though tracer
properties were tested using the standard conservation tests
currently used in source fingerprinting studies, these tests as-
sume that any tracer property change during detachment and
transportation was not sufficiently significant to impact on the
predicted source proportions. Further work is needed to inves-
tigate and compare the efficiency of different types of tracers
for discriminating and apportioning dust sources. Here, al-
though there are no fixed combinations of statistical tests for
selecting final composite signatures, there remains a need to
explore the sensitivity of predicted source apportionment to
the use of different composite signatures.

Conclusions

Applications of fingerprinting methods to assess the sources
of storm dust are only just beginning to emerge in the inter-
national literature, against the context of the many more and
rapidly growing numbers of applications for estimating
sources of fluvial sediment. The work presented herein sug-
gests that colour and magnetic susceptibility tracers offer low-
cost options for discriminating and apportioning storm dust
sources. Such composite signatures need to be applied to al-
ternative settings to confirm this conclusion from our study.
The findings from the work reported herein provide some
much needed information for targeting wind erosion control
measures to help protect the rural and urban receptors receiv-
ing damaging storm dust.
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