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Abstract
A detailed investigation was carried out to assess the concentration of near-road traffic-related air pollution (TRAP) using a
dispersion model in Muscat. Two ambient air quality monitoring (AQM) stations were utilized separately at six locations near
major roadways (each location for 2 months) to monitor carbon monoxide (CO) and nitrogen oxides (NOx). The study aimed to
measure the concentration of near-road TRAP in a city hot spots and develop a validated dispersion model via performance
measures. The US Environmental Protection Agency (US EPA) Line Source Model was implemented in which the pollutant
emission factors were obtained through Comprehensive Modal Emission Model (CMEM) and COmputer Programme to calcu-
late Emissions from Road Transport (COPERT) model. Traffic data of all vehicle categories under normal driving conditions
including average vehicle speed limits and local meteorological conditions were included in the modeling study. The analysis of
monitoring data showed that hourly (00:00 to 23:00) concentrations of CO were within the US EPA limits, while NOx concen-
tration was exceeded in most locations. Also, the measured pollutant levels were consistent with hourly peak and off-peak traffic
volumes. The overall primary statistical performance measures showed that COPERT model was better than CMEM due to the
high sensitivity of CMEM to the local meteorological factors. The best fractional bias (0.47 and 0.39), normalized mean square
error (0.44 and 0.50), correlation coefficient (0.64 and 0.70), geometric mean bias (1.07 and 1.57), and geometric variance (2.00
and 2.32) were obtained for CO and NOx, respectively. However, the bootstrap 95% CI estimates over normalized mean square
error, fractional bias, and correlation coefficient for COPERT and CMEMwere found to be statistically significant from 0 in the
case of combined model comparison across all the traffic locations for both CO and NOx. In overall, certain roads showed weak
performance mainly due to the terrain features and the lack of reliable background concentrations, which need to be considered in
the future study.
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Introduction

Near-road traffic-related air pollution (TRAP) is one of the
most serious public health concerns facing many countries

due to emissions of several toxic ambient air pollutants from
on-road vehicles (Liang et al. 2018; Mannucci and Franchini
2017; Munir and Habeebullah 2018). Studies have shown that
exposure to TRAP has resulted in the incidence of pulmonary
diseases such as abnormal lung function (Bowatte et al. 2018),
incident of cardiovascular diseases (Cai et al. 2018), respira-
tory cancer (Ribeiro et al. 2019), childhood asthma (Khreis
et al. 2018), and diabetes mellitus (Pedersen et al. 2017).
World Health Organization (WHO) estimated about 12–70%
of total ambient air pollution levels in African and Asian (es-
pecially Middle Eastern) countries due to road TRAP (WHO
2019). This is mainly due to the increase in motorization rate,
lack of adequate green infrastructure, the absence of engine
powered electric vehicles, and urban development in nearby
roadways, whereas TRAP comes into play (Korfant and
Gogola 2019; Omidvarborna et al. 2018; Rosenlieb et al.
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2018; Zhou and Gao 2018). Among the gaseous pollutants,
nitrogen oxides (NOx) and carbon monoxide (CO) are the
most common forms of near-road TRAP (Bodisco et al.
2019; Gokhale and Pandian 2007; Ko et al. 2019; López-
Pérez et al. 2019; Triantafyllopoulos et al. 2019; Wallace
et al. 2012). Thus, accurate measurements and model estima-
tions are the fundamental factors of reducing the incidents of
TRAP morbidity and mortality through policy formulations
and mitigation actions (US EPA 2019).

Assessment of TRAP has well explored in parts of the
world. For example, Perugu (2019) enhanced the emission
rates estimates of CO, NOx, and hydrocarbons (HC) for
light-duty vehicles (LDV) in India based on local driving con-
ditions by adapting the United States Environmental
Protection Agency (US EPA’s) Motor Vehicle Emission
Simulator (MOVES) model. Gibson et al. (2013) found a
good model performance between US EPA Regulatory
Model (AERMOD) dispersion model output and that of the
measured field data for near-road traffic-related particulate
matter (PM) and sulfur dioxide (SO2) concentration levels in
Nova Scotia, Canada. Also, many European cities have also
used similar TRAP modeling approach such as URBan AIR
(URBAIR) and Urban Air Quality Model (ADMS-Urban)
models in evaluating the exposure concentrations of several
air pollutants mostly NOx, PM, HC, and black carbon (BC)
due to road traffic activities (Borrego et al., 2016; Mallet et al.,
2018).

The literature review showed that the concentration levels
of gaseous TRAP (e.g., CO and NOx) near major roadway
were poorly investigated in Oman. In such environments with
a high level of solar radiation, emission of TRAP is considered
as the major challenge as it readily causes the production of
ground-level O3 (Baawain and Al-Serihi 2014). The first and
only study in Muscat was conducted by Abdul-Wahab and
Fadlallah (2014), in which the California Puff model
(CALPUFF) model was employed in simulating concentra-
tion of NOx and CO in a single road within Sultan Qaboos
University. This study could not validate the predicted con-
centrations with the field data which were important in deter-
mining the prediction, performance, and the association of the
modeled results with the measured data (Kadiyala and Kumar
2012). In addition, the study was limited to a local area, where
the majority of vehicles were listed as LDV. Hence, the model
could not predict busy roadways with different vehicular vol-
ume levels and vehicle categories (heavy-duty vehicles
(HDV) and LDV). The second TRAP modeling study was
focused only on the modeling of NOx and CO in Salalah city,
Oman, by comparing the predicted pollutant concentration
levels between monsoon and non-monsoon seasons with
CALPUFF. The estimates were made during only peak and
off-peak traffic volumes and did not present average traffic
flows and emission in the Salalah city. Also, the reliability
of the model in determining the predicted air pollutant

concentration levels was not validated due to the lack of mea-
sured data (Charabi et al. 2018).

Most developed countries have established their own
TRAP emission rate database for detailed road traffic emission
modeling (Borrego et al. 2016; Milando and Batterman 2018;
Righi et al. 2009; Wallace et al. 2012). However, literature
review studies in Oman revealed poor background study due
to lack of time-series air quality monitoring (AQM) data, local
meteorological data, reliable emission rate database, and well-
fittedmodels. This study aimed to evaluate the performance of
two emission rate models (COmputer Programme to calculate
Emissions from Road Transport (COPERT IV) and
Comprehensive Modal Emission Model (CMEM)) to predict
CO and NOx concentration levels from the near-road environ-
ment using AERMOD dispersion model. CMEMwas consid-
ered for the study as it offers a flexible traffic input data re-
quirements, including local meteorological parameters,
whereas the acquired COPERT IV data presents emission
factors of different vehicle categories similar to vehicle types
under the current study. Both COPERT IV and CMEM are the
most comprehensive emission rate models in terms of input
parameters. Therefore, they can be utilized as the most reliable
emission rate models for the countries with no established
emission rate database.

In addition, AERMOD dispersion modeling has not been
used widely for investigating traffic emissions from multiple
road networks of varied vehicle volumes and types. This study
monitored the gaseous TRAP at six major roadways by using
two mobile ambient AQM stations for the first time in Muscat
(see Fig. 1), and the developed dataset was used to validate the
emission rate models, while it attempted to predict urban air
quality at major hotspots.

Background

Description of the study area

This study was carried out in Muscat Governorate (23° 36′
51.5808″ N, 58° 32′ 43.0224″ E) which is the capital city of
Oman located in the northern region of the country with a total
area of 1500 km2 (Fig. 1) (Kwarteng et al. 2009). According to
Directorate General of Meteorology (2019), mean annual pre-
cipitations, ambient temperature, and humidity levels of the
Muscat are 150–750 mm, 23.1–33.6 °C, and 29–67%, respec-
tively. Muscat is the most populated city of the country with a
current estimated resident population of 1.5 million out of the
total 4.6 million national population. Currently, the annual
population growth rate is about 3.3–5.9% (National Centre
for Statistics and Information 2018).

The rapid increase in road traffic population has been one
of the major challenges by the Government of Oman, which is
attributed to limited public transportation systems, subsidized
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vehicle importation taxes, and fuel prices. For example, an
average of one vehicle per every household is estimated in
Muscat (Amoatey and Sulaiman 2017). In addition, the num-
ber of newly registered vehicles in 2017 rose to as high as
175,266 compared to 131,700 vehicles in 2013, indicating a
percentage increase of about 25% (Islam and Al-Hadrami,
2012). These have caused a high number of several LDV
and HDV attributing to high air pollution levels in the major
cities. The details of traffic volumes in these study are present-
ed in “Vehicle population and composition.”

Road traffic condition in Muscat

On-road vehicle activities differ from one city to another in
Oman. Currently, National Centre for Statistics and
Information (NCSI) and Ministry of Transport and
Communication do not have a comprehensive dataset on ve-
hicle emission factors and vehicle kilometer traveled for dif-
ferent vehicle categories in Oman. But vehicle volume, distri-
bution, and road inventories data have been a part of the 2011
national traffic survey study (Muscat Municipality 2019).

Our estimation showed that Muscat has the highest vehicle
volumes compared to other cities in Oman. This is because the
city served as a hub for most economic activities in the coun-
try. Majority of manufacturing companies, oil industries, gov-
ernment agencies, schools, hospitals, and hospitality indus-
tries are located in major industrial (Ruwi (RWI) and Rusayl
(RSL)) and business (Al Khuwair (ALK), Al Amerat (AMT),
A Seeb (ASB), and Muttrah (MRA)) Wilayats/town, thereby,
leading to high volumes of HDV and LDV in the city, which
varies in terms of vehicles types and population.

Furthermore, the strategic location of Oman sharing a bor-
der with the United Arab Emirates (UAE) and Yemen makes
it efficient for HDV to transport goods and services through
Muscat. Also, low vehicle occupancy rates in addition to the
high temperatures in summertime (maximum of 40 °C) make
personal vehicles the convenient means of transportation for
individuals in Muscat (Amoatey and Sulaiman 2017). In ad-
dition, tourism is one of the emerging sources of revenue to
Oman. For example, it is estimated that tourism activities con-
tributed to the total vehicle population of 431,105 duringmon-
soon seasons in Salalah city, a known tourist area in the south-
ern part of the country (Muscat Municipality 2019). However,
most of these visitors move back to Muscat, thereby increas-
ing vehicle populations and emissions. All these factors have
contributed to high emission levels inMuscat. Hence, to better
understand the situation, this study examined on-road vehicle
populations in various Wilayats in Oman and found that the
highest on-road vehicle numbers and compositions are con-
centrated within the six main Wilayats/towns (ASB, ALK,
MRA, AMT, RWI, and RSL) of Muscat.

Data and methods

Here, the study was conducted in three stages. For the first and
second steps, road traffic data and location-specific meteoro-
logical data were employed to estimate traffic emission rates
in each zone. Next, the ambient air pollution dispersion model
was utilized to estimate the near-road pollutants concentration
levels. Finally, the modeled concentrations were validated
with field data through statistical analysis.

Fig. 1 A map showing road traffic air quality sampling locations in Muscat
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Vehicle population and composition

Annual vehicle population fromMuscat Municipality was ob-
tained based on the national traffic survey study conducted
across the major Wilayats in Muscat (Muscat Municipality
2019). In order to understand the trends of vehicle volumes
in Muscat, the total number of daily traffic flows from
Monday to Sunday is presented in Fig. 2. There was a sharp
decrease in vehicle volumes on Thursdays and Fridays as
these days are the last day of the working days and first days
of weekends compared to the main business days.
Interestingly, though Saturdays are the weekend, yet there
were high traffic flows as people visit places within the city
thereby increasing the vehicle populations. As shown in
Fig. 3, vehicle flows increased from 7:00 to 11:00 AM and
showed a slight reduction from 17:00 to 21:00 PM during
weekdays. Analysis of inter-city road traffic volumes showed
that high traffic was found in ALK (16.5%), AMT (16.5%),
and RSL (38.5%) compared to other Wilayats such as MRA
(15%), RWI (7.1%), and ASB (6.4%) during morning time.
On the other hand, in the evening time, ALK and RSL showed
a higher number of vehicles as these are commercial and in-
dustrial centers with a high number of the population com-
pared to other places (Fig. 3).

Road transport vehicles in the six major Wilayats were
categorized into eight types: car, taxi, van/light goods, 2-axle
truck, 3-axle truck, private and public transports, and others
(i.e., those that could not fit into aforementioned classifica-
tions) as shown in Fig. 4. Despite the variations in vehicle
types, the figure clearly shows that the population of cars
was distributed acrossmost of the locations. These were found
mostly in business and residential areas (ALK, AMT, ASB,
and MRA) where most of the vehicles are composed of cars,
taxis, van/light goods, and private/public transports. Also, it
could be observed that most industrial areas such as RWI (35–
65%) and RSL (18–25%) had a higher proportion of 2- and 3-
axle truck vehicles, respectively, than all the remaining loca-
tions where these HDV populations were found low (8–18%).
Thus, data on types and numbers of vehicles within the study

locations are important in order to assess their emission levels
in different Wilayats according to the number of HDV and
LDV (Wen et al. 2017; Zhang et al. 2019). Since the study
aimed to model emission factors of CO and NOx from these
locations, the various vehicle categories were broadly classi-
fied into HDV and LDV, where the proportion of these vehi-
cle types was used as an input parameter for the CMEM as
indicated in Table 1. In addition, location-specific meteoro-
logical variables such as temperature, humidity levels, wind
speed, and ambient pressure, which were obtained through
ambient AQM campaigns, were incorporated into the emis-
sion rate models. The detailed description of acquiring the
field data is discussed in “Emission modeling.”

Meteorological data

In this study, the surface and upper air meteorological data for
January–December 2018 were obtained from Seeb
International Airport (23° 35′ 43” N, 58° 17′ 54″ E) at an
elevation of 8 m. These data have been analyzed through the
Meteorological Assimilation Data Ingest System (MADIS),
and then they were processed further by Breeze (2019) ac-
cording to US EPA (2018a) meteorological processor
(AEMET) guidelines. Here, the two meteorological datasets
(upper and air-surface data) processed by AERMET were
used as ready input data for the models. The detailed descrip-
tion of the meteorological factors including land use features
of Muscat acquired from Seeb International Airport is indicat-
ed in Table 2.

Air pollution data

Field data

To collect traffic air pollution data and validate the model
results, a series of field measurement campaigns were con-
ducted from January to December 2018 across the six study
locations. At each location, continuous AQM data for CO and
NOx were collected with AirPointer AQM station (MLU/
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Fig. 2 The average daily traffic
volumes, the total number of cars,
in Muscat (March–May 2011)
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Recordum-GmbH, Austria) and an ETL3000 station (UniTec,
Italy) based on European Union (EU) and US EPA directives
(Pelletier et al. 2017; Weichenthal et al. 2015). CO was mea-
sured through non-dispersive infrared (NDIR) filter gas corre-
lation procedure with a lower detection limit of 0.04 ppm and
a precision of ±0.1 ppm. NOx data were collected via chemi-
luminescencemethod. The NOx detection limits and precision
levels were 0.4 ppb and < 500 ppb ± 1% of reading >
100 ppm, respectively. In addition, hourly ambient tempera-
ture, pressure, and wind speed were measured at each location
with an integrated meteorological station installed on the in-
struments. These meteorological data were applied for the
simulation of the vehicle emission rates at each study location.

Quality assurance

Measurements were taken for 24 h for each of the six moni-
toring locations within January–December 2018 for both sum-
mer and winter seasons. The instruments were placed at a
distance of 6.6–11 m away from the roads during the entire

monitoring period. The maximum optimal temperature (+
40 °C) for operations of the instruments was maintained.
Calibrations including regular changes/cleaning of adsorbents
were performed while ensuring zero in-built span gas in the
instrument. After spending 1440 min of sampling from each
location, the measured traffic data across the six locations
were visually assessed for possible outliers and other data
gaps (< 1% of the total measured data).

Emission modeling

US EPA (2018b) recommends that receptors should be placed
at least 5 m or 25 m closer to the road source and later wider
spacing of at least 100 m further away from the road sources.
Following Liu et al. (2019) approach, high-resolution recep-
tors from 5 to 100 m at 15m intervals closer to the road source
and later 50 m interval from 100 to 200 m further away from
the road source were used for each of the modeling locations.
Finally, the hourly (HH:MM) concentration of CO and NOx
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were predicted by the AERMOD from 00:00 to 23:00 for each
road across the six locations.

CMEM model

CMEM model was used to calculate emission factors
(g/veh km) for CO and NOx emitted from on-road vehicles
in Muscat. CMEM is a microscopic traffic model developed
by Centre for Environmental Research and Technology
(https://www.cert.ucr.edu/cmem/) at the University of
California-Riverside, USA. The microscopic nature of
CMEM enables simulation of second-by-second tailpipe pol-
lutants and fuel consumption rates for a wide range of vehicle
types/technologies for operating conditions such as properly
functioning, deteriorating, and malfunctioning states of the
vehicles (Zhang and Ioannou 2016). CMEM was selected
for the study because it is less data-driven and incorporate
local meteorological data compared to other models such as
US EPA’s MOVES model and Mobile Source Emission
Factor Model (MOBILE6). In order to run the CMEMmodel,

traffic microsimulation model (VISSIM) output of second-by-
second velocity and acceleration rate data are required (Abou-
Senna et al. 2013). Due to the lack of such data inMuscat road
network, the default VISSIM data for this study was
employed. Also, default data on model calibration parameters
such as fuel, soak time, hot catalyst, and engine out–pollutant
emission–coefficient values were used. Additionally, the pro-
portion of fleet volumes defined as LDV and HDV from each
of the study location was used as input parameter into the
model. Further, location-specific meteorological data on am-
bient temperature, pressure, and wind speed were incorporat-
ed. Table 1 indicates the fleet data and environmental param-
eters used for the CMEM model. Employing local meteoro-
logical data in this study is crucial in predicting locally based
emission factors due to harsh environmental conditions in
Muscat. The CMEM emission factors were converted into
emission rates as required by the dispersion model based on
total vehicle population (Fig. 2). The roadway coordinates and
the total area of each location (Table 3) were assumed accord-
ing to the method used by Charabi et al. (2018) and Abdul-

Table 2 Surface and upper air
meteorological information used
for the air dispersion modeling
acquired from Muscat
International Airport

Parameters Surface air (min–max value) Upper air (min–max value)

(A) Meteorological factors:

Temperature (K) 287–319 13.9–99.9

Relative humidity (%) 6.0–100 NA

Wind speed (m/s) 0.0–16.5 0–999

Wind direction (°) 0.0–360 0–360

Mechanical mixing height (m) 19–3723 NA

Convectional mixing height (m) 3.0–4000 NA

Sensible heat flux (W/m2) − 64–296 NA

Friction velocity (m/s) 0.032–1.340 NA

(B) Land use parameters:

Albedo 0.18–1.0 NA

Bowen ratio 0.96–0.98 NA

Surface roughness (m) 0.013–0.123 NA

NA non-applicable

Table 1 Fleet composition and
input environmental data for
CMEM model

Modeled location Fleet composition
(%)

Air pressure (kPa) Ambient temperature (°C) Velocity (kph)

LDV HDV

ALK 97.0 3.0 101.04 24.0 0.8

AMT 99.0 1.0 99.30 35.0 3.9

ASB 99.0 1.0 101.37 25.6 2.1

MRA 99.9 0.1 99.32 35.7 2.6

RWI 85.0 15.0 100.40 33.5 2.3

RSL 95.0 5.0 100.40 24.7 1.1

31189Environ Sci Pollut Res  (2020) 27:31184–31201

https://doi.org/https://www.cert.ucr.edu/cmem/


Wahab and Fadlallah (2014). Table 4 shows the final emission
rate values for the dispersion model for all the six modeling
locations.

COPERT IV emission data

The study also aimed at comparing emissions from CMEM
modeling outputs with COPERT IV emission factor data to
understand which of these emission factors perform well with
traffic emissions in Muscat. Therefore, COPERT IV emission
factor data (g/veh km) of CO and NOx were obtained from
National Atmospheric Emission Inventory data available at
http://naei.beis.gov.uk/data/ef-transport. Here, the emission
factors were developed based on fleet composition, weight
emission standards, vehicle specifications, abatement
technologies, fuel types, temperature conditions, and driving
behaviors. Table 5 provides a summary of emission factors
and their associated process for CO and NOx. Air dispersion
emission rates (g/m2/s) were estimated by considering the
COPERT IV emission factors and average speed of 30 km/h
(Table 5), total vehicle volumes (Fig. 2), and the area of the
road (Table 3) for each of the six roads in Muscat (Abdul-

Wahab and Fadlallah 2014). Table 6 lists the calculated emis-
sion rates for each location for air dispersion modeling study.

Air dispersion modeling

The individual roads in Muscat were modeled with US EPA
Line source tool of the AERMOD dispersion model. The de-
tailed description of the AERMOD model is available at
Amoatey et al. (2018a). The emission rates (g/m2/s) from
CMEM and COPERT IV data were applied to the model to
estimate the near-road dispersion of CO and NOx. The start
and end UTM coordinates (m) of each road, release height,
and the initial vertical dimension (σzo) were calculated by
dividing the effective height by 2.15 (Thus, the point of re-
lease of the pollutants should be 2.15 times the vertical dimen-
sion, σzo) as shown in Table 3 and Table 7, respectively (US
EPA 2018b). All these data were used as an input parameter of
the US EPA Line source in AERMOD (Abdul-Wahab and
Fadlallah 2014; US EPA 2018b). Here, the line source uses
the area source algorithm with the assumption that the traffic
emissions (g/m2/s) are uniformly dispersed across the dimen-
sions of the line sources. Also, the model does not simulate the
horizontal meander component of the pollutant dispersion

Table 3 The road and terrain parameters of the selected locations

Location Roadway coordinates (UTM: x, y) m Base elevation
(m)

Total area
(m2)

Road area
(m2)

AQM date
(2018)

Site type AQM distance
from road (m)

Start End

ALK 646,950.15,
2,610,136.52

646,297.23,
2,610,145.36

18.28 1.0516 × 107 1.6 × 104 28/01 Urban 10.5

AMT 652,393.07,
2,596,070.52

651,982.66,
2,596,263.38

132.58 2.7225 × 108 7.0 × 103 03/05 Suburban 6.6

ASB 621,505.82,
2,618,772.92

621,048.88,
2,619,288.77

6.40 3.7199 × 107 3.0 × 104 02/03 Urban 11.0

MRA 661,968.88,
2,612,663.38

661,780.44,
2,612,950.37

10.36 8.4652 × 105 4.0 × 103 10/06 Suburban 4.7

RWI 657,556.33,
2,610,170.48

658,133.05,
2,610,404.49

39.01 2.6151 × 106 9.0 × 103 07/09 Urban 7.0

RSL 624,152.65,
2,606,164.73

623,305.65,
2,606,452.69

78.02 6.8271 × 106 1.2 × 104 08/12 Industrial 10.0

Table 4 Emission rates for CO
and NOx based on CMEMmodel Location Emission factors (g/veh km) Emission rates (g/s) Emission rates (g/m2/s)

CO NOx CO NOx CO NOx

ALK 20.225 12.582 2809.75 1747.95 2.6716 × 10−4 1.6620 × 10−4

AMT 17.106 4.466 1198.70 312.95 4.4028 × 10−6 1.1494 × 10−6

ASB 17.11 4.476 1059.25 277.10 2.8474 × 10−5 7.4489 × 10−6

MRA 15.708 0.825 1997.53 104.91 2.3596 × 10−3 1.2392 × 10−4

RWI 38.873 61.125 2375.14 3734.73 9.0823 × 10−4 1.4281 × 10−3

RSL 23.337 20.681 4160.98 3687.42 6.0947 × 10−4 5.4011 × 10−4
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compared to point and volume sources. Thus, the line source
is used to predict concentrations of the pollutants located with-
in the dimension of the source (US EPA 2018b). There is no
reliable background concentration data available for these
sites for years preceding this study, thereby the lowest record-
ed concentration value was utilized as background concentra-
tion in each site.

Model evaluation

The performance of the AERMOD (US EPA Line source)
model was determined by comparing the predicted values of
hourly CO and NOx concentrations with the observed values
from 00:00 to 23:00 for January–December 2018 for each of
the six locations. These evaluations were conducted by using
US EPA recommended air quality statistical models (Mohan
et al. 2011). These statistical performance measures have been
previously applied as common framework for European
Union Initiative on “Harmonizing within the Atmospheric
Dispersion Modeling for Regulatory Purposes” (Cai and Xie
2011). To achieve the model evaluation, three linear statistical
measures including fractional bias (FB), normalized mean
square error (NMSE), and correlation coefficient (R) were
considered. The FB andNMSE are both quantitative statistical
models used to determine over-/underprediction and accuracy
of the model performance, respectively, whereas qualitative
statistical measures (R) determine the association between the
modeled and the observed results. Geometric mean bias (MG)
and geometric variance (VG) performancemeasures were also
employed to account for a more balanced treatment of ex-
tremely high and low predicted values based on logarithm
transformation, of which FB and NMSE cannot do. In addi-
tion, bootstrap resampling statistical technique was used to

estimate the confidence interval (CI) at 95% using NMSE,
FB, and R performance measures for COPERT and CMEM
models. This is because they are deemed as the most basic
statistical measures, and they are more suitable for mid-range
model output pollutant concentrations to evaluate air quality
models (Kadiyala and Kumar 2012). This analysis will help to
establish whether the performance of COPERT and CMEM
model outputs are statistically different from 0 at 95% CI
compared with observed data or not. In this study, all the
primary and bootstrap resampling analysis were performed
through Microsoft Excel® (Version 2016) and BOOT®
Software (version 2.01), respectively. All the statistical per-
formance measures are presented by Eqs. 1–5 below.

FB ¼ Co
� −Cp�

0:5

 
Coþ Cp

! ð1Þ

NMSE ¼
�
Cο−Cp

�
2

�
CοCp

� ð2Þ

R ¼
�
Cο−Cο

�
Cp−Cp
� �

σCo σCp
ð3Þ

MG ¼ exp lnCo−lnCp
� �

ð4Þ

VG ¼ exp lnCo−lnCp
� �2� �

ð5Þ

The symbols Cp, Cο, C, σ and ln denote the predicted
concentration, the observed concentration, the average of the

Table 6 Modeled location-
specific emission rates estima-
tions based on COPERT IV data

Location Daily vehicle volume (Veh.) Emission rates (g/s) Emission rates (g/m2/s)

NOx CO NOx CO

ALK 16,671 113.918 49.735 7.1198 × 10−3 3.1084 × 10−3

AMT 8409 57.461 25.086 8.2087 × 10−3 3.5837 × 10−3

ASB 7429 50.764 22.163 1.6921 × 10−3 7.3876 × 10−4

MRA 15,260 104.276 45.525 2.6069 × 10−2 1.1381 × 10−2

RWI 7332 50.102 21.873 5.5668 × 10−3 2.4303 × 10−3

RSL 21,396 146.206 63.831 1.2183 × 10−2 5.3192 × 10−3

Table 5 COPERT IV road
transport emission factors (NAEI
2019)

Pollutant Emission processes Average speed
(km/h)

Emission factors
(g/veh km)

NOx Hot exhaust emissions and cold start exhaust
emissions

30 0.820

CO 30 0.358
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concentrations, the standard deviation, and the natural loga-
rithm, respectively. Figure 5 illustrates a flowchart describing
the steps of the entire modeling study in “Data and methods.”

Results and discussion

The COPERT IV emission data and the estimated CMEM
emission rates were employed as input for EPA Line source
of the AERMOD dispersion modeling system in prediction of
CO and NOx. Also, the measured concentrations and allow-
able threshold limits of the pollutants are presented and com-
pared with the predicted concentrations for the six roads lo-
cated in ALK, AMT, ASB, MRA, RWI, and RSL. The anal-
ysis of the results consists of three components, including CO
concentrations, NOx concentrations, and model evaluation.

CO concentrations

By selecting CO as a case study, distinctive predicted concen-
trations for COPERT IV and CMEM emission rates input data
were obtained. Table 8 presents the top five maximum hourly
concentrations of CO for the three main traffic rush hours in
Muscat defined as morning (6:00 and 8:00), afternoon
(13:00), and evening (20:00 and 22:00) peak hours along with
the near-road locations. It can be seen that although the model
predicted higher concentrations of CO for COPERT IV input
data compared to CMEM across all the six roads, most of the
predicted concentrations were within the US EPA standard

(40,096.1 μg/m3). However, MRA experienced two highest
predicted concentrations during the time 20:00 (83,038.83μg/
m3) and 22:00 (55,695.54 μg/m3), thereby exceeding the US
EPA’s allowable limit. Similarly, slightly higher prediction of
41,455.64 μg/m3 than the US EPA limit also occurred in
AMT during the 22:00 period.

Moving to the measured concentrations of CO, they were
also found below the US EPA standards similar to most of the
model concentrations. However, higher concentrations were
measured for all the three peak hours in MRA and AMT
exceeding an average of 10,000 μg/m3 compared to the re-
maining locations. Figure 6 shows a time-series concentra-
tions levels of CO for each location measured over 24 h.
Interestingly, the results from this study showed consistency
in trends for higher concentration levels of CO for both the
predicted and the measured values in these two locations
(MRA and AMT) (Table 8). The similarities in the concentra-
tions of these two locations may be attributed to the influence
of meteorological factors due to its proximity to the sea
(Sultan Qaboos Port) and mountainous terrain features com-
pared to the other roads (Abdul-Wahab and Fadlallah 2014).
Also, the measured and predicted concentrations may not be
due to poor dispersal of the CO emissions as these locations
are characterized by several mountains (Zhang et al. 2019). In
general, visual comparison of all the predicted and the mea-
sured concentrations showed increased in CO levels during
the morning where traffic was at the peak and decreased when
traffic volumes reduce and later increased again during eve-
ning hours. Thus, these variations in CO concentrations may
be highly dependent on traffic emissions.

NOx concentrations

For the emissions of NOx, Table 9 shows the AERMOD
predicted concentrations of COPERT IV and CMEM emis-
sion rate input parameters for the six modeled locations in
Muscat. The predicted concentrations were visually compared
with the measured and the allowable limit established by the

Fig. 5 Full-chain road traffic
modeling processes of Muscat

Table 7 AERMOD EPA Line source input parameters for the modeled
locations

Parameter Value (m)

Released height 0.35

Initial vertical dimension, σzo 0.2

Road width 10
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US EPA threshold limit of 188.2 μg/m3 for NO2 since, cur-
rently, there is no criterion set for NOx emissions (US EPA
2018c). It could be observed from Table 9 that the two emis-
sion rate data of the model predicted maximum hourly NOx
concentrations of about 10–100 folds higher than the observed
concentrations. The model prediction based on CMEM emis-
sion data for AMT and ASB was found very low, thereby
meeting the US EPA standard of 188.2 μg/m3 for NO2.
Despite the high predictions made by the model in certain
hours of the day, there were a similar pattern in terms of
increase, decrease, and increase in NOx concentration levels
with respect to morning (6:00 and 8:00), afternoon (13:00),
and evening (20:00 and 22:00) peak hours across all the model
locations, respectively. For example, in ALK, the model pre-
dicted high NOx levels at 6:00 to be 2087 μg/m3 which later

decreased drastically to 275 μg/m3 at 13:00 increased again to
902 μg/m3 during the peak hour of 22:00 based on the CMEM
emission data. Similar to COPERT IV data, the model pre-
dicted concentrations of 89,432 μg/m3, 11,801 μg/m3, and
38,646 μg/m3 during the same three peak hours of the day
as described above. The high predictions of COPERT com-
pared to CMEM could be due to the utilization of local or
location-specific traffic and meteorological data during
CMEM emission rates estimation, whereas such local data
was lacking in COPERT. These variations in the predicted
concentrations attest that the NOx levels were primarily attrib-
uted to traffic emissions. Also, the road traffic NOx concen-
tration levels were found to be very low with average hourly
concentrations (22 to 160 μg/m3) among the six roads.
Figure 6 also shows detailed time-series NOx concentrations

Table 8 Comparison of top 5 peaks modeled AERMOD values from COPERT IV and CMEM input values with observed concentrations of CO
among the six modeled locations in Muscat from 00:00 to 23:00

Location (date) Time Modeled value (μg/m3) Observed value (μg/m3) 1-hr threshold average concentration

(HH:MM) COPERT IV CMEM

ALK 28/01/2018 06:00 39,044.75 3355.80 2360 40,096.1 μg/m3 (35 ppm) CO
08:00 6326.00 543.70 5950

13:00 5152.42 442.83 2540

20:00 12,166.13 1045.65 4100

22:00 16,872.41 1450.14 3210

AMT 03/05/2018 06:00 14,135.60 17.36 13,440

08:00 5787.43 7.11 14,540

13:00 3453.55 4.24 12,460

20:00 25,676.66 31.54 12,790

22:00 41,455.64 50.93 15,220

ASB 02/03/2018 06:00 3060.44 117.95 4400

08:00 1246.17 48.03 4690

13:00 1198.45 46.19 4450

20:00 3069.51 118.30 4810

22:00 2832.20 109.16 5370

MRA 10/06/2018 06:00 45,107.17 9351.98 15,980 40,096.1 μg/m3 (35 ppm) CO
08:00 22,090.87 4580.05 16,140

13:00 20,949.65 4343.44 16,360

20:00 83,038.83 17,216.27 16,340

22:00 55,695.54 11,547.24 16,980

RWI 07/09/2018 06:00 16,965.72 6340.28 610

08:00 7347.08 2745.68 540

13:00 1702.02 636.06 1030

20:00 28,181.14 10,531.60 2850

22:00 15,776.43 5895.82 3350

RSL 08/12/2018 06:00 20,434.94 2341.42 2900

08:00 18,469.70 2116.24 1200

13:00 8829.61 1011.69 900

20:00 25,035.84 2868.58 1600

22:00 21,179.93 3383.87 2100
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measured from each location over 24-h durations. These mea-
sured values were found to be very low compared to the pre-
dicted concentrations (Table 9), which could be due to rapid
transformation of the NOx to O3 through photochemical reac-
tions as solar radiation levels are generally high in Muscat
(Agudelo-Castaneda et al. 2014; Directorate General of
Meteorology 2019). This low model prediction levels were
also evidenced by the lower measured NOx levels (Table 9).
According to Amoatey et al. (2019), nitric oxide (NO) is very
unstable gas and is the major component of NOx (95% vol.
NOx) when emitted from vehicular tailpipes. These imply that
most of the NOx might have been converted to an unstable
NO thereby decreasing the measured and the predicted con-
centration levels across the modeled locations. Thus, it is
imported to incorporate NOx (NO2–NO–O3) chemical trans-
formation algorithms into future traffic modeling studies in
order to improve the accuracy of the predicted concentrations
levels (Halonen et al. 2016).

Model evaluation

The statistical performance measure outputs for the measured
and predicted concentrations across the six locations are sum-
marized in Table 10. In overall, the statistical models predict-
ed the concentrations of CO and NOx moderately well and
poor for certain locations. In ASB, FB model revealed mod-
erate propensity of AERMOD to underestimate NOx (FB =
0.39) and CO (FB = 0.47) concentration levels for CMEM and

COPERT IV input data, respectively. However, FB showed a
low tendency for the COPERT IV model to over-predict CO
(FB = − 0.23) in AMT. For the performance measures, there
was satisfactorymodel performance based onNMSE statistics
in ASB for CO = 0.44 and NOx = 0.5 for COPERT IV and
CMEM input parameters, respectively. However, as shown in
Table 10, NMSE results for CO in AMT (0.95) and MRA
(0.69) were found to be moderate. The above model perfor-
mances of FB and NMSE were based on the criteria used by
the study conducted by Mohan et al. (2011); thus, a model
prediction is deemed acceptable if − 0.5 < FB < + 0.5 and
NMSE < 0.5.

It is very clear that very few locations had moderate pre-
diction and performance while the majority showed very poor
over-prediction and performances with the measured results
(Table 10). Regarding the relationship between the modeled
and measured pollutants, the association (R) were found to be
moderate in all the locations for CO (0.51–0.64), with an
exception of MRA (R = 0.25), which showed a weak correla-
tion. For NOx, very good correlation was found in ALK (R =
0.70), while moderate association were found in AMT (R =
0.50) and RSL (R = 0.49). The detailed statistical associations
between the predicted model results based on COPERT IV
and CMEM input data and the observed concentrations in
each location are shown in Table 10. In addition, due to the
varying (extremely low and high values) predicted concentra-
tion levels of both COPERT and CMEMoutputs,MG andVG
performance measures were utilized to evaluate these predict-
ed concentrations based on a logarithmic scale (Table 11).
According to the standard model acceptance criteria range
for MG (0.70–1.30) and VG (1.50–4.00) suggested by
Chang and Hanna (2004), the model performance for the cur-
rent study seems moderate; however, several locations could
not meet the above performance. For example, COPRET IV
showed good performance for CO (MG = 1.07) in AMT. For
the same model, the VG statistical measure for several roads
including ASB (2.33), MRA (2.75), and AMT (2.00) had
predicted CO levels within the above model acceptance
criteria. In the case of CMEM model, a similar situation was
also found in RSLwhere the estimated VG = 1.91 satisfied the
acceptable limits for CO. As indicated in Table 11, the model
evaluation showed weak performance towards NOx. For ex-
ample among all the location, only ASB (VG = 2.32) satisfied
the performance measure for CMEMmodel. It should be not-
ed that, in a more stringent model acceptability criteria, both
COPERT IV and CMEMmodels will show poor performance
(Amoatey et al. 2018a; Kumar et al.1992).

Tables 12 and 13 indicate detailed 95% CI estimates over
NMSE, FB, and R obtained from bootstrap resampling anal-
ysis for both individual models (COPERT and CMEM) and
between models for CO and NOx (Kumar et al. 2012). In
ALK, the bootstrap 95% CI estimates over NMSE and FB
for CO were statistically different from 0 (the signs for lower

Fig. 6 Average measured hourly concentrations of CO (top) and NOx
(bottom) from each modeling location
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and upper limits did not change) for the individual model
comparison except for R (due to change in signs for the CI
limits) in CMEM model (Table 12). Intra-model (combined)
comparison also indicated statistical significance for all the
performance measures for both COPERT and CMEMmodels
as listed in Table 13. A similar situation was also recorded for
NOx where individual model 95% CI estimates over NMSE
and FB were found not to be statistically different from 0 with
the exception of R for both models. However, all the perfor-
mance measures (NMSE, FB, and R) were statistically differ-
ent from 0 between model comparisons. Also in AMT, the
individual comparison for CO showed that all the measures
were not statistically different from 0 except NMSE for NOx;
however, both NMSE and FB were found to be statistically

different from 0 (Table 12). Interestingly, comparison of CO
andNOxwas significantly different from 0 between COPERT
and CMEM models (Table 13).

Interestingly, in ASB, both CO and NOx bootstrap 95% CI
estimates for all the measures were statistically different from
0 for both individual models and between model perfor-
mances with the exception of R for NOx which was not sta-
tistically different from 0 for individual model performance.
The study found an interesting model performance evalua-
tions in RWI, where all the pollutants (CO and NOx) showed
statistical significance (at 95% CI) for both the individual
models (COPERT and CMEM) and between model compar-
ison (Tables 12 and 13). Also for individual model perfor-
mance comparison, the bootstrap 95% CI estimates over

Table 9 Comparison of top 5 peaks modeled AERMOD values from COPERT IV and CMEM input values with observed concentrations of NOx
among the six modeled locations in Muscat from 00:00 to 23:00

Location (date) Time Modeled value (μg/m3) Observed value (μg/m3) 1-h threshold average concentration

(HH:MM) COPERT IV CMEM

ALK 28/01/2018 06:00 89,432.14 2087.64 116.21 188.2 μg/m3 (100 ppb), NO2

08:00 14,489.73 338.239 289.05

13:00 11,801.65 275.49 83.13

20:00 27,866.56 650.49 185.96

22:00 38,646.31 902.13 128.62

AMT 03/05/2018 06:00 32,378.52 4.53 207.95

08:00 13,256.49 1.85 262.76

13:00 7910.60 1.11 23.55

20:00 58,814.06 8.23 57.48

22:00 94,956.80 13.29 258.9

ASB 02/03/2018 06:00 70,09.82 30.85 9.11

08:00 2854.31 12.56 26.95

13:00 2745.01 12.08 32.10

20:00 7030.60 30.94 35.71

22:00 6487.04 28.55 81.21

MRA 10/06/2018 06:00 103,321.23 491.14 20.39 188.2 μg/m3 (100 ppb), NO2

08:00 50,600.73 240.53 41.73

13:00 47,986.69 228.11 32.06

20:00 190,206.42 904.15 23.9

22:00 127,574.64 606.43 37.09

RWI 07/08/2018 06:00 38,861.38 9969.45 18.52

08:00 16,829.10 4317.31 18.08

13:00 3898.63 1000.15 21.79

20:00 64,551.20 16,559.88 25.49

22:00 36,137.21 9270.59 26.45

RSL 08/12/2018 06:00 46,803.84 2074.95 26.6

08:00 42,302.67 1875.40 66.7

13:00 20,223.18 896.55 46.5

20:00 57,341.63 2542.13 95.4

22:00 67,642.02 2998.77 19.2
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NMSE and FB were statistically different from 0 for CO and
NOx for all the models in MRA, whereas R was not found
significantly different from 0. Similar performance was also
observed in RSL for CO and NOx for the individual COPERT
and CMEM model comparison except for NMSE (in CMEM
model), which was not statistically different from 0
(Table 13). Finally, the bootstrap 95% CI estimates for the
combined model comparison of CO and NOx for both MRA
and RSL were found statistically significant from 0
(Table 13).

In terms of modeling study, the study faced several limita-
tions including the inability of the EPA line source to simulate
vertical dispersion of the pollutants but rather considers the
horizontal distribution of the pollutants long the road, which
could lead to over prediction and underestimation of the
predicted pollutants. Also, the lack of background data for
CO and NOx in close proximity to the modeled locations
could be a major factor in the overall performance of the
model predictions. Khreis et al. (2018) found that incorporat-
ing background NOx concentrations (ranging from 8.5 to
71 μg/m3) other than road sources could enhance the perfor-
mance of the model. In addition, most roads have planted

green vegetation (mainly turf grass) and these turf grasses near
the roads are frequently managed through mowing activities
(Amoatey et al. 2018b). Thus, the emission from the mowers
could be the major contributor to background CO and NOx
concentrations.

Although the study estimated emission rates of CO and
NOx with CMEM model by using road-specific meteorolog-
ical factors and the proportion of LDV and HDV for each
road, there was a lack of second-by-second vehicle velocity
and acceleration data, vehicle engine emission data, as well as
the most recent traffic data. All these factors affected the
CMEM emission rate data and the performance of the model
with respect to measured values. Thus, in order to ensure
accurate prediction of traffic emissions from roads in Oman,
it is crucial to develop a local emission rate data and air dis-
persion modeling system since Oman has different meteoro-
logical and terrain features compared to developed countries
where these models were adapted from.

Despite the limitations, this study provides very useful
datasets about the road traffic emission modeling in Muscat
and many arid countries compared to previous studies (Abdul-
Wahab and Fadlallah 2014). This is the first study where US

Table 11 Logarithmic
performance measures of
AERMOD predictions based on
COPERT IV and CMEM input
values and the measured
concentrations across the six
locations

Locations MG (CMEM) MG (COPERT IV) VG (CMEM) VG (COPERT IV)

CO NOx CO NOx CO NOx CO NOx

ALK 2.77 0.17 0.24 0.005 4.28 27.41 11.86 1.7E13

AMT 874.9 20.31 1.07 0.003 3426.8 2.1E4 2.00 2.1E15

ASB 52.35 1.57 2.01 0.006 9.1E6 2.32 2.33 1.0E11

MRA 2.23 0.08 0.46 0.0004 2.92 819.8 2.75 6.3E26

RWI 0.38 0.0043 0.14 0.0011 4.62 1.9E13 78.3 3.2E20

RSL 0.60 0.027 0.069 0.0012 1.91 6.1E5 1854.6 4.9E19

MG and VG should be equal to 1 to deem the model as perfect one

The italicized values meet the minimum criteria of the individual statistical performance measures

Table 10 Linear performance measures of AERMOD predictions based on COPERT IV and CMEM input values and the measured concentrations
across the six locations

Locations FB (CMEM) FB (COPERT IV) NMSE (CMEM) NMSE (COPERT IV) R (CMEM and COPERT IV)

CO NOx CO NOx CO NOx CO NOx CO P value NOx P value

ALK 1.41 − 1.46 − 1.34 − 1.98 1.05 6.89 5.74 371.89 0.53 0.01 0.7 0.0002

AMT 1.99 1.83 − 0.23 − 1.98 629.17 33.28 0.95 496.65 0.59 0.0027 0.5 0.0128

ASB 1.90 0.39 0.47 − 1.97 38.28 0.50 0.44 205.37 0.51 0.0116 0.15 0.4652

MRA 0.55 − 1.72 − 0.92 − 1.99 0.72 17.18 0.69 4015.97 0.25 0.2403 − 0.07 0.7162

RWI − 1.08 − 1.98 − 1.59 − 1.99 3.17 656.78 11.10 2565.96 0.64 0.0033 0.39 0.0913

RSL − 0.60 − 1.91 − 1.76 − 1.99 1.46 62.34 21.67 1448.83 0.56 0.0047 0.49 0.0144

Perfect model estimation, performance, and association should have FB, NMSE, and R values to be 0, 0, and 1, respectively (Cai and Xie 2011)

The italicized values meet the minimum criteria of the individual statistical performance measures
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Table 12 Inter-model (individual models) comparison using bootstrap CI 95% estimates over NMSE, FB, and R for CO and NOx

Locations Models Measures Lower limits Upper limits Student’s t test Mean SD

Student’s t test at 95% CI for CO

ALK COPERT NMSE 3.371 8.15 4.999 5.76 1.152

FB − 1.512 − 1.158 − 15.621 − 1.335 0.085

R 0.326 0.699 0.756 0.187 0.247

CMEM NMSE 0.277 1.961 2.756 1.119 0.406

FB 0.523 1.047 6.217 0.785 0.126

R − 0.326 0.699 0.756 0.187 0.247

AMT COPERT NMSE 0.461 1.405 4.092 0.933 0.228

FB − 0.581 0.051 − 1.738 − 0.265 0.153

R − 0.042 0.806 1.866 0.382 0.205

CMEM NMSE 420.739 842.592 6.196 631.666 101.946

FB *** *** *** 1.994 0.000

R − 0.042 0.806 1.866 0.382 0.205

ASB COPERT NMSE 0.234 0.759 3.915 0.497 0.127

FB 0.234 0.743 3.969 0.488 0.123

R 0.115 1.004 2.602 0.559 0.215

CMEM NMSE 29.707 53.432 7.251 41.569 5.733

FB 1.884 1.932 163.471 1.908 0.012

R 0.115 1.004 2.602 0.559 0.215

MRA COPERT NMSE 1.291 4.08 3.985 2.686 0.674

FB − 1.177 − 0.668 − 7.51 − 0.923 0.123

R − 0.279 0.544 0.664 0.132 0.199

CMEM NMSE 0.352 1.011 4.285 0.681 0.159

FB 0.258 0.846 3.888 0.552 0.142

R − 0.279 0.544 0.664 0.132 0.199

RWI COPERT NMSE 7.457 20.702 4.399 14.079 3.201

FB − 1.716 − 1.468 − 26.556 − 1.592 0.06

R 0.261 0.856 3.883 0.558 0.144

CMEM NMSE 1.59 6.345 3.453 3.968 1.149

FB − 1.31 − 0.83 − 9.232 − 1.07 0.116

R 0.261 0.856 3.883 0.558 0.144

RSL COPERT NMSE 8.956 40.421 3.297 24.688 7.488

FB − 1.861 − 1.663 − 37.461 − 1.762 0.047

R − 0.097 0.764 1.629 0.334 0.205

CMEM NMSE − 0.057 3.192 2.027 1.568 0.773

FB − 0.991 − 0.186 − 3.072 − 0.588 0.192

R − 0.097 0.764 1.629 0.334 0.205

Student’s t test at 95% CI for NOx

ALK COPERT NMSE 278.251 553.362 6.269 415.806 66.324

FB − 1.992 − 1.979 − 622.534 − 1.986 0.003

R − 0.043 0.971 1.898 0.464 0.244

CMEM NMSE 4.661 10.705 5.273 7.683 1.457

FB − 1.605 − 1.321 − 21.327 − 1.463 0.069

R − 0.043 0.971 1.898 0.464 0.244

AMT COPERT NMSE 299.343 769.939 4.701 534.641 113.726

FB − 1.992 − 1.983 − 939.475 − 1.987 0.002

R − 0.184 0.707 1.214 0.262 0.215

CMEM NMSE 20.078 54.786 4.463 37.432 8.388

FB 1.767 1.89 61.624 1.829 0.03
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EPA Line source of AERMOD model has been used in
modeling of different on-road vehicles with varied vehicle
volumes and compositions under different meteorological fac-
tors and terrain features. Furthermore, additional modeling
study will be required to incorporate the effects of complex
terrain features of Muscat on the pollutants concentration
levels.

Conclusions

In this study, the concentration levels of CO and NOx were
predicted across six different major roads with various traffic
vehicle categories and volumes inMuscat using US EPA Line
source tool of AERMOD dispersion modeling system. Two
different emission factor models (COPERT IV and CMEM)
were established based on fleet composition, weight emission
standards, vehicle specifications, abatement technologies, fuel
types, temperature conditions, and driving behaviors. Studies
have proved that the near-road TRAP estimations were attrib-
uted to street level environment and specific conditions in-
cluding low winds, LDV vehicles only, and limited receptors

only. Hence, the field monitoring campaign of CO and NOx
along the roads under normal traffic, road, and meteorological
conditions were conducted to help in the validation of the
modeled results. The results proved that the predicted and
the measured CO and NOx were within the acceptable limit
set by US EPA. However, certain locations were found to
have exceeded the standard, especially from high NOx levels.
Also, the overall performance of the predicted concentrations
with the measured data was moderate, except some locations
that showed significant over/under prediction as well as the
poor performance with the measured values. Taking into con-
sideration the overall primary model performance measures,
the study found COPERT emission factors showing moderate
prediction compared to the CMEM; this may be due to the
limited local (arid) vehicle second-by-second velocity and ac-
celeration rate input data of the CMEM model. However, the
bootstrap 95%CI estimates over all the performance measures
(NMSE, FB, and R) of between model (COPERT–CMEM)
comparison for both CO andNOxwere statistically significant
from 0 across all the model locations. For the individual model
comparison, bootstrap 95% CI estimates over NMSE and FB
were the most dominant statistical measures that were

Table 12 (continued)

R − 0.184 0.707 1.214 0.262 0.215

ASB COPERT NMSE 150.278 295.292 6.357 222.785 35.044

FB − 1.981 − 1.966 − 541.786 − 1.973 0.004

R − 0.145 0.837 1.457 0.346 0.237

CMEM NMSE 0.326 1.045 3.945 0.686 0.174

FB 0.107 0.692 2.822 0.399 0.141

R − 0.145 0.837 1.457 0.346 0.237

MRA COPERT NMSE 2933.68 6176.396 5.813 4555.038 61.955

FB − 2.003 − 1.994 − 872.168 − 1.999 0.002

R − 0.544 0.667 0.209 0.061 0.293

CMEM NMSE 12.133 27.257 5.389 19.695 3.655

FB − 1.813 − 1.636 − 40.525 − 1.725 0.043

R − 0.544 0.667 0.209 0.061 0.293

RWI COPERT NMSE 1743.031 3516.847 6.135 2629.939 23.861

FB − 2.001 − 1.993 *** − 1.997 0.002

R 0.201 0.738 3.616 0.47 0.13

Model-B NMSE 445.567 900.634 6.121 673.101 109.973

FB − 1.991 − 1.987 *** − 1.989 0.001

R 0.201 0.738 3.616 0.47 0.13

RSL COPERT NMSE 940.886 2240.705 5.143 1590.796 90.101

FB − 2.002 − 1.99 − 677.168 − 1.996 0.003

R − 0.003 0.872 2.086 0.435 0.208

CMEM NMSE 39.791 97.017 5.023 68.404 13.619

FB − 1.941 − 1.875 − 120.235 − 1.908 0.016

R − 0.003 0.872 2.086 0.435 0.208

***Errors due to BOOT® software estimations

The italicized values are not statistically different from 0 (due to changes in the sign for both lower and upper limits) at 95% CI
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significantly different from 0 for both models. The contribu-
tion of the complex and varied geographical landscape fea-
tures in Muscat on traffic emission levels was not considered
under this study, except road geometry (road length and
width), as the model could not account for the effect of com-
plex and hilly terrain features. The major limitation of the
model validation was due to the lack of reliable background
CO and NOx data in addition to the emissions from other
roads which were not a part of the study.

This is the most and the only comprehensive study con-
ducted in Muscat urban and industrial areas, which was sup-
ported by the Omani government. As a result of this study, the
government aimed to map air pollution hot spots and set up a
permanent network of air pollutionmonitoring stations around
the city. The reported results, which are supported by high-
quality dataset, would be an essential infrastructure for emis-
sion forecasting, which provides a basis for future urban and
city-scale air pollution studies and it can be expanded into

Table 13 Intra-model (between models) comparison using bootstrap CI estimates over NMSE, FB, and R for CO and NOx

Locations Models Measures Lower limits Upper limits Student’s t test Mean SD

Student’s t test at 95% CI for CO

ALK COPERT–CMEM NMSE 1.577 7.706 3.141 4.641 1.478

FB − 2.208 − 2.032 − 49.889 − 2.12 0.042

R 0.000 0.000 0.171 0.000 0.000

AMT COPERT–CMEM NMSE − 841.922 − 419.542 − 6.179 − 630.732 102.074

FB − 2.573 − 1.945 − 14.893 − 2.259 0.152

R 0.000 0.000 − 0.884 0.000 0.000

ASB COPERT–CMEM NMSE − 52.696 − 29.45 − 7.311 − 41.073 5.618

FB − 1.65 − 1.19 − 12.76 − 1.42 0.111

R 0.000 0.000 0.447 0.000 0.000

MRA COPERT–CMEM NMSE 0.372 3.637 2.54 2.004 0.789

FB − 1.52 − 1.429 − 67.145 − 1.475 0.022

R 0.000 0.000 − 0.213 0.000 0.000

RWI COPERT–CMEM NMSE 5.848 14.375 4.907 10.112 2.061

FB − 0.638 − 0.406 − 9.321 − 0.522 0.056

R 0.000 0.000 − 0.229 0.000 0.000

RSL COPERT–CMEM NMSE 8.998 37.243 3.44 23.121 6.722

FB − 1.477 − 0.87 − 8.113 − 1.174 0.145

R 0.000 0.000 − 0.799 0.000 0.000

Student’s t test at 95% CI for NOx

ALK COPERT–CMEM NMSE 273.585 542.662 6.291 408.123 64.869

FB − 0.66 − 0.385 − 7.865 − 0.523 0.066

R 0.000 0.000 − 0.234 0.000 0.000

AMT COPERT–CMEM NMSE 251.217 743.201 4.182 497.209 118.894

FB − 3.874 − 3.758 − 136.146 − 3.816 0.028

R 0.000 0.000 − 0.513 0.000 0.000

ASB COPERT–CMEM NMSE 149.507 294.692 6.33 222.099 35.086

FB − 2.657 − 2.088 − 17.238 − 2.373 0.138

R 0.000 0.000 0.127 0.000 0.000

MRA COPERT–CMEM NMSE 2921.552 6149.136 5.815 4535.344 35.613

FB − 0.362 − 0.186 − 6.476 − 0.274 0.042

R 0.000 0.000 − 0.211 0.000 0.000

RWI COPERT–CMEM NMSE 1297.453 2616.223 6.14 1956.838 47.051

FB − 0.011 − 0.005 − 5.432 − 0.008 0.002

R 0.000 0.000 − 0.619 0.000 0.000

RSL COPERT–CMEM NMSE 901.076 2143.705 5.148 1522.391 99.779

FB − 0.12 − 0.056 − 5.843 − 0.088 0.015

R 0.000 0.000 0.391 0.000 0.000
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future health and epidemiologic impact assessments. In the
case of arid environments in developing countries, the meth-
odology followed in this study can be utilized in other coun-
tries with similar environmental climate, such as developing
countries in theMiddle East; Belize and El Salvador in Central
America; Peru (Southern America); and Arizona, Texas, and
Oklahoma in the USA (Checkley et al. 2000; Heusinger and
Sailor 2019; Song et al. 2017). This study would contribute to
enriching the existing body knowledge and in future studies to
filling this particular gap in knowledge. Future traffic model-
ing study may have the high potential of improving the pre-
diction of traffic emissions for accurate exposure assessment
in residential areas in Muscat and Oman at large. Finally, a
dynamic model evaluation approach involving detailed mete-
orological information should be considered for future study.
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