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Abstract
Vigorously developing high-tech industry has been considered to be an effective way to coordinate economic growth with
excessive carbon dioxide (CO2) emissions. However, previous studies have not explored the heterogeneous impacts of high-
tech industry on CO2 emissions in regions with different levels of high-tech industry development, and not distinguished the
direct and indirect impacts. Based on STIRPAT model, this study investigates the impacts of high-tech industry development on
CO2 emissions in China between 2005 and 2016. Adopting the K-medians cluster method, effects in regions with high, middle,
and low levels of high-tech industry development are considered. Indirect effects of high-tech industry development on CO2

emissions by affecting industry structure upgrades and economic growth are explored. Empirical results illustrate a positive U-
shaped nonlinear link between the level of high-tech industry development and CO2 emissions at the national level and regional
(high, middle, and low) level. In terms of indirect impacts, high-tech industry development attenuates the reduction of CO2

emissions due to industry structure upgrades, and promotes economic growth to increase CO2 emissions slightly. The indirect
impact intensity gradually decreases as the level of high-tech industry development decreases across three regions. Reasonable
implications of our findings are proposed.
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Introduction

Fossil fuel consumption–based economic development brings
the tricky issue that the over-emitted CO2 emissions pose a
threat to people’s health and lives (Gong et al. 2017). Nine
billion tons of energy-related CO2 emissions, accounting for
60% of the global output, were produced by China in 2016;
however, in 1990, China’s CO2 emissions only accounted for
5% of the global output (Gu et al. 2019). According to the
China Energy Outlook: World Energy Outlook 2017 (IEA
2018), China was once again the largest contributor to global
CO2 emissions. The high volume of fossil fuel consumed in

promoting sustainable economic growth, rapid industrializa-
tion, and urbanization in China has attracted worldwide atten-
tion to China’s contribution to greenhouse effects (Cheng et al.
2018). China values being known as a reliable and responsible
country, so it continues to aim at reducing its CO2 emissions.
In 2009, China made an ambitious commitment to reduce its
carbon intensity by 40–45% by 2020, relative to 2005 levels,
at the United Nations Climate Change Conference in
Copenhagen. In the 12th 5-year plan (2011–2015), China
promised to reduce carbon intensity by 17% by 2015 relative
to 2010 and achieved a 20% reduction relative to 2010 levels,
a reduction that exceeded expectations. In the 13th 5-year plan
(2016–2020), China committed to reduce its CO2 emissions
by 18% relative to 2015 levels by 2020. At the 21st United
Nations Climate Change Conference in Paris, China signed
the Paris Agreement and promised to peak CO2 emissions
around 2030 and strive to achieve it as soon as possible.
This means that by 2030, CO2 emissions per unit of gross
domestic product (GDP) will be reduced by 60 to 65% com-
pared with 2005.

Although China recognizes the necessity to reduce total
CO2 emissions and energy use, the country has prioritized
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economic growth to provide job opportunities and enhance
people’s life quality. Coordinating economic growth with en-
vironmental protection and climate change mitigation has be-
come a major challenge (Liu 2016). Many measures imple-
mented by the Chinese government have mitigated CO2 emis-
sions without significantly impeding economic development.
These measures include adjusting the economic structure, de-
veloping alternative energy solutions, optimizing energy
structure, and investing more research and development re-
sources in developing low-carbon emissions technologies.
However, the conflict between economic growth and reducing
CO2 emissions remains and requires the development of more
solutions. The high-tech industry has contributed much to the
growth of China’s economy and has become an indispensable
part of China’s economic development strategy, primarily due
to its knowledge-intensive and multidisciplinary technologies
(Wang and Wang 2014). Therefore, much effort has been put
into the growth of the high-tech industry. According to the
China Statistics Yearbook on High Technology Industry, the
fixed asset investment in the high-tech industry of 30 prov-
inces and cities excluding Tibet, Hong Kong, Macao, and
Taiwan, rose rapidly from 21.44 billion yuan in 2005 to
261.8 billion yuan in 2017, which is more than an 11-fold
increase.

The high-tech industry refers to an industrial sector that
produces high-tech products using innovative technologies,
experiences rapid growth, and penetrates other industries.
High-tech companies have the following characteristics: (1)
they are knowledge- and technology-intensive (Wang and
Wang 2014), with a large proportion of scientific and technical
personnel; (2) they consume fewer resources and less energy
(Liu et al. 2019); (3) they make large investments in research
and development in projects with high economic return (Wang
et al. 2013); (4) they experience rapid growth (Liang 2011).
The high-tech industry comprises five manufacturing subsec-
tors, according to China Statistics Yearbook on High
Technology Industry; these include aerospace, electronics
and communication equipment, computer and office equip-
ment, pharmaceutical and medical equipment, and instrument
and meter. Promoting the global economic layout, sustainable
development, and political and military competitiveness, the
development of high-tech industries embodies a country’s or
regional strength (Lu and Yu 2010). Since the launch of the
national high-tech industry development plan (i.e., Torch
Plan), China has made notable achievements in high-tech in-
dustry development. Not only can high-tech industry devel-
opment optimize the economic layout and promote rapid and
sustainable economic growth but it also can contribute to re-
ducing CO2 emissions by developing and applying high-tech
technologies that conserve energy. However, according to
China Statistical Yearbook, although the amount of energy
consumption in high-tech industry is far less than that in
manufacturing industry, the annual growth rate of energy

consumption in high-tech industry is more than that in
manufacturing industry between 2015 and 2017, as shown
in Fig. 1. This indicates that the relationship between high-
tech industry and CO2 emissions is not simple negative cor-
relation caused by the application of advanced energy-saving
technologies, and is worthy of further exploration.

Consequently, studies that evaluate the impact of the high-
tech industry on CO2 emissions have gained in popularity
(Chen et al. 2016, 2019; Cui et al. 2019; Huang et al. 2010;
Li et al. 2019; Liu et al. 2019; Xu and Lin 2017, 2018).
However, one area that remains less explored is the relation-
ship between the reductions in CO2 emissions achieved and
the level of high-tech industry development (i.e., high, middle,
or low level) in a given region. Studies to date have also not
considered the impacts of both high-tech industry alone and its
interaction with other factors on CO2 emissions directly and
indirectly. In terms of direct effects, this study investigates
both linear and nonlinear effects of high-tech industry devel-
opment on CO2 emissions. The effects of industrial structure
upgrades and economic growth have been correlated with
CO2 emissions. High-tech industry development has a certain
effect in adjusting the upgrading of industrial structure and
bringing economic prosperity, thereby influencing CO2 emis-
sions indirectly. Therefore, this paper explores whether these
indirect effects exist in the high-tech industry and
proposes possible implications.

Three questions will be considered in this paper:

(1) How does the level of high-tech industry development in
China influence CO2 emissions?

(2) Do the impacts of high-tech industry development on
CO2 emissions vary across regions with high, middle,
and low level of high-tech industry development?

(3) Do indirect effects of high-tech industry development on
CO2 emissions exist, by influencing industrial structure
upgrades and economic growth?

The paper is structured as follows: the second section re-
views the relevant literature; the third section presents data
sources and methodology; the fourth section describes empir-
ical results and analysis; and the last section draws conclu-
sions, discusses implications, and proposes recommendations.

Literature review

Industrial-level energy conservation and carbon emissions re-
duction have attracted wide attention of scholars. For exam-
ple, Bhat et al. (2018), Haider and Bhat (2019), Haider et al.
(2019), Haider and Mishra (2019) analyzed the energy effi-
ciency of paper and iron and steel industry. As an emerging
industry, high-tech industry is receiving increasing attention
due to its role in sustainable economic growth and less
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environment burden. Many papers have investigated factors
that influence CO2 emissions. The impacts of the high-tech
industry, industrial structure, and economic growth on CO2

emissions are presented in this section. Based on a review of
the literature, the contributions of this paper to the field are
presented.

Impact of the high-tech industry on CO2 emissions

The impact of the high-tech industry on CO2 emissions in
China has been studied from multiple perspectives using sev-
eral methodologies. However, the conclusions drawn have not
been unified. Using a nonparametric additive regression mod-
el, Xu and Lin (2017) identified nonlinear relationships be-
tween the high-tech industry and CO2 emissions in 3
geographical regions in China from 1998 to 2014. In 2018,
Xu and Lin (2018) found that the high-tech industries in east-
ern, central, and western China reduced CO2 emissions to
different degrees. Using a state-space model, Liu et al.
(2019) investigated the effect of research and development
investment on the amount of energy consumed in the five
high-tech sectors (mentioned earlier in this paper) in different
regions of China between 1998 and 2016. Different modes of
influence on overall energy consumption, which are
proportional to CO2 emissions, were explored among the
five sectors. Li et al. (2019) constructed a spatial panel
STRIPAT-Durbin model for 30 provinces in China between
2004 and 2016 and examined how economic development
and industrial structure influence CO2 emissions by exploring
spatial agglomeration and spillover effects based on spatial
correlation. They suggested that the government needs to vig-
orously develop high-tech and tertiary industries to achieve
the target for a low-carbon economy by promoting clean tech-
nologies. Using a temporal log-mean Divisia index (LMDI)
approach, Shi et al. (2019) explored the major factors that
affect CO2 emissions from China’s manufacturing industries

and made comparisons between the whole manufacturing sec-
tor and its 28 subsectors from 2000 to 2015. They found that
the high-tech subsectors made larger contributions to produc-
tion outputs with less CO2 emissions. Huang et al. (2010)
reported that industrial restructuring is an important driver of
CO2 emissions reduction and that the role of high-tech indus-
tries in the optimization of industrial structure is becoming
increasingly significant. Cui et al. (2019) proposed a hybrid
method that integrated quantitative and qualitative approaches
to assess the sustainability of high-tech companies. They
found that the ability to control pollution emissions and finan-
cial support for the development of energy-saving and
emission-reducing technologies are the most important fac-
tors. They also noted that high-tech enterprises need to satisfy
the increasing awareness of consumers about environmental
protection, including the reduction of CO2 emissions. Because
of the environmentally friendly characteristics of the high-tech
industry, Chen et al. (2019) suggested that the government
take measures to promote its development in the three urban
agglomerations: Beijing-Tianjin-Hebei, the Yangtze River
Delta, and the Pearl River Delta. Chen et al. (2016) identified
the potential of high-tech industry development to mitigate
energy consumption and CO2 emissions in China.

Impact of industrial structure and economic growth
on CO2 emissions

To explore the indirect effects of the high-tech industry on CO2

emissions, industrial structure, and economic growth are con-
sidered in this paper. Previous studies on the impact of indus-
trial structure and economic growth on CO2 emissions have
revealed that industrial structure influences energy consump-
tion and CO2 emissions (Kofi Adom et al. 2012). The volume
of energy consumption and energy efficiency differ between
sectors, and energy conservation and energy efficiency improve
when processes move from the industrial sector to the services
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sector (Li and Lin 2014). Many studies have investigated the
impact of industrial structure on CO2 emissions (Chang 2015;
Li et al. 2017; Mi et al. 2015; Tian et al. 2014; Zhang et al.
2018; Zhou et al. 2013). Following the example of Grossman
andKrueger (1995), multiple studies verified the environmental
Kuznets curve (EKC) theory and investigated the relationship
between economic growth and CO2 emissions (Azomahou
et al. 2006; Carson 2009; Dinda 2005; Dogan and Turkekul
2016; Dogan et al. 2019; Dogan and Inglesi-Lotz 2020;
Galeotti et al. 2006; Kang et al. 2016; Maddison 2006; Song
et al. 2008). EKC theory indicates that both the scale and de-
velopment of the economy affect CO2 emissions (Kaika and
Zervas 2013; Yang et al. 2015) and an inverted U-shaped non-
linear correlation exists between economic growth and CO2

emissions (Cheng et al. 2018). The pursuit of the economic
growth causes more energy consumption, leading to higher
CO2 emissions when the economic scale is small (Li et al.
2016). When the economic scale becomes larger, demand for
a better quality of life increases, and people urge the govern-
ment to implement environmental policies immediately and
enact regulations to reduce CO2 emissions (Yin et al. 2015).

Contributions of this paper

Although published studies of the relationship between high-
tech industry and CO2 emissions have made significant con-
tributions, gaps in our understanding remain. On one hand,
few studies consider the heterogeneity between regions with
different levels of high-tech industry development. Most stud-
ies compare regions defined by conventional classification
methods, such as geographical features (eastern, central, and
western regions). This type of classification is insufficient to
reflect differences in the level of development of high-tech
industries because the provinces in eastern, central, and west-
ern regions of China may not be at the same level of high-tech
industry development. On the other hand, the indirect effects
of high-tech industry development on CO2 emissions have not
been discussed in other papers; this means that the role of the
high-tech industry in changing the industry structure and driv-
ing economic growth are neglected. Consequently, the im-
pacts of industry structure and economic growth affected by
high-tech industry development on CO2 emissions are also
neglected.

To address these deficiencies, this study performs an empirical
analysis of the direct and indirect impacts of high-tech industry
development on CO2 emissions in 30 provinces and cities in
China between 2005 and 2016 based on STIRPAT model. The
contributions of this paper can be summarized as follows:On one
hand, 30 provinces and cities are clustered into three groups by
applying the K-medians method cluster to the average value of
revenue from principle businesses representing the development
level (high, middle, or low) of the high-tech industry. The corre-
lations between the high-tech industry and CO2 emissions at the

national level and for each of the three levels of industrial devel-
opment are explored.On the other hand, the indirect effects of the
high-tech industry on CO2 emissions through the industry’s im-
pacts on industrial structure and economic growth are explored.
To the authors’ best knowledge, this paper is the first time these
indirect effects have been reported.

Data, models, and methodology

Data sources

All public data used in this paper are collected from the
National Bureau of Statistics, including the China Statistical
Yearbook, China Energy Statistical Yearbook, China
Statistical Yearbook on Science and Technology, and China
Statistics Yearbook on High Technology Industry,
encompassing 12 years from 2005 to 2016. Due to missing
data for some variables in certain years, 30 provinces and
cities in China were selected for study excluding Tibet,
Hong Kong, Macao, and Taiwan1. To eliminate the impact
of inflation, GDP per capita is converted into constant prices
(2005=100).

Methodology

Many researchers have explored the impacts of different factors
on environmental pollution by using PAT identity as Eq. (1):

I ¼ P � A� T ð1Þ

where I denotes the pollution intensity of a pollutant, P
denotes the population, A represents the economic growth,
and T indicates the level of technical improvements. Then,
the limitation of IPAT model, assuming that the elasticities of
all independent variables are equal to 1, has been identified by
scholars. In order to address this deficiency, STIRPAT model
was proposed by Dietz and Rosa (1997) and expressed as Eq.
(2):

I t ¼ aPb
t A

c
t T

d
t et ð2Þ

where I, P, A, and T mean the same as Eq. (1), a denotes
intercept term, b, c, and d denotes the coefficients of P, A, T,
and tmeans the year, et is random error term. STIRPAT model
has been widely used for the exploration of driving factors of
environmental pollution (Xu and Lin 2017; Xu and Lin 2018;
Zhang and Zhao 2019; Liu and Xiao 2018). In order to reduce
the possible effect of heteroscedasticity, all variables are trans-
ferred into the logarithmic terms. Then, Eq. (2) can be
changed to Eq. (3) as follows:

1 Thirty provinces and cities referred to in this paper denote provinces and
cities excluding Tibet, Hong Kong, Macao, and Taiwan in China.

27096 Environ Sci Pollut Res (2020) 27:27093–27110



lnIit ¼ lnaþ blnPit þ clnAit þ dlnTit þ eit ð3Þ

Based on the logarithmic pattern of STIRPAT model as Eq.
(3), we built Eq. (4) to explore the impacts of relevant factors
on CO2 emissions, as the basis for subsequent models estab-
lishment.

lnCEit ¼ lnaþ blnPOPit þ clnGDPit þ dlnEIit þ eit ð4Þ

where CE denotes CO2 emissions, POP denotes total pop-
ulation, and GDP denotes economic growth. EI denotes ener-
gy intensity and has been used for the exploration of the im-
pacts of technological progress on CO2 emissions
(Belaissaouia et al. 2016; Meyers et al. 2016).

High-tech industry development and industrial structure
upgrades play a significant role in affecting CO2 emissions.
Moreover, China has become a global industrial and
manufacturing center, and this development continues.
Foreign direct investment is increasing, along with the liber-
alization of the economy (Cheng et al. 2018). Although for-
eign direct investment consumes more energy (Tang and Tan
2015), it also brings knowledge and technology that spills
over into industries, improving the technology and manage-
ment skills in domestic enterprises (Lau et al. 2014).
Therefore, foreign direct investment also has an effect on
CO2 emissions. Based on above analysis, we add these vari-
ables into STIRPATmodel to build benchmark model in China
as follows:

Model 1:

lnCEit ¼ α0 þ α1lnGDPit þ α2lnISUit þ α3lnHTIit

þ α4lnEIit þ α5lnPOPit þ α6lnFDIit þ μit; ð5Þ

where i denotes the individual province, t denotes the year
2005–2016, ɑ0 denotes a constant, ɑ1–ɑ6 denotes the coeffi-
cient of each variable, and μit is an error term. Next, the
squared term of lnHTI is added to model 1 to explore whether
nonlinear relationship exists between HTI and CE to build
model 2:

Model 2:

lnCEit ¼ α0 þ α1lnGDPit þ α2lnISUit þ α3lnHTIit

þ α4lnEIit þ α5lnPOPit þ α6lnFDIit

þ α7 lnHTIitð Þ2 þ μit; ð6Þ

In order to explore the uncertain indirect effects of HTI on
CE, the cross-term between HTI and ISU is introduced to

build model 3 to explore the potential interactive effects on
CO2 emissions, based on the fact that the development of
high-tech industry, primarily consisting of manufacturing in-
dustries with high-end technologies, may impact ISU. It
should be noted that collinearity does not pose a problem for
regressions with interaction effects. To be specific, when X1

and X2 are included in the model and the cross-term X1 × X2 is
added, the correlation between X1 or X2 and X1 × X2 will in-
evitably be high, but its effect on the further discussion of
regression results is negligible (Balli and Sørensen 2012).

Model 3:

lnCEit ¼ α0 þ α1lnGDPit þ α2lnISUit þ α3lnHTIit

þ α4lnEIit þ α5lnPOPit þ α6lnFDIit

þ α7 lnHTIit � lnISUitð Þ þ μit; ð7Þ

The high-tech industry has an effect on driving economic
growth. This can be reflected in the contribution of the high-
tech industry to GDP, which rose from 6.85% in 1996 to
20.42% in 2015 (Xu and Lin 2018). To evaluate the interac-
tive effects between HTI and GDP, the cross-term is added to
benchmark model to build model 4:

Model 4:

lnCEit ¼ α0 þ α1lnGDPit þ α2lnISUit þ α3lnHTIit

þ α4lnEIit þ α5lnPOPit þ α6lnFDIit

þ α7 lnHTIit � lnGDPitð Þ þ μit: ð8Þ

Model 1–4 are built for 30 provinces and cities in China
between 2005 and 2016, to explore how the level of high-
tech industry development affects CO2 emissions and
whether there are interaction effects existing together with
the upgrading of industrial structure and economic growth.
The level of high-tech industry development may vary
across regions due to different investment strength, gov-
ernment regulations or policies, and other possible factors.
In order to identify the possible heterogeneous impacts of
HTI on CO2 emissions across regions, 30 provinces and
cities are clustered into three groups (high, middle, and
low) by a K-medians approach according to average reve-
nue from the principal business within the high-tech indus-
try for regional models establishment. The clustering re-
sults are shown in Fig. 2. In the high-level group,
Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Henan, Guangdong, and Sichuan are included;
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In the middle-level group, Hebei, Liaoning, Jilin, Anhui,
Jiangxi, Hubei, Hunan, Chongqing, and Shaanxi are in-
cluded; In the low-level group, there are 11 provinces:
Shanxi, Inner Mongolia, Heilongjiang, Guangxi, Hainan,
Guizhou, Yunnan, Gansu, Qinghai, Ningxia, and Xinjiang.
For regions with high, medium, and low levels of HTI, the
same models 5–8, 9–12, and 13–16 as the models 1–4 are
established respectively. Compared with geographical clas-
sification (eastern, central, and western regions) of main-
land China as shown in Fig. 3, the clustering results for
regional models establishment could investigate more
targeted regional influence mechanism between the level
of high-tech industry development and CO2 emissions.

Four types of tests are conducted before model estimation.
First, multicollinearity tests are supposed to be performed be-
cause multicollinearity would decrease the reliability of the hy-
pothesis tests and could lead to parameter estimations with low-
accuracy and low-stability (Cheng et al. 2018). Second, panel
unit root tests are necessary since unstable variables sequences
will lead to the biased and inconsistent estimation results (Xu and
Lin 2018). In this paper, Fisher-ADF, Fisher-PP, and IPS tests are
used to implement stationary test. Third, if some variables se-
quences are non-stationary but the first-order difference se-
quences of all variables are stationary, panel cointegration tests
are supposed to be performed to explore the existence of
cointegration relationship between dependent and independent
variables. Pedroni test is used for the check of cointegration
relationship. Fourth, Hausman test is used to select a fixed effects
(FE) model or random effects (RE) model for regression
estimation.

Variables description

The dependent variable: CO2 emissions

CO2 emissions are calculated according to the method pro-
posed in the Intergovernmental Panel on Climate Change
(Eggleston et al. 2006). The formula is as follows.

CO2 ¼ ∑
8

i¼1
CO2ð Þi ¼ ∑

8

i¼1
Ei � NCVi � CEFi � COFi � 44=12; ð9Þ

where CO2 denotes CO2 emissions (unit: mt), i represents the
type of fossil fuel, E denotes the consumption of fossil fuel,
NCV denotes the low calorific value, CEF denotes carbon
content provided by Intergovernmental Panel on Climate
Change (Eggleston et al. 2006), and COF denotes the rate of
carbon oxidation. The CO2 emissions coefficients of the eight
types of fossil fuels were obtained from the Chinese Energy
Statistical Yearbook.

Core explanatory variables

(1) High-tech industry development level (HTI). Previous
studies used different metrics to measure HTI, including
dividing the sales revenue of the high-tech industry by
the sales revenue of the industrial enterprises (Xu and
Lin 2018) and the gross output of the high-tech industry
(Xu and Lin 2017). This paper uses revenue from the
principle business (100 million yuan) in the high-tech
industry to represent the level of high-tech industry
development.

High level

Middle level

Low level

Missing data

Fig. 2 30 Provinces and cities
clustered by HTI
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(2) Industrial structure upgrades (ISU). ISU is measured as
the percentage added value to the GDP of the tertiary
industry according to Cheng et al. (2018).

(3) Regional per capita gross domestic product (GDP). The
regional per capita gross domestic product in 30 prov-
inces and cities are used in this paper.

Control variables

(1) Energy intensity (EI). EI is measured as energy con-
sumption divided by GDP according to Xu and Lin
(2018).

(2) Population (POP). In this study, POP is measured as the
total population in the provinces.

(3) Foreign direct investment (FDI). The annual amount of
regional FDI is adopted in this study.

The statistical descriptions of all variables are listed in
Table 1.

Empirical results and analysis

The results of variance inflation factors (VIFs) test in Tables 9,
10, 11, and 12 of the appendix and correlation analysis in
Table 2 show that all variables in the national-level, high-lev-
el , middle- level , and low-level models have no
multicollinearity problem. The results of unit root test in
Table 3 indicate the first-order difference sequences of all
variables are stationary. Moreover, Pedroni test results in
Table 4 show the existence of cointegration relationship be-
tween CO2 emissions and its influencing factors in national
and regional models.

Empirical results with the national-level models

For national-level models, the regression results of the CO2

emission influencing factors are shown in Table 5. For model
1, HTI affects CO2 emissions because the coefficient of lnHTI
is significant at a 1% level, but the specific relationship be-
tween them is explored further in model 2.

Eastern region

Central region

Western region

Not mainland China

Fig. 3 Geographical
classification of mainland China

Table 1 Statistical descriptions of
variables Variable Unit Mean Std. Dev. Min Max

CE 104 tons 436.53 326.13 23.68 1835.00

GDP 104 yuan 2.99 1.85 0.54 10.27

ISU % 41.68 8.78 28.6 80.2

HTI 100 million yuan 2894.19 5507.79 6.9 37765.2

EI Tce per 104 yuan 4.746581 0.4913585 3.648222 6.025816

POP 104 persons 4438.15 2663.86 543 10999

FDI 100 billion yuan 6.63 10.08 0.05 59.41
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The significance of the squared term of lnHTI in model 2
suggests that nonlinear links exist between HTI and CO2

emissions. In addition, the positive coefficient of the squared
term denotes a positive U-shaped relationship. Specifically,
when the high-tech industry begins to develop (primary
stage), it primarily helps companies change, upgrade their
technologies and equipment, improve production efficiency,
and reduce energy consumption. These effects play essential
roles in reducing CO2 emissions. As the high-tech industry
continues to develop to the next stage, the correlation between
HTI and CO2 emissions changes from negative to positive,
which means that CO2 emissions increase. Possible reasons
are that the growth of the high-tech industry improves the
country’s innovation capacity. Subsequently, demands for
raising product standards and quality of life increase, stimu-
lating the manufacture of products with high performance,
shorter life cycles, and frequent upgrades, which increases
CO2 emissions. On the other hand, with the increased

investment and research and development efforts of high-
tech industries, the technological level at a national level will
improve substantially, which causes a gradual shift from pri-
marily equipment and technologies upgrades in the primary
stage of high-tech industry development to the production and
manufacture of products and equipment in the next stage.
More energy will be consumed in production processes than
equipment upgrades, which results in higher CO2 emissions.
This also explains the positive U-shaped impact of HTI on
CO2 emissions that initially reduces and then increases
emission.

In model 3, the coefficient of lnISU is negative and signif-
icant at a 1% level, while the significance of the cross-term
lnHTI × lnISU is the same as lnISU, but has a positive coef-
ficient. The results show that ISU has a role in reducing CO2

emissions because the secondary industry consists of the min-
ing, manufacturing, and other industries that consume large
volumes of energy and emit high pollution, which are the

Table 2 Results of correlation analysis

CE GDP ISU HTI EI POP FDI

CE 1.0000

GDP 0.5493*** 1.0000

ISU 0.2002*** 0.5477*** 1.0000

HTI 0.6823*** 0.6957*** 0.3150*** 1.0000

EI − 0.4047*** − 0.6643*** − 0.4520*** − 0.8044*** 1.0000

POP 0.6686*** 0.0278*** − 0.2250*** 0.6065*** − 0.3808*** 1.0000

FDI 0.6406*** 0.7536*** 0.3936*** 0.9074*** − 0.8332*** 0.4726*** 1.0000

a ***p < 0.01; **p < 0.05; *p < 0.1

Table 3 Results of unit root tests

Series Fisher ADF Fisher IPP IPS

Constant Trend and constant Constant Trend and constant Constant Trend and constant

Levels CE − 1.18616 78.1667** 26.2570 63.6475 6.20820 − 1.18616
GDP 12.5640 95.2279*** 1.81745 161.290*** 10.9856 − 2.49033***
ISU 19.0204 24.3324 11.9156 44.4819 7.85897 5.08402

HTI 15.9176 39.3919 20.0184 54.8534 14.9285 4.61360

EI 16.4912 83.0956** 30.2323 42.6559 6.30014 − 2.26177**
POP 63.7389 61.8863 112.850 81.2530** 2.41548 1.02243

FDI 12.6688 31.5805 14.6930 29.2189 14.6472 7.47765

First difference CE
GDP
ISU
HTI
EI
POP
FDI

180.115***
92.5071**
127.707***
83.6817**
173.400***
184.489***
123.322***

127.099***
101.726***
139.968***
98.4942**
117.714***
184.192***
111.922***

197.737***
149.226***
155.273***
99.1593**
185.572***
201.249***
131.370***

190.307***
94.6514**
243.407***
141.663***
171.284***
269.006***
190.027***

− 8.75989***
− 2.61927**
− 5.35903***
− 1.51895*
− 8.39309***
− 9.26035***
− 2.32735***

− 4.40352***
− 3.71502***
− 6.20303***
− 2.29473**
− 4.06706***
− 7.52119***
− 2.20900**

a ***p < 0.01; **p < 0.05; *p < 0.1
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major CO2 emission producers in China. The level of CO2

emissions from the secondary industry is higher than that of
the tertiary industry. Therefore, upgrading the industrial struc-
ture causes a shift from secondary to tertiary industry and
helps reduce CO2 emissions (Cheng et al. 2018).
Interestingly, HTI weakens the effect of ISU on CO2 emis-
sions because the high-tech industry primarily manufactures
and produces high-precision products or equipment, such as
medicines, biochemical compounds, airplanes, spacecraft, and
communication equipment. An increase in production will
lead to an increase in CO2 emissions.

In model 4, the coefficients of lnGDP and the cross-
term lnHTI × lnGDP are positive and significant at a 1%
level. With the continuous development of the economy,
the positive correlation between lnGDP and lnCE can be
interpreted as follows. On the one hand, still in the stage
of development, China is inevitably experiencing the ris-
ing proportion of high-carbon industries, such as
manufacturing industry, construction industry, and real
estate industry. Those industries have a large proportion
of fixed-assets investment, which consumes large amount
of iron and steel, cement, oil, and coal thereby emits

Table 4 Results of co-integration
test Pedroni test National level High level Middle level Low level

Modified Phillips-Perron Statistic 7.4024*** 4.0352*** 4.2682*** 5.1111***

Phillips-Perron Statistic − 10.8161*** − 8.3570*** − 10.1248*** − 6.0676***
Augmented Dickey-Fuller Statistic − 11.7392*** − 7.8482*** − 8.5087*** − 4.2074***

a ***p < 0.01; **p < 0.05; *p < 0.1

Table 5 Estimation results of
national-level models Models Model 1 Model 2 Model 3 Model 4

Variables lnCE lnCE lnCE lnCE

lnGDP 0.978*** 1.021*** 1.026*** 0.803***

(0.0528) (0.0440) (0.0477) (0.0764)

lnISU − 0.0945 − 0.0882 − 1.120*** − 0.125
(0.0898) (0.0850) (0.212) (0.0849)

lnHTI − 0.121*** − 0.225*** − 0.695*** − 0.141***
(0.0115) (0.0415) (0.127) (0.0166)

lnEI 0.252*** 0.379*** 0.420*** 0.449***

(0.0503) (0.108) (0.103) (0.0955)

lnPOP 2.174*** 2.222*** 2.065*** 2.093***

(0.469) (0.494) (0.457) (0.462)

lnFDI 0.0856** 0.0879** 0.0773** 0.0925**

(0.0373) (0.0412) (0.0354) (0.0418)

(lnHTI)2 0.00872***

(0.00310)

lnHTI × lnISU 0.162***

(0.0350)

lnHTI × lnGDP 0.0403***

(0.0129)

Constant − 13.01*** − 13.79*** − 9.328** − 13.15***
(3.588) (3.999) (3.485) (3.584)

F statistic

R2

N

5223.55***

0.8599

30

17720.31***

0.8619

30

8273.80***

0.8644

30

29590.38***

0.8646

30

Observations

Hausman test

Model type

360

49.10***

FE

360

50.25***

FE

360

39.79***

FE

360

50.26***

FE

a Robust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1

27101Environ Sci Pollut Res (2020) 27:27093–27110



abundant CO2 emissions. On the other hand, the
launched environmentally friendly regulations and poli-
cies are still in the exploration stage and have not yet
achieved a noticeable effect compared with the rapid
speed of economic growth driven by energy consump-
tion. Moreover, unbalanced development in China will
inevitably lead to stimulation of economic competition.
Regional governments in underdeveloped provinces still
give priory to economic growth, which is mostly driven
by low-end manufacturing industries with high CO2

emissions. The positive coefficient of lnHTI × lnGDP
implies that CO2 emissions increase as the GDP in-
creases by introducing indirect effects of the high-tech
industry. However, the coefficient of cross-term is much
lower than that of lnGDP, indicating that the increase
impact of economic growth driven by high-tech industry
development on CO2 emissions is not as great as the
increase effect caused by overall economic development.
This result can be explained as follows: (1) Vigorously
developing the high-tech industry promotes the techno-
logical progress in energy conservation and emission re-
duction, which has an effect on alleviating the pressure
of over-emitted CO2 emissions; (2) Based on the essen-
tial role of the high-tech industry in promoting substan-
tial growth in GDP and national technological strength,
more production and manufacturing in high-tech industry
increases CO2 emissions, which are much more than the
reduced emissions caused by technical advancements in
energy conservation.

In terms of control variables, lnFDI shows consistency in
its significance and its positive correlation with lnCE in
models 1–4, so the introduction of FDI increases CO2 emis-
sions. This occurs because FDI in China is primarily concen-
trated in low-tech processing, assembly, manufacturing, and
other labor and resource-intensive industries. Although FDI
may bring spillovers of knowledge and technology that reduce
CO2 emissions, it causes over-consumptions of energy that
elevate CO2 emissions (Cheng et al. 2018). The coefficient
of lnEI is positive and significant in models 1–4. There is a
positive correlation between EI and CO2 emissions because
the higher energy intensity will inevitably lead to more CO2

emissions due to the low energy efficiency. Otherwise, lnPOP
is positive and significant at a 1% level in four models indi-
cating that larger population size will emit more CO2 emis-
sions when there are no change in terms of people’s living
habits, major technological innovation, and other relevant
factors.

Empirical results in regions with a high level of high-
tech industry development

The regression results of the CO2 emission influencing
factors for the models in region with a high level of

high-tech industry development are shown in Table 6.
For model 5, high-tech industry development affects
CO2 emissions because the coefficient of lnHTI is sig-
nificant at a 1% level. Compared with model 2 at the
national level, there is similar positive U-shaped non-lin-
ear relationship between HTI and CO2 emissions due to
the significance of the squared term (lnHTI)2 at a 1%
level in model 6. As discussed above, a turning point
is expected when high-tech industry development reaches
a certain level under the condition that there is no regu-
lation or control by officials. In addition, the absolute
value of coefficient of (lnHTI)2 in model 6 is higher than
that in model 2 in national level, indicating that the non-
linear impacts of high-tech industry development on CO2

emissions in high-level region are stronger than that in
national level. This proves the superiority of the devel-
opment of high-tech industry on CO2 emissions reduc-
tion at primary stage due to the faster change of slope of
positive U-shaped curve. One example is the emission

Table 6 Estimation results of high-level models

Models Model 5 Model 6 Model 7 Model 8
Variables lnCE lnCE lnCE lnCE

lnGDP 0.543*** 0.363 0.335* − 0.641
(0.142) (0.201) (0.167) (0.505)

lnISU − 1.036*** − 1.380*** − 5.399*** − 1.458***
(0.129) (0.273) (1.463) (0.312)

lnHTI − 0.269*** − 1.016*** − 1.959*** − 0.281***
(0.0326) (0.183) (0.505) (0.0349)

lnEI − 1.151*** − 1.172*** − 1.135*** − 1.084***
(0.249) (0.293) (0.338) (0.276)

lnPOP 0.651** 0.708** 0.698*** 0.582**

(0.209) (0.233) (0.208) (0.188)

lnFDI 0.408*** 0.463*** 0.353*** 0.499***

(0.0738) (0.0781) (0.106) (0.0799)

(lnHTI)2 0.0526***

(0.0151)

lnHTI × lnISU 0.508***

(0.155)

lnHTI ×
lnGDP

0.125**

(0.0418)

Constant 10.27*** 13.81*** 24.73*** 12.21***

(2.117) (2.764) (5.687) (2.335)

F statistic
R2

N

6235.35
0.9175
10

8873.26***
0.9266
10

13314.97***
0.9314
10

13296.58***
0.9272
10

Observations
Hausman test
Model type

120
64.44***
FE

120
68.56***
FE

120
62.97***
FE

120
77.71***
FE

a Robust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1
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trading scheme officially approved by the NDRC
(National Development and Reform Commission) in
November 2011 (Wang et al. 2015). Some of the prov-
inces and cities in the region with a high level of high-
tech industry development are concerned about low-
carbon issues, in which Beijing, Guangdong, Shanghai,
Shenzhen, and Tianjin, are the first regions to implement
the emission trading scheme. The pilot markets may
drive entities in pilot regions to move to other regions
with lower emission abatement costs, fewer environmen-
tal regulation standards, and higher CO2 emission limits.
Such shifts may reduce CO2 emissions in the pilot re-
gions (Ju and Fujikawa 2019) and explain why the stron-
ger CO2 emission reduction effect exists at the primary
stage. Meanwhile, as the level of high-tech industry de-
velopment increases, rapid growing demands for high-
tech products in high-level region stimulate more fre-
quent products updates, which intensify the increase of
CO2 emissions at the subsequent stage after the turning
point.

In terms of lnHTI × lnISU in model 7, the similarity
in the negative lnISU coefficient and positive lnHTI ×
lnISU coefficient can be explained as model 3 for the
national level, where ISU causes a decrease in CO2

emissions, but the impact is weakened by the indirect
effects of high-tech industry development. It is noted
that the absolute value of coefficient of lnHTI × lnISU
is much higher than that in national-level model 3, in-
dicating that the indirect impacts of high-tech industry
development on CO2 emissions increase by adjusting
ISU in high-level region are much stronger than that
in national level. This mainly because the higher level
of HTI enables enterprises in this region to produce
more high-end products with advanced technologies
than average amount of that in national country, inten-
sifying the effect on CO2 emissions increase. Moreover,
HTI also has an effect on driving economic growth then
increase CO2 emissions indirectly. The higher absolute
value of coefficient of lnHTI × lnGDP indicates that
high-tech industry makes larger proportion of contribu-
tion to economic growth and thereby promotes stronger
effect on the increase of CO2 emissions.

Empirical results in regions with a middle level of
high-tech industry development

The regression results of the CO2 emission influencing factors
for the models in region with a middle level of high-tech
industry development are shown in Table 7. Although there
are also similar negative and positive coefficients of lnHTI
and (lnHTI)2, the absolute value of coefficient of (lnHTI)2 is
lower than that in high-level model 6. This shows the impacts
of high-tech industry development on CO2 emissions in

middle-level region are weaker than that in high-level region.
The insignificance of lnHTI × lnISU can be explained by the
not obvious effect of middle level of high-tech industry devel-
opment on adjusting the upgrading of industrial structure. To
be specific, the insufficient capabilities of high-tech products
manufacturing in region with middle level of high-tech indus-
try development lead to the insignificant effect on CO2 emis-
sions. The absolute value of coefficient of lnHTI × lnGDP in
model 12 is lower than that in model 8, indicating weaker
indirect effect of HTI on CO2 emissions inmiddle-level region
than that in high-level region.

Empirical results for regions with a low level of high-
tech industry development

The regression results of the CO2 emission influencing
factors for the models in region with a low level of high-
tech industry development are shown in Table 8. The
absolute values of coefficients of (lnHTI)2 and lnHTI ×
lnGDP are lower than that in high-level models and that
in middle-level models, indicating the slight direct and
indirect impacts of high-tech industry development on
CO2 emissions in region with a low level of high-tech
industry development. The insignificance of lnHTI ×
lnISU in model 15 suggests that provinces in low-level
region have insufficient strength to develop high-tech
manufacturing industry, which requires enough financial
budget, qualified researchers and employees, and ad-
vanced technologies in the process of construction of
fixed assets and equipment production.

Comparisons of empirical results between clustering
and geographical classification

In order to reflect the impacts of different levels of high-tech
industry development on CO2 emissions, this paper divides 30
provinces and cities into three regions with high, middle, and
low level of high-tech industry development by a K-medians
clustering approach for regional models establishment. For
comparison, we have also built similar models in eastern, cen-
tral, and western region of mainland China (Tibet is excluded
due to the lack of data). As shown in the Tables 13, 14, and 15
of the appendix, the core independent variables in models
built for eastern, central, and western regions are not as sig-
nificant as those variables in models built for regions with
high, middle, and low level of HTI. This proves that geo-
graphical classification may be insignificant for our investiga-
tion and insufficient to reflect the differences of high-tech
industry development due to the fact that provinces in eastern,
central, and western regions of China may not be at the same
level of high-tech industry development.
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Conclusion

Based on STIRPAT model, this paper conducted an empirical
analysis of the direct and indirect impacts of high-tech indus-
try development on CO2 emissions in 30 provinces and cities
in China clustered into three regions by the level of high-tech
industry development (high, middle, and low) during 2005–
2016. The empirical results illustrate the following points: (1)
There is a positive U-shaped nonlinear relationship between
HTI and CO2 emissions at the national and regional (high,
middle, and low) level in China, indicating that CO2 emissions
decrease as the high-tech industry initially develops and then
increase after high-tech industry development reaches a turn-
ing point. (2) The impact intensity of HTI onCO2 emissions in
regions with high, middle, and low levels of high-tech indus-
try development gradually decreases. (3) In national-level and
high-level region, the high-tech industry attenuates the reduc-
tion effect of industrial structure upgrades on CO2 emissions
because it increases the production and manufacture of prod-
ucts and equipment; however, in middle-level and low-level

region, this indirect impact of high-tech industry development
on CO2 emissions is insignificant. (4) The indirect impact
intensity of HTI on CO2 emissions by promoting economic
growth is not as great as the direct impact of GDP on CO2

emissions, and gradually decreases across regions with high,
middle, and low levels of high-tech industry development.
Flourishing high-tech industry development promotes eco-
nomic growth, which attracts more investment and support
by the government and native entrepreneurs. A large number
of plants and offices are built, leading to an increase in CO2

emissions during construction. Blindly increasing production
in the high-tech industry causes unnecessary increases in CO2

emissions.
To achieve the targets for mitigating CO2 emissions and

sustainable economic development in China, the relationship
between high-tech industry development and CO2 emissions
must be considered. Rather than focusing on the reduction that
occurs when products or equipment manufactured by the
high-tech industry are used, paying more attention to the con-
struction stage and production processes of the high-tech

Table 7 Estimation results of
middle-level models Models Model 9 Model 10 Model 11 Model 12

Variables lnCE lnCE lnCE lnCE

lnGDP 1.247*** 1.307*** 0.876*** 0.719***

(0.0760) (0.0788) (0.0625) (0.237)

lnISU − 0.274** − 0.410*** − 0.215 − 0.403***
(0.112) (0.122) (0.549) (0.119)

lnHTI − 0.161*** − 0.643*** − 0.164 − 0.244***
(0.0429) (0.201) (0.312) (0.0482)

lnEI 0.624*** 0.671*** 0.482** 0.738***

(0.0875) (0.0872) (0.163) (0.0944)

lnPOP 1.101*** 1.105*** − 0.0469 1.078***

(0.0528) (0.0509) (0.392) (0.0577)

lnFDI 0.0438 0.0393 0.123*** 0.0424

(0.0299) (0.0289) (0.0204) (0.0299)

(lnHTI)2 0.0359**

(0.0145)

lnHTI × lnISU 0.0346

(0.0877)

lnHTI × lnGDP 0.0953***

(0.0356)

Constant − 5.367*** − 3.597*** 4.124 − 4.843***
(0.740) (1.016) (2.992) (0.756)

F statistic/Wald statistic

R2

N

1977.94***

Null

12

2272.80***

Null

12

1226.34***

0.9631

12

1885.84***

Null

12

Observations

Hausman test

Model type

108

7.85

RE

108

8.72

RE

108

37.80***

FE

108

7.14

RE

aRobust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1

27104 Environ Sci Pollut Res (2020) 27:27093–27110



industry is required. Reasonable implications and suggestions
for the government are proposed as follows.

During the initial construction process of fixed assets
in the high-tech industry, we propose that the govern-
ment should take advantage of environmentally friendly
building materials and facilities, utilize materials with
high efficiency, and optimize the process of establish-
ment. These efforts require energy-saving technologies,
supply chain and production optimization, qualified ar-
chitects with design capabilities, and workers practicing
good implementation processes.

In terms of the production and manufacturing processes of
the high-tech industry, we propose that the government should
enact regulations to coordinate between increasing societal
demands and rational production to avoid unnecessary but
controllable CO2 emissions caused by over-production and
overly frequent product updates. The government ought to
encourage research and development to improve the recycling
of products or their component parts instead of blindly advo-
cating the rapid growth of the high-tech industry, which may

lead to malicious competition among enterprises. Recycling
and reutilizing products after obsolescence or officially en-
couraging a circular economy deserves more investment and
policy support for the healthy and sustainable development of
the high-tech industry.

Moreover, the heterogeneous effects of the high-tech
industry on regional CO2 emissions should receive more
attention from officials. Because the government allocated
resources for advanced research and development and the
purchase of fixed assets, some provinces achieved a high
level of high-tech industry development in China, particu-
larly Guangdong, Jiangsu, Shandon, Shanghai, Zhejiang,
and Beijing. The strength of the high-tech industry in those
provinces is better than that in regions with middle and low
levels of high-tech industry development. It is advisable
and urgent to take measures to narrow this gap.
Specifically, provinces in the middle- and low-level groups
should introduce mature technologies from provinces in
the high-level group to avoid unnecessary CO2 emissions
due to exploration in the early stages of high-tech industry

Table 8 Estimation results of
low-level models Models Model 13 Model 14 Model 15 Model 16

Variables lnCE lnCE lnCE lnCE

lnGDP 1.250*** 1.314*** 1.247*** 1.044***

(0.0707) (0.0865) (0.0848) (0.0887)

lnISU 0.0405 0.0374 0.0995 − 0.0206
(0.0716) (0.0687) (0.447) (0.0756)

lnHTI − 0.0255 − 0.207*** 0.0148 − 0.0742**
(0.0145) (0.0530) (0.316) (0.0242)

lnEI 1.069*** 1.212*** 1.061*** 1.234***

(0.176) (0.211) (0.209) (0.193)

lnPOP 1.203*** 1.635*** 1.197*** 1.450***

(0.360) (0.304) (0.347) (0.304)

lnFDI − 0.0292 − 0.0291 − 0.0290 − 0.0253
(0.0360) (0.0349) (0.0361) (0.0360)

(lnHTI)2 0.0171***

(0.00382)

lnHTI × lnISU − 0.0110
(0.0846)

lnHTI × lnGDP 0.0606**

(0.0202)

Constant − 10.18*** − 13.81*** − 10.31** − 12.53***
(3.038) (2.850) (3.350) (2.574)

F statistic/Wald statistic 3948.58*** 7674.45*** 4074.09*** 5050.57***

R2 0.9114 0.9157 0.9114 0.9148

N 11 11 11 11

Observations 132 132 132 132

Hausman test 30.11*** 34.63*** 24.27*** 30.59***

Model type FE FE FE FE

aRobust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1
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development. The provinces that can support high-tech in-
dustry development in other provinces can use patent rev-
enues to pay tax fees and thus reduce the tax burden.
Policies aimed at constraining CO2 emission, such as emis-
sion trading schemes in some provinces in the high-level
group and sharing useful experiences and strategies for
implementing such policies can be extended to provinces
in the middle- and low-level groups.

Industry–university collaborative research, which re-
quires an effective management system to coordinate
partnerships, resources, and tasks, plays an indispens-
able role in the efficient development of high-tech in-
dustry efficiency. Such collaborations not only cultivate
innovation but also drive scientific results and economic
performance. Specifically, enterprises in different indus-
tries can achieve a competitive advantage in terms of
knowledge and human resources. For universities, in-
creasing opportunities for field experiments train stu-
dents in practical skills. For academics, alternative chan-
nels for research funding provide powerful support for
the normal operation of studies.

Meanwhile, the government is also supposed to pay atten-
tion to other pollution except for CO2 emissions caused by
high-tech industry, such as liquid pollution from the pharma-
ceutical manufacturing industry, and heavy metal pollution
from electronics equipment, instrument and meter
manufacturing industries. Those pollutions may bring more
severe detrimental effects than CO2 emissions on environ-
ment, and are essential to be controlled and disposed in an
appropriate way to promote the sustainable development of
high-tech industry.

Finally, this paper investigated the direct and indirect
effects of high-tech industry development on CO2 emis-
sions in different regions in China. However, in terms
of indirect role, the interactive effects between high-tech
industry development and the transformation of energy
structure, urbanization progress, FDI, and other factors
influenced by high-tech industry development need to
be explored in future analysis. Considering more com-
prehensive factors when measuring the level of high-
tech industry development in different regions will re-
sult in a more robust understanding of the effects of
high-tech industry development on CO2 emissions.
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Appendix

VIF results

Table 9 VIFs in
national-level models Variable VIF 1/VIF

lnGDP 4.27 0.234135

lnISU 1.77 0.566018

lnHTI 9.62 0.103971

lnEI 3.70 0.270204

lnPOP 3.47 0.287993

lnFDI 7.85 0.127405

Table 10 VIFs in high-
level models Variable VIF 1/VIF

lnGDP 9.48 0.105526

lnISU 3.71 0.269717

lnHTI 6.54 0.152811

lnEI 7.09 0.140986

lnPOP 5.05 0.198091

lnFDI 6.36 0.157155

Table 11 VIFs in
middle-level models Variable VIF 1/VIF

lnGDP 6.35 0.157534

lnISU 1.20 0.831254

lnHTI 9.57 0.104529

lnEI 3.11 0.321579

lnPOP 1.78 0.562182

lnFDI 2.97 0.337259

Table 12 VIFs in low-
level models Variable VIF 1/VIF

lnGDP 1.76 0.568604

lnISU 1.29 0.773106

lnHTI 3.97 0.251676

lnEI 2.30 0.435721

lnPOP 2.72 0.367252

lnFDI 3.44 0.290587
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Table 13 Estimation results of
models in eastern region Models Model 1 Model 2 Model 3 Model 4

Variables lnCE lnCE lnCE lnCE

lnGDP 0.819*** 0.786*** 0.870*** 1.014***
(0.195) (0.188) (0.197) (0.226)

lnISU − 0.334 − 0.368 − 1.949*** − 0.349
(0.308) (0.329) (0.528) (0.323)

lnHTI − 0.118 0.115 − 0.870*** − 0.108
(0.0877) (0.107) (0.206) (0.0848)

lnEI − 0.300 − 0.463 − 0.119 − 0.417
(0.262) (0.257) (0.295) (0.265)

lnPOP 1.575** 1.483** 1.572** 1.548**
(0.499) (0.484) (0.504) (0.490)

lnFDI 0.152 0.159* 0.142 0.151
(0.0997) (0.0794) (0.108) (0.0895)

(lnHTI)2 − 0.0176**
(0.00621)

lnHTI × lnISU 0.211***
(0.0630)

lnHTI × lnGDP − 0.0285*
(0.0155)

Constant − 4.799 − 3.862 0.114 − 4.028
(5.936) (5.632) (6.251) (5.815)

F statistic

R2

N

20320.96***

0.8445

11

20028.81***

0.8484

11

25171.87***

0.8490

11

24375.44***

0.8459

11
Observations

Hausman test

Model type

132

32.78***

FE

132

33.22***

FE

132

38.49***

FE

132

33.18***

FE

a Robust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1

Table 14 Estimation results of models in central region

Models Model 5 Model 6 Model 7 Model 8
Variables lnCE lnCE lnCE lnCE

lnGDP 0.867*** 0.774*** 0.835*** 0.201
(0.0821) (0.0710) (0.0783) (0.259)

lnISU 0.0285 − 0.120 0.150 − 0.0885
(0.117) (0.111) (0.736) (0.121)

lnHTI 0.0234 − 0.217 0.102 − 0.0471
(0.0424) (0.161) (0.385) (0.0473)

lnEI 0.663*** 0.373*** 0.619*** 0.777***
(0.101) (0.111) (0.107) (0.105)

lnFDI 0.0189 0.0227 0.0207 0.0343
(0.0391) (0.0346) (0.0394) (0.0368)

(lnHTI)2 0.0173
(0.0126)

lnHTI × lnISU − 0.0203
(0.107)

lnHTI × lnGDP 0.111***
(0.0405)

Constant 1.816** 4.551*** 1.571 2.024**
(0.849) (0.944) (2.656) (0.821)

Wald statistic 265.90*** 312.80*** 253.30*** 309.41***
N 9 9 9 9
Observations 108 108 108 108
Hausman test 7.44 5.94 6.70 6.20
Model type RE RE RE RE

aRobust standard error in parentheses. ***p < 0.01; **p < 0.05; *p < 0.1

POP is excluded in models 5–8 due to collinearity problem
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