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Abstract
Data-driven statistical air quality prediction methods usually build models fast with moderate accuracy and have been studied
a lot in recent years. However, due to the complexity of air quality prediction which usually involves multiple factors, such
as meteorological, spatial, and temporal properties, it is still a challenge to propose a model with required accuracy. In this
paper, we propose a hybrid ensemble model CERL to exploit the merits of both forward neural networks and recurrent
neural networks that are designed for handling time serial data to predict air quality hourly. Measured air pollutant factors
including Air Quality Index (AQI), PM2.5, PM10, CO, SO2, NO2, and O3 are used as input to predict air quality from 1 to
8 h ahead. Based on the air quality prediction evaluation in Lanzhou and Xi’an, which are two important provincial capitals
in Northwest China, CERL provides better performance over other baseline models. Moreover, as the step length increases,
CERL has more obvious improvement. For example, the improvements of CERL in the 1-step, 3-step, 5-step, and 8-step
prediction for PM2.5 in Lanzhou are 1.82%, 8.01%, 9.98%, and 20.03%, respectively. The superiority of CERL is also
proved by a hypothesis Diebold Mariano test with level of significance 5%.
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Introduction

Due to rapid population growth and backward economic
levels, air pollution has been one of the major problems
perplexing many developing countries. According to the
latest world air quality report released by AirVisual (2019),
Asian locations dominate the highest 100 average PM2.5

levels during 2018, with cities in India, China, Pakistan,
and Bangladesh occupying the top 50 cities (AirVisual
2018). China is the largest developing country in the
world, and many cities of China have suffered from
serious air pollution in the past few years, such as Hotan,
Shijiazhuang, Baoding, Xianyang, Jiaozuo, and Cangzhou.
Although China’s air pollution exposures have stabilized
and even begun to decline slightly after several years
of strict restrictions on industrial emissions and the use
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of fossil fuels for indoor heating and cooking (HEI and
IHME 2018), efforts are still needed to protect environment
at a high level. Sulfur oxides, carbon oxides, nitrogen
oxides, hydrocarbons, particulate matter 10 (PM10), and
particulate matter 2.5 (PM2.5) in the atmosphere are
the main contributors to air pollution, and many efforts
have been put into predicting air quality based on the
observations of scattered air monitoring stations.

Deterministic methods usually build simulation models
to simulate and predict the diffusion and transport process
of atmospheric pollutants (Ma et al. 2019). However, such
methods suffer from large computation costs and low
prediction accuracy if underlying atmospheric conditions
are complex and involve a large amount of observed data.
Moreover, it is necessary for IT technologists to know
specific domain knowledge for parameter identification.
Machine learning methods are another kind of approaches
for air quality prediction based on a large amount of
observed data. In recent years, researchers have employed
many machine learning methods to predict air quality
because of their theoretical foundation, diverse models,
and accurate forecasting effects, such as multiple linear
regression (Stadlober et al. 2008; Genc et al. 2010; Li et al.
2011), support vector machine (SVM) (Deng et al. 2018;
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Osowski and Garanty 2007), and artificial neural network
(ANN) (Cabaneros et al. 2019; Perez and Reyes 2006;
Feng et al. 2015). However, on the one hand, although
such traditional models employed by some efforts are
widely used and have reasonable performance in many
domains, they are not suitable for handing time serial
data since they cannot well process the time-steps of a
sequence. In other words, they cannot well deal with the
relationship between old information and new input in a
sequence. On the other hand, such efforts do not yield
the desired performance for air quality prediction. There
are also efforts that employ deep learning models in air
quality prediction, and the main solutions of adopting deep
learning in air quality prediction are utilizing recurrent
deep learning models, such as recurrent neural network
(RNN) (Pineda 1987), long short-term memory (LSTM)
(Hochreiter and Schmidhuber 1997), and transferred bi-
directional LSTM (Ma et al. 2019; Ma et al. 2019). Such
models generate multi-layered representations of data, and
also exhibit temporal dynamic behavior for time serial data,
thus providing better performance over traditional machine
learning methods. Moreover, there are also other efforts,
such as Lin et al. who proposed a neuro-fuzzy network, in
which the training data are described by fuzzy clusters with
statistical means and variances to address the uncertainty
of the involved impact factors (Lin et al. 2020). Jiang
et al. presented a hybrid air quality prediction approach
with pigeon-inspired optimization and extreme learning
machine. The work employed a modified extreme learning
machine to predict the data sub-series clustered based on
the multidimensional scaling and K-means clustering (Jiang
et al. 2019). Wang et al. proposed an ensemble deep learning
model which considered both weather patterns and spatial-
temporal properties (Wang and Song 2018). Maciaga et
al. proposed a clustering-based ensemble model based on
several evolving spiking neural networks on a separate set
of time series for air quality prediction (Maciag et al. 2019).
Compared with the efforts mentioned above, in this paper,
we propose a hybrid ensemble model CERL to exploit
the merits of both forward neural networks and recurrent
neural networks for hourly air quality data prediction in
Northwest of China. We take two cities in Northwest China,
i.e., Lanzhou and Xi’an, as examples, and demonstrate the
superiority of CERL. Moreover, we analyze the impact on
the CERL performance as the step length that it can predict
increases.

The rest of this paper is organized as follows. “Related
work” presents a brief literature review on the work
related to air quality prediction. In “Proposed approach,”
different prominent machine learning methods used for
air quality prediction are presented. In addition, the
hybrid method proposed in this paper is introduced. In
“Materials,” the materials used by this paper are given.

In “Experiments and results,” the results of the hourly
air quality data are presented. “Discussions” discusses the
CERL improvements in different step prediction and its
superiority based on a hypothesis testing. “Conclusion”
summarizes the achievements and highlights of this paper,
and outlines directions for future work.

Related work

Air quality forecast predicts air pollution levels for
a period ahead and provides important information to
the public. However, the prediction is still a challenge
because of the complexity of the process involved and the
strong coupling across many parameters, which affect the
modeling performance (Leksmono et al. 2006; Biancofiore
et al. 2017). There have been three main types of
air quality prediction methods: deterministic methods,
statistical methods, and machine learning methods (Ma
et al. 2019; Athira et al. 2018; Kwok et al. 2017; Singh
et al. 2012). Deterministic methods usually build simulation
models to simulate and predict the diffusion and transport
process of atmospheric pollutants. But such methods often
have large computation costs and low prediction accuracy if
underlying atmospheric conditions are complex. Statistical
methods are a kind of data-driven way of air quality
prediction, and the most of statistical methods assumed
the relationships between the input variables and the
target outputs are linear (Ma et al. 2019), for example,
multiple linear regression (Stadlober et al. 2008; Genc
et al. 2010; Li et al. 2011). Such linear approaches suffer
from the non-linearity of the real world. Machine learning-
based methods often focus on nonlinear models, and the
main methods fall into this category are ANN (Cabaneros
et al. 2019; Perez and Reyes 2006; Feng et al. 2015),
SVM (Deng et al. 2018; Osowski and Garanty 2007),
etc. For example, Cabanerosa et al. reviewed the research
activities in air pollution forecasting with ANNs and
showed that feed-forward and hybrid ANN models with ad
hoc optimization approaches were predominantly used to
forecast long-term air pollutant factors (Cabaneros et al.
2019). Yang et al. presented a support vector regression
model to predict PM2.5 concentrations by considering
spatial heterogeneity and dependence among the data (Deng
et al. 2018). Note that there are also efforts that consider
both statistical methods and machine learning methods
as statistical methods (Mallet and Sportisse 2008; Zhang
et al. 2012). Such linear and nonlinear data-driven methods
usually build models fast with moderate accuracy, and have
been studied a lot in recent years. For example, Singh
et al. explored both linear and nonlinear approaches to
predict air quality with the selected air pollutant factors
and meteorological conditions as the estimators (Singh
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et al. 2012). They argued that the nonlinear models,
especially artificial neural network-based models and their
variants, performed relatively better than linear PLSR
models. Carcia predicted PM10 concentrations based on
generalized linear models (GLMs), which focused on the
relationship between atmospheric concentrations of air
pollutants and meteorological variables (Garcia et al. 2016).
In GLM, PM10 concentration was considered a dependent
variable and both gaseous pollutants and meteorological
variables were considered independent variables. Based on
the similarity of PM2.5 variation in monitoring network, He
et al. proposed two methods, the linear method of stepwise
regression and the nonlinear method of support vector
regression, to predict PM2.5 concentration (He et al. 2018).
Shang et al. proposed a method on training local models
based on a combination of classification and regression
tree (CART) and ensemble extreme learning machine
(EELM) to address the global-local duality and improve the
prediction accuracy (Shang et al. 2019).

Besides the traditional methods based on machine
learning algorithms, there are efforts that employ deep
learning models in air quality prediction. Deep learning
is a branch of machine learning that generates multi-
layered representations of data, commonly using artificial
neural networks, and has improved the state of the art in
various machine learning tasks (Lang et al. 2019). The main
solutions of adopting deep learning in air quality prediction
are utilizing recurrent deep learning models, such as RNN
(Pineda 1987) and LSTM (Hochreiter and Schmidhuber
1997). For example, Biancofiore et al. adopted a recurrent
neural architecture, i.e., Elman Recurrent Network, to
forecast daily averaged concentration of PM10, and argued
that RNN had better performances compared with both the
multiple linear regression model and the neural network
model without the recursive architecture (Biancofiore et al.
2017). In Athira et al. (2018), Athira V compared different
RNN models and their variations based on the pollution
and meteorological time series AirNet data (Zhao et al.
2018), and showed that the performance of gated recurrent
unit network was slightly higher than that of RNN and
LSTM networks. Ma et al. used a bi-directional LSTM
model to learn long-term dependencies of PM2.5 (Ma et al.
2019). The highlight of the work was the combination
of a bi-directional LSTM and transfer learning technique,
which could transfer the knowledge from smaller temporal
resolutions to larger ones. Based on the work, Ma et al.
also proposed a stacked bi-directional LSTM that combined
deep learning techniques and transfer learning to deal with
the data shortage problem (Ma et al. 2019).

In addition, there are hybrid models which exploit the
advantages of multiple models, such as a hybrid model
based on sample entropy, secondary decomposition, and
least squares support vector machine LSTM AQI prediction

(Wu and Lin 2019). Wang et al. proposed a deep spatial-
temporal ensemble model, which considered not only
meteorological information but also spatial and temporal
properties to predict air quality. LSTM was also used to
learn both short-term and long-term dependencies (Wang
and Song 2018).

To sum up, there are a variety of differences between the
aforementioned efforts and our work. Our work is a kind of
ensemble model to exploit the merits of both forward neural
networks and recurrent neural networks that are designed
for handling time serial data. Based on the advantages of
both different types of neural networks, CERL provides
better performance over baseline models. In particular, we
focus on the air quality prediction of two rarely studied
capital cities in Northwest of China, and build prediction
models for main pollutant factors, i.e., AQI (AirNow 2019),
PM2.5, PM10, CO, SO2, NO2, and O3 hours by hours.

Proposed approach

In this work, we combined forward neural networks with
several recurrent neural networks as a hybrid model with an
aim to improve the accuracy of air quality prediction. This
section first introduces several machine learning methods
that are often used for air quality prediction, and then
introduces our hybrid combined approach CERL.

Prominent approaches for time series data

Cascade-forward neural network

Cascade-forward neural network (CFNN) is an artificial
neural network in which the information moves only
forward, i.e., from the input nodes, through the hidden
nodes to the output nodes. Moreover, CFNN includes a
connection from the input and every previous layer to
following layers. In other words, in a CFNN with three
layers, the output layer is also connected directly with the
input layer except hidden layer, as shown in Fig. 1a. As
with feed-forward networks, CFNNs with single hidden
layer can arbitrarily closely approximate any continuous
function that maps intervals of real numbers to some output
interval of real numbers. Based on the direct connection
between the input and output, CFNN is often used for time
series prediction. For example, Tengeleng et al. utilized a
cascade forward back-propagation neural network (BPNN)
to predict rain parameters, i.e., water content, rain rate, and
radar reflectivity with raindrop size distribution (Tengeleng
and Armand 2014). Warsito et al. showed that CFNN
models could successfully predict both simulated time
series data and monthly palm oil price index data (Warsito
et al. 2018, 05).
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Fig. 1 The models employed for
air quality prediction

RNN

RNN is a kind of artificial neural network that is specially
designed to model time serial data. Unlike feed-forward
networks, the hidden layers of RNN are connected back
into themselves to maintain an internal state and allow
RNN to exhibit temporal dynamic behavior for a time
sequence, as shown in Fig. 1b. Therefore, RNN enables
the networks to do temporal processing, and Biancofiore
et al. argued that RNN had better performances compared
with other neural network models without the recursive
architecture on forecasting daily averaged concentration of
PM10 (Biancofiore et al. 2017).

ESN

Roughly speaking, echo state network (ESN) is a special
case of recurrent neural network with a non-trainable sparse
random recurrent part (reservoir) and a simple linear readout

(Jaeger 2001, 01), as shown in Fig. 1c. Connection weights
in the ESN reservoir, as well as the input weights, are ran-
domly generated. Compared with other RNN models, ESNs
can efficiently process the temporal dependency of time
series with high nonlinear mapping capacity and dynamic
memory (Shen et al. 2016; Lukoševičius and Jaeger 2009).

Recurrent networks using previous outputs

Besides the standard recurrent neural networks, in which
each layer has a recurrent connection with a tap delay
associated with it, there are variant RNNs that have delayed
recurrent connections between their output and the input
layer, as shown in Fig. 1d. In such networks, the state of the
model is influenced not only by its previous internal states
but also by its outputs. This is useful in modeling time serial
data, since the output for timestep t is helpful to predict the
output for timestep t + d , where d is the step length of the
time serial prediction.
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Proposed hybrid approach

As we can see from above sections, recurrent neural
networks are a powerful type of artificial neural networks,
in which the outputs of hidden layers are fed back into
the same hidden layer. Such kind of internal memory is
helpful for handling time serial data, i.e., the data that occurs
in a time sequence. In this paper, we focus on combining
forward neural networks with prominent recurrent neural
networks as a hybrid model CERL with an aim to improve
the accuracy of air quality prediction. The general process
of building the hybrid model has two stages: single model
learning and hybrid model learning, as shown in Fig. 2.

As other supervised learning algorithms, we split the data
set into two sets: training and test sets, which are used to fit a
model and assess the model at the end of the model building,
respectively. In the first stage, several single recurrent neural
network models are built based on mapping input features
to output labels. Such models need to be optimized to
have their best performance. After the optimized single
models are built, they are used to calculate the predictions
to the training set. The predictions to the training set are
denoted by train Y1

′, train Y2
′, and train Yn

′. Accordingly,

the predictions to the test are denoted by test Y1
′, test Y2

′,
and test Yn

′. In the general model building process of a
supervised learning algorithm, such prediction results are
used to calculate training error and test error. In our work,
such prediction results are grouped together as the features
of training and test sets to build the hybrid ensemble model,
respectively. It is worth noticing that the labels of the
training and test sets used to building single models are
reused. In other words, the goal of the hybrid ensemble
model is to map the intermediate prediction results of the
single models to the final output labels of the training set.
Such a regression process can be implemented by many
machine learning algorithms, such as linear regression,
BPNN, and SVM.

Since artificial neural network has been well established
by many successful applications in a variety of fields (Yoon
et al. 2011; Singh et al. 2012), in this work, we employed a
three-layer BPNN for our hybrid ensemble model. We used
the logistic sigmoid function as the activation functions on
hidden neurons, which is defined as follows,

f (yj ) = 1

1 + e−yj
(1)

Fig. 2 The general process of building the hybrid ensemble model
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where yj is the output of a hidden neuron i, which is
calculated as follows,

yj =
n∑

i=1

wij train Y ′
i + θj (2)

where train Y ′
i is the output of the single models, and it is

used as the input of the ensemble model. wij is the weight
from input neuron i to neuron j , and θj is the bias of
neuron i.

At the output layer, we used mean square error (MSE) as
the loss function, which is defined as follows,

w

min J (w) = 1

n

n∑

i=1

(Yi − ŷi )
2 (3)

where Yi is the actual output of training instance i and ŷi is
the output from the neural network for the instance i. Our
goal is to minimize the loss function J as the neural network
is trained.

Materials

Datasets

We evaluated the performance of our proposed model on a
set of air quality data which are extracted from the web site
of historical data of air quality in China (Wang 2019), which
provides download services of historical air quality data
for all cites in China since May 13, 2014. The air quality
data was from China Environmental Monitoring Station
(CNEMC 2019), which updates the data daily. The air
pollutant factors include AQI, PM2.5, PM10, CO, SO2, NO2,
and O3 hours by hours. Moreover, the data also includes the
average values of PM2.5, PM10, CO, SO2, NO2, and O3 over
a 24-h period.

We selected the air quality data of two capital cities in
Northwest of China, i.e., Xi’an and Lanzhou. We selected

the dataset which was from January 1–31, 2019, since both
cities often have the worst air quality in December and
January, as shown in Fig. 3, which shows the monthly
average AQI and PM2.5 values of Xi’an and Lanzhou over
69 months from January 2014 to August 2018. Note that
the data of Fig. 3 was from China Air Quality Online
Monitoring and Analysis Platform (Wang 2019). The data
is collected once in an hour; finally, we got 744 (24 × 31)
samples for each given city in the first month of 2019.
Besides the date and time, each sample also includes 6
factors given a specified hour, i.e., AQI, the concentration
of PM2.5, PM10, CO, SO2, NO2, and O3.

Data preprocessing

Before building machine learning models for air quality
prediction, we processed data by filling missing values,
handing noisy data, normalization, and dataset split. The
details of such processes will be presented in this section.

Filling missing values

Due to technical and other reasons, a small amount of the
air quality data provided by the Environment Cloud were
missing. This is very common in environment monitoring,
but may have a significant effect on the conclusions that are
drawn from the data.

Since our data were in time serials, we filled missing
values based on linear extrapolation, which is a method used
to construct new data points based on a discrete set of known
data points. For example, if the data of two samples are
given by two coordinates (t1 , y1) and (t2, y2), the missing
data y∗ at the time t∗ are calculated with the following
formula:

y∗ = y1 + (t∗ − t1)

(t2 − t1)
(y2 − y1). (4)

Fig. 3 The air quality of Xi’an
and Lanzhou (Jan. 2014–Aug.
2018)

(a) Xi’an  (b) Lanzhou 
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Table 1 The data statistical details

City Indicator Air pollutant factors

AQI PM2.5 (µg/m3) PM10 (µg/m3) SO2 (µg/m3) NO2 (µg/m3) O3 (µg/m3) CO (mg/m3)

Lanzhou Max. 160.00 97.00 87.00 175.00 150.00 41.00 35.00

Min. 38.00 16.00 20.00 37.00 46.00 5.00 10.00

Avg. 73.35 45.89 47.15 87.13 86.37 24.28 24.96

Xi’an Max. 308.00 233.00 227.00 375.00 340.00 24.00 22.00

Min. 53.00 9.00 20.00 54.00 64.00 4.00 5.00

Avg. 172.97 127.96 133.03 182.95 183.72 15.85 16.33

In other words, the data y1, y2, y∗ are in a straight line.
Note that t∗ can be within or outside the time interval [t1, t2].

In this step, we filled 7 missing values, and the statistical
details of each pollutant factor after filling missing values
can be found in Table 1.

Noise reduction based on singular spectrum analysis

In machine learning, noisy data caused by different erratic
factors usually affect the forecast accuracy. To deal with
such problem, we employed singular spectrum analysis
(SSA) to handle the noisy data. SSA is a model-free method
and can be used to decompose original series into a sum
of interpretable components, such as trend, periodic com-
ponents, and noise. Afterwards, the signals can be extracted
from noisy data by discarding some decomposed compo-
nents. In other words, the noise reduction data is obtained
by adding the first several decomposed components
together.

In the practical application of SSA, the optimal number
of the data reconstruction is usually the half length of
decomposed components (He et al. 2019). In our work,
the data series were decomposed into 100 components, and
different numbers of the components ranging from 10 to
70 were regarded as noises and discarded to evaluate the

denoisy performance. Generally speaking, the components
discarded result in a smoother and slower varying data
series. Figure 4 presents the noise reduction residuals of
AQI and PM2.5 of Lanzhou from January 1 to January 15
by different percentages. The residuals are the differences
between the original values and the values after the noise
reduction. We can see that the residuals become larger as
more components are regarded as noises and discarded.
However, the noise reduction does not change the trend of
the data since the residuals are often very small, and the only
difference is that the curve becomes smoother as more data
are reduced. The performance evaluation of data denoise
will be detailed in “Denoise evaluation.”

Normalization

The dataset in our work was normalized by the mapminmax
function of MATLAB, which is defined as:

mapminmax(X, ymin, ymax) = (ymax −ymin) ∗ (x−xmin)

xmax −xmin

+ymin (5)

where X is the matrix to be normalized; ymin and ymax are
expected minimum and maximum values of each row of X,
respectively; and xmin and xmax are actual minimum and

(a) AQI (b) PM2.5

-10

10

30% filtered 50% filtered 70% filtered

-10

10

30% filtered 50% filtered 70% filtered

Fig. 4 The noise reduction residuals by SSA
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maximum values of each row of X. In our work, the dataset
is normalized to [0.001,1].

Dataset split

In our work, we took 7 pm on January 24, 2019, as
the time point to split training and test sets, and ensured
that they contained 80% and 20% instances, respectively.
Moreover, we further split the time serial training and
test datasets based on a sliding window algorithm, which
was used to segment a collection of historical air quality
data into groups. The algorithm procedure can be found in
Algorithm 1.

where data is one-by-d matrix, d is the length of the data,
window size is the number of consecutive observations per
sliding window, and step length is the number of steps
ahead to forecast. The algorithm takes the data, window
size and step length as the input, and outputs X and Y,
which are then used to learn target air quality prediction
models. For example, suppose a time sequence is denoted
as data = (s1, s2, . . . , s100), window size = 3 and step length
= 1, then X = (〈s1, s2, s3〉, 〈s2, s3, s4〉, . . . , 〈s97, s98, s99〉)
and Y = (s4, s5, . . . , s100). If window size = 5 and step length
= 2, then X = (〈s1, s2, s3, s4, s5〉, 〈s2, s3, s4, s5, s6〉,
. . . , 〈s94, s95, s96, s97, s98〉) and Y = (〈s6, s7〉, 〈s7, s8〉,. . . ,
〈s99, s100〉). Note that the slide step of our sliding window
algorithm is 1.

Evaluationmethodologymetrics

In this paper, the following three metrics were employed
to evaluate the performance of the involved models. There
are mean absolute deviation (MAE), root mean square error

(RMSE), mean absolute percentage error (MAPE), and
correlation coefficients (R), which are calculated with the
following formulas.

RMSE =
√√√√1

n

n∑

i=1

(xi − x̂i )2 (6)

MAE = 1

n

n∑

i=1

∣∣xi − x̂i

∣∣ (7)

MAPE = 1

n

n∑

i=1

∣∣∣∣
xi − x̂i

xi

∣∣∣∣ × 100% (8)

R = n
∑n

i=1(xi x̂i) − (
∑n

i=1xi)(
∑n

i=1x̂i )√
n
∑n

i=1xi
2 − (

∑n
i=1xi)2

√
n
∑n

i=1x̂
2
i − (

∑n
i=1x̂i )2

(9)

where xi and x̂i represent the actual value and the predicted
value, respectively, and n is the number of test samples.

Themodel training parameters

In this paper, our hybrid ensemble model CERL combined
forward neural networks with recurrent neural networks
that are designed for handling time serial data to predict
air quality in Lanzhou and Xi’an. More precisely, we
took CFNN, RNN, ESN, and RNN using previous outputs
as baseline models, and combined them using BPNN to
improve the prediction performance. To demonstrate the
superiority of CERL over such baseline models, both
baseline models and CERL were optimized to compare
their best performance. For CFNN and RNN, we used
MATLAB functions cascadeforwardnet and layrecnet for
CFNN and RNN implementation, respectively. We specified
the number of hidden neurons of CFNN and RNN as log2 n,
where n is the size of the input layer. We used the ESN
MATLAB library developed by Jaeger et al. (2007). The
number of internal units was set to n ∗ n, where n is the
size of the input layer. The spectral radius of the ESN
reservoir was 0.01 to ensure that the ESN had the echo
state property. We used Pyrenn (Atabay 2019), which is a
recurrent neural network toolbox for python and MATLAB
for the implementation of RNN using previous outputs. As
with CFNN and RNN, we specified the number of hidden
neurons of Pyrenn as log2 n, and the number of output
delays as 2. Note that we used Pyrenn as the name for
the RNN models using previous outputs for short in what
follows. Moreover, in CERL, we used BPNN to combine
the prediction results of CFNN, RNN, ESN, and Pyrenn.
We specified the BPNN learning parameters as follows:
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Fig. 5 Denoised by different
percentages
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learning rate 0.001, maximum number of iterations 2000,
and the number of hidden neurons 4. Moreover, we used
“trainbr” as the training function to avoid overfitting, since
it usually worked well with early stopping. In order to make
the comparison more reasonable, the best performance of
all aforementioned models was the average of 100 times of
training and testing such models.

Experiments and results

Denoise evaluation

As mentioned in “Noise reduction based on singular
spectrum analysis,” the noise reduction does not change
the trend of the data, but makes the curve smoother as
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more data are reduced. Moreover, it is helpful to improve
the model performance after the noisy data are removed.
In order to demonstrate the denoise performance, we used
the dataset that was reduced by different percentages as
the input of different baseline models, i.e., CFNN, RNN,
ESN, and Pyrenn to build 1-step PM2.5 prediction models
for Lanzhou. Figure 5 shows the performances of different
models. In the SSA of our work, the data series were
decomposed into 100 components. As we can see, the
performance of different models improves as the more data
are reduced, and the best performance is obtained when the
noise reduction percentage is 70%. In other words, the noise
reduction data is obtained by adding the first 30 components
together. The performance of all models goes along the
same trend, which proves that the denoise reduction is
useful to improve the model performance. In the following
experiments, the noise reduction data is obtained by adding
the first 30 components together except clearly specified.

1-step prediction

1-step prediction means that the models can be used to
predict air quality for the next hour. To get an optimal
model, we used different window sizes to split the training
set and the test set. The optimal window size was obtained
by analyzing the prediction performance of PM2.5, and then,
it was used to build the models for other pollutant factors,
i.e., AQI, PM10, CO, SO2, NO2, and O3.

Window size decision

In this paper, we used a sliding window algorithm to split
training and testing sets. In order to find an appropriate
window size, we used different window sizes ranging from
1 to 10 to prepare the training set and the test set. Different
models, i.e., CFNN, RNN, ESN, and Pyrenn, used such
data as the input to build 1-step PM2.5 prediction models

Table 2 The performance of
different models for 1-step
prediction in Lanzhou

Indicator Metrics CFNN ESN RNN Pyrenn CERL Average value

AQI MAPE 0.0204 0.0222 0.0205 0.0237 0.0201 0.0214

MAE 1.2265 1.3415 1.2282 1.4251 1.2115 1.2866

RMSE 1.6044 2.2555 1.6047 1.9237 1.5848 1.7946

R 0.9836 0.9674 0.9836 0.9774 0.9838 0.9792

PM2.5 MAPE 0.0300 0.0329 0.0310 0.0376 0.0294 0.0322

MAE 0.8939 1.0051 0.9176 1.1287 0.8785 0.9648

RMSE 1.2217 1.8687 1.2435 1.5469 1.2115 1.4185

R 0.9842 0.9640 0.9839 0.9750 0.9844 0.9783

PM10 MAPE 0.0343 0.0361 0.0343 0.0395 0.0337 0.0356

MAE 2.3192 2.4577 2.3200 2.6472 2.2973 2.4083

RMSE 3.0442 3.5454 3.0368 3.4939 3.0395 3.2320

R 0.9832 0.9772 0.9833 0.9792 0.9833 0.9812

SO2 MAPE 0.0890 0.0900 0.0893 0.0959 0.0872 0.0903

MAE 1.5267 1.5491 1.5310 1.6160 1.5223 1.5490

RMSE 2.0323 2.0652 2.0356 2.0931 2.0453 2.0543

R 0.9817 0.9811 0.9817 0.9811 0.9816 0.9814

NO2 MAPE 0.0488 0.0490 0.0493 0.0595 0.0532 0.0520

MAE 1.6621 1.6781 1.6696 1.9906 1.7379 1.7477

RMSE 2.2425 2.2736 2.2487 2.5726 2.3326 2.3340

R 0.9873 0.9869 0.9872 0.9842 0.9866 0.9864

O3 MAPE 0.0484 0.0492 0.0483 0.0593 0.0463 0.0503

MAE 1.8998 1.9370 1.8988 2.2627 1.8576 1.9712

RMSE 2.5321 2.5709 2.5304 3.3173 2.4807 2.6863

R 0.9900 0.9897 0.9900 0.9828 0.9905 0.9886

CO MAPE 0.0628 0.0645 0.0628 0.0731 0.0620 0.0650

MAE 0.0533 0.0547 0.0531 0.0626 0.0527 0.0553

RMSE 0.0748 0.0777 0.0746 0.0887 0.0746 0.0781

R 0.9781 0.9763 0.9783 0.9690 0.9782 0.9760
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for Lanzhou. Figure 6 a shows the performance of different
models. We can see that the performance improves as the
window size increases, and the curves become flat after
the window size is bigger than 5. Therefore, in our 1-step
air quality prediction models, we took 5 as the window
size. It is worth noticing that some models had slight better
performance when the window size was bigger than 5, but
we still specified the window size as 5 to reduce computing
costs. As a result, the dataset was divided into a training set
of 590 samples and 144 test samples.

Performance comparison

To illustrate the performance of CERL, we used CFNN,
RNN, ESN, and Pyrenn as baselines to build 1-step
models for 7 air pollutant factors including AQI, PM2.5,
PM10, CO, SO2, NO2, and O3. Afterwards, we compared

the performances of such models with CERL. The noise
reduction data in such experiments was obtained by adding
the first 30 components together, and the window size was
5. Each model was optimized to get its best performance.
Moreover, each model was trained and tested 100 times
to get its average performance. Tables 2 and 3 show the
performance results of different models in Lanzhou and
Xi’an, respectively. Note that the best results are indicated
in italics.

We can see that all such models have good performance
to predict air quality in both Lanzhou and Xi’an.
The average MAPE values of such models for AQI,
PM2.5, PM10, SO2, NO2, O3, and CO in Lanzhou are
2.14%, 3.22%, 3.56%, 9.03%, 5.20%, 5.03%, and 6.50%,
respectively. In Xi’an, the average MAPE values of such
models for AQI, PM2.5, PM10, SO2, NO2, O3, and CO are
2.56%, 2.70%, 2.87%, 4.98%, 2.98%, 8.96%, and 2.38%,

Table 3 The performance of
different models for 1-step
prediction in Xi’an

Indicator Metrics CFNN ESN RNN Pyrenn CERL Average value

AQI MAPE 0.0231 0.0235 0.0232 0.0360 0.0225 0.0257

MAE 2.9440 3.0209 2.9496 4.3282 2.9138 3.2313

RMSE 4.1602 4.4751 4.1676 5.5782 4.1708 4.5104

R 0.9956 0.9946 0.9956 0.9926 0.9956 0.9948

PM2.5 MAPE 0.0228 0.0234 0.0228 0.0442 0.0220 0.0270

MAE 2.0976 2.2019 2.1022 3.6397 2.0668 2.4216

RMSE 3.0998 3.5338 3.1118 4.6620 3.0660 3.4947

R 0.9967 0.9957 0.9967 0.9940 0.9968 0.9960

PM10 MAPE 0.0259 0.0265 0.0259 0.0402 0.0251 0.0287

MAE 3.1840 3.2931 3.1771 4.6986 3.1391 3.4984

RMSE 4.0692 4.4762 4.0710 5.7516 4.0967 4.4929

R 0.9958 0.9949 0.9958 0.9918 0.9957 0.9948

SO2 MAPE 0.0452 0.0447 0.0489 0.0600 0.0504 0.0498

MAE 0.5805 0.6187 0.5948 0.7262 0.6010 0.6242

RMSE 0.7790 0.9648 0.7875 0.9799 0.7988 0.8620

R 0.9933 0.9892 0.9933 0.9905 0.9933 0.9919

NO2 MAPE 0.0275 0.0296 0.0277 0.0363 0.0279 0.0298

MAE 1.2942 1.4469 1.2972 1.6259 1.3020 1.3932

RMSE 1.6291 2.6565 1.6289 2.1214 1.6341 1.9340

R 0.9963 0.9899 0.9964 0.9944 0.9963 0.9947

O3 MAPE 0.0837 0.0985 0.0843 0.0996 0.0819 0.0896

MAE 1.2627 1.4966 1.3093 1.5361 1.3278 1.3865

RMSE 1.6767 2.7924 1.8892 2.009 1.7625 2.0260

R 0.9965 0.9903 0.9955 0.9951 0.9963 0.9947

CO MAPE 0.0209 0.0213 0.0210 0.0352 0.0206 0.0238

MAE 0.0259 0.0267 0.0260 0.0410 0.0256 0.0290

RMSE 0.0337 0.0377 0.0339 0.0536 0.0338 0.0385

R 0.9946 0.9931 0.9945 0.9892 0.9946 0.9932
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respectively. Moreover, among such models, CERL exhibits
an improvement over CFNN, ESN, RNN, and Pyrenn on
6 of 7 air pollutant factors in both Lanzhou and Xi’an.
In Lanzhou, CERL provides superior performance on all
pollutant factors except NO2 prediction. For example, the
MAPE value of CERL for the AQI prediction in Lanzhou
is 2.01%, CFNN has the second smallest MAPE value
2.04%, and Pyrenn has the worst MAPE value 2.37%.
But the MAPE value of CERL for the NO2 prediction is
5.32%, which is bigger than that of CFNN with the best
MAPE value of 4.88%. In Xi’an, CERL does not get the
best performance only on SO2 prediction. For example, the
MAPE value of CERL for the AQI prediction in Xi’an
is 2.25%, CFNN has the second smallest MAPE value
2.31%, and Pyrenn has the worst MAPE value 3.60%.
But the MAPE value of CERL for the SO2 prediction is
5.04%, which is bigger than that of ESN with the best
MAPE value 4.47%. However, although CERL has superior
performance over other models, the performance of such
models is similar. This is because such models are adequate
for predicting air quality precisely in a short term. Figure 7
shows the comparison of such models on MAPE metric.

The final prediction results of CERL in Lanzhou is given
in Fig. 8. We can see that all such models have adequate
performance and the forecasting values and the actual values
are fitting very well on all pollutant factors.

N-step prediction

To demonstrate the performance of CERL on long-term
air quality prediction, this section provides the comparison
between CERL and the baseline models for air quality
prediction in the next 3, 5, and 8 h, respectively. Note that
the values in N steps ahead are simultaneously predicted by
the models in our work, rather than based on the results of
1-step prediction. The datasets used to prepare the training
and test sets can be found in Algorithm 1.

3-step prediction

As the 1-step prediction, we first did experiments to decide
the window size of 3-step prediction, and Fig. 6 b shows
the performance of different models on different window
sizes to predict PM2.5 in Lanzhou. We can see that the
performance of all models except Pyrenn ups to optima as
the window size is 10. As a result, the dataset is divided
into 583 samples for the training set and 137 samples for
the testing set. Pyrenn does not have the best performance
but an approximate optimal value with the window size 10.
Therefore, we used 10 as the window size to build 3-step
air quality prediction models, and the results are shown in
Fig. 9.

We can see that, unlike the 1-step prediction, CERL
provides better performance on all air pollutant factors
in both Lanzhou and Xi’an. Moreover, CERL has more
obvious improvement than the other three baseline models.
For example, the MAPE value of CERL for the 1-step
PM2.5 prediction is 2.94%, which only improves 2.04%
over CFNN that has the second best performance with the
MAPE value 3.00%. However, in the 3-step AQI prediction
in Lanzhou, the MAPE value of CERL for the PM2.5

prediction is 3.92%, which improves 7.98% over RNN with
the second best MAPE value 4.26%. It is also true for the
SO2 prediction. In Xi’an, the MAPE value of CERL for the
1-step SO2 prediction is 5.04%, which is even worse than
that of CFNN, ESN, and RNN. However, in the 3-step AQI
prediction in Xi’an, the MAPE value of CERL for the SO2

prediction is 6.89%, which improves 11.67% over ESN with
the second best MAPE value 7.80%.

5-step prediction

In the 5-step prediction, the best prediction performance is
obtained when the window size is 10, as shown in Fig. 6c.
We can see that the ESN and Pyrenn models do not have the
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best performance, but they have approximate optimal value
with the window size 10. As a result, the dataset is divided
into 581 samples for the training set and 135 samples for the
testing set. The performance of different 5-step models with
the window size 10 is presented in Fig. 10.

As in the 3-step prediction, CERL has obvious better
performance than in the other baseline models in all
air pollutant factors, and the improvement is more clear
than both 1-step and 3-step prediction. For example, the
MAPE value of CERL for the 3-step PM2.5 prediction is
3.92%, which improves 7.98% over RNN with the second
best MAPE value 4.26%. However, in the 5-step PM2.5

prediction in Lanzhou, the MAPE value of CERL for the
PM2.5 prediction is 6.87%, which improves 9.96% over
RNN with the second best MAPE value 7.63%. In Xi’an,
the MAPE value of CERL for the 3-step SO2 prediction is
6.89%, which improves 11.67% over ESN with the second
best MAPE value 7.80%. However, in the 5-step SO2

prediction in Xi’an, the MAPE value of CERL for the SO2

prediction is 12.30%, which improves 21.36% over ESN

with the second best MAPE value 15.64%. However, as
the step length increases, the overall performance declines.
As shown in Figs. 7 and 9, the MAPE values of CERL 1-
step and 3-step prediction fall in the range of 2.01∼8.72%
and 2.66∼11.84% for almost all air pollutant factors,
respectively. As the step length is increased to 5, the MAPE
values of CERL fall in the range of 5.05∼16.12%.

8-step prediction

In our 8-step air quality prediction models, we took 8 as the
window size, as shown in Fig. 6d. We can see that the best
performance is achieved when the window size is 6, and it
even declines when the window size is bigger than 10. As a
result, the dataset is divided into 585 samples for the training
set and 139 samples for the testing set.

In the 8-step prediction, CERL also has the best
performance in almost all air pollutant factors prediction,
as shown in Fig. 11. The MAPE value of CERL for
the 8-step PM2.5 prediction in Lanzhou is 10.97%, which
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Table 4 The CERL MAPE
improvements in different step
prediction in Lanzhou

AQI PM2.5 PM10 SO2 NO2 O3 CO

1-step 1.24% 1.82% 1.52% 1.98% − 9.00% 4.12% 1.24%

3-step 9.00% 8.01% 3.17% 4.68% 2.54% 7.18% 7.47%

5-step 15.45% 9.98% 5.61% 9.17% 19.04% 13.47% 16.54%

8-step 13.88% 20.03% 3.16% 15.09% 8.15% 22.48% 17.19%

improves 20.04% over RNN with the second best MAPE
value 13.72%. In Xi’an, the MAPE value of CERL for the
8-step SO2 prediction is 18.39%, which improves 8.14%
over ESN with the second best MAPE value 20.02%.
The improvement is not bigger than previous experiments
because that Pyrenn has the worst MAPE value 65.02%
for the 8-step SO2 prediction. Moreover, we can see that,
although CERL has better performance, the MAPE values
of CERL for air quality prediction are increased to the range
of 6.59∼31.69%.

Discussions

The CERL improvements

To sum up, we can see that CERL provides better
performance over the baseline models. In the 1-step
prediction, all models have good performance to predict
air quality. The average MAPE values of such models
for all air pollutant factors (except O3) fall in the range
of 2.13∼6.05% and 2.56∼4.98%, respectively. This is
because all such models are adequate for dealing with time
serial data, especially for short-term prediction. Although
CERL has superior performance over other models, the
performance of such models is not obvious or even worse
than that of the baseline models. As the step length
increases, CERL has more obvious improvement, as shown
in Tables 4 and 5. For example, the improvements of
CERL in the 1-step, 3-step, 5-step, and 8-step prediction for
PM2.5 in Lanzhou are 1.82%, 8.01%, 9.98%, and 20.03%,
respectively.

However, as the step length increases, the overall
performance of all models declines. For example, the
MAPE values of CERL 1-step, 3-step, and 5-step fall in
the range of 2.01∼8.72%, 2.66∼11.84%, 5.05∼16.12%,
respectively. As the step length is increased to 8, the MAPE

values of CERL fall in the range of 6.59∼31.69%. We did
not make further evaluation with bigger step length, since it
makes not much sense if the prediction quality is worse than
expected.

Diebold Mariano test

We further compare the performance of different models
with a hypothesis testing method, called Diebold Mariano
(DM) test. DM test is often used to check whether two
forecasts for a time series are significantly different.

Let e1
i and e2

i (i=1,2) be the residuals for the two
forecasts, i.e.,

e1
i = yi − gi e2

i = yi − hi (10)

where yi is actual value and gi and hi are predictive values
of the two forecasts.

The loss function of two forecasts is defined as:

L(error1
i ) = (e1

i )
2 L(error2

i ) = (e2
i )

2 (11)

The DM test statistic can be then defined by:

DM =
1
n

∑n
i=1(L(error1

i ) − L(error2
i ))

√
S2

n

. (12)

where S2 is the an estimator of the variance of di =
L(error1

i )−L(error2
i ). To check whether our CERL model

is more accurate than other ones, we test the equal accuracy
hypothesis. Given a significance level α, there are two
hypotheses H0 and H1 defined as:

H0 : L(error1
i ) = L(error2

i ) (13)

H1 : L(error1
i ) �= L(error2

i ) (14)

The null hypothesis H0 denotes that there is no
significant difference in the prediction performance of two
forecasts. Against the null hypothesis H0, the hypothesis

Table 5 The CERL MAPE
improvements in different step
prediction in Xi’an

AQI PM2.5 PM10 SO2 NO2 O3 CO

1-step 2.68% 3.67% 2.93% − 12.84% − 1.19% 2.18% 1.69%

3-step 8.36% 11.35% 5.18% 11.58% 1.95% 2.28% 5.09%

5-step 21.45% 16.67% 12.65% 21.32% 17.32% 25.06% 10.92%

8-step 18.93% 17.14% 23.75% 8.15% 9.41% 18.36% 6.80%
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Table 6 DM test of different models

City Model Forecast steps

1-step 3-step 5-step 8-step

Lanzhou CFNN − 2.44 − 2.17 − 3.14 − 3.82

ESN − 4.42 − 2.06 − 3.05 − 2.57

RNN − 4.49 − 2.16 − 2.58 − 4.04

Pyrenn − 3.54 − 5.76 − 17.43 − 9.59

Xi’an CFNN − 2.13 − 4.34 − 3.67 − 4.64

ESN − 3.57 − 2.76 − 3.18 − 2.16

RNN − 3.56 − 2.79 − 3.37 − 2.92

Pyrenn − 4.96 − 5.69 − 3.71 − 3.57

H1 indicates that two forecasts have different levels of
performance. The DM statistic follows approximately
a standard normal distribution N(0,1) under the null
hypothesis. In this work, we set the significance level as 5%.
In other words, the null hypothesis is rejected if |DM| ≤
1.96. Table 6 shows the DM test values for the PM2.5

prediction between our CERL and other baseline models,
i.e., CFNN, RNN, ESN, and Pyrenn. We can see that the
lowest DM value is − 2.06. As a result, we can draw the
conclusion that the null hypothesis is rejected and CERL has
better performance than the other models.

To sum up, there are several reasons for the results. One
is that CERL is a kind of ensemble model that employs
different analytical models and then synthesizes their results
into a single score in order to improve the prediction
performance. Moreover, CERL not only involves of forward
neural networks but also exploits the merits of recurrent
neural networks that are designed for handling time serial
data, such as RNN, ESN, and recurrent networks using
previous outputs. In other words, CERL is able of capturing
different underlying patterns in the data, thereby having
superiority over the other baseline models.

Conclusion

This paper proposed a hybrid ensemble model CERL to
exploit the merits of both forward neural networks and
recurrent neural networks that are designed for handling
time serial data to predict air quality hourly. Measured air
pollutant factors including AQI, PM2.5, PM10, CO, SO2,
NO2, and O3 are used as input to predict air quality from 1 to
8 h ahead. Based on the air quality prediction in two rarely
studied capital cities in Northwest of China, Lanzhou and
Xi’an, CERL further improves the prediction performance
over recurrent neural networks. However, this work is based
on the prediction at the hour level, and does not have high

accuracy for the long-term prediction. Our future study
should be expanded to explore the air quality prediction at
the day level. Moreover, this work only considers measured
air pollutant factors and adding measured meteorological
information into the air quality prediction may be another
direction of our future research. In future, we will see how
the information from multiple meteorological monitoring
stations influences air quality prediction. In addition, we
plan to employ convolutional neural network (CNN), a well-
known deep learning model in air quality prediction since
multiple factors are involved.
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